Irreductibility in Holomorphic Dynamics

Xavier Buff

Université de Toulouse

joint work with Adam Epstein and Sarah Koch

ヘロト ヘ戸ト ヘヨト ヘヨト

- *P*₃ is the dynamical moduli space of cubic polynomials modulo affine conjugacy.
- *M*₂ is the dynamical moduli space of quadratic rational maps modulo conjugacy by Möbius transformations.
- *𝒫*_{k,n} ⊂ *𝒫*₃ (resp. *𝑋*_{k,n} ⊂ *ℳ*₂) is the curve of conjugacy classes of cubic polynomials (resp. quadratic rational maps) having a critical point preperiodic to a cycle of period *n* with preperiod *k*.

ヘロン 人間 とくほ とくほ とう

\$0,3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

𝒴_{0,2}

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Conjecture (Milnor)

For all $n \ge 1$, the curve $\mathscr{S}_{0,n}$ is irreducible.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Conjecture (Milnor)

For all $n \ge 1$, the curve $\mathscr{S}_{0,n}$ is irreducible.

Theorem (Arfeux-Kiwi)

For all $n \ge 1$, the curve $\mathscr{S}_{0,n}$ is irreducible.

Conjecture (Milnor)

For all $n \ge 1$, the curve $\mathscr{S}_{0,n}$ is irreducible.

Theorem (Arfeux-Kiwi)

For all $n \ge 1$, the curve $\mathscr{S}_{0,n}$ is irreducible.

Theorem (B.-Epstein-Koch)

For all $k \ge 0$, the curve $\mathscr{S}_{k,1}$ is irreducible.

Theorem (B.-Epstein-Koch)

For all $k \ge 2$, the curve $\mathscr{V}_{k,1}$ is irreducible.

くロト (過) (目) (日)

- $F_{a,b}(z) = z^3 3a^2z + 2a^3 + b$, $(a,b) \in \mathbb{C}^2$.
- \mathcal{P}_3 is obtained by identifying (a, b) with (-a, -b).

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- $F_{a,b}(z) = z^3 3a^2z + 2a^3 + b$, $(a,b) \in \mathbb{C}^2$.
- 𝒫₃ is obtained by identifying (a, b) with (−a, −b).
 𝒫_k := ଟ^{ok}_{a,b}(a) :

$$P_0 = a, \quad P_1 = b \quad \text{and} \quad P_{k+1} = P_k^3 - 3a^2P_k + 2a^3 + b.$$

• $F_{a,b}(z) - F_{a,b}(w) = (z - w)(z^2 + zw + w^2 - 3a^2).$
 $Q_k := P_{k-1}^2 + P_{k-1}P_k + P_k^2 - 3a^2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $F_{a,b}(z) = z^3 3a^2z + 2a^3 + b$, $(a,b) \in \mathbb{C}^2$.
- 𝒫₃ is obtained by identifying (a, b) with (−a, −b).
 𝒫_k := ଟ^{ok}_{a,b}(a) :

$$P_0 = a, \quad P_1 = b \quad \text{and} \quad P_{k+1} = P_k^3 - 3a^2P_k + 2a^3 + b.$$

• $F_{a,b}(z) - F_{a,b}(w) = (z - w)(z^2 + zw + w^2 - 3a^2).$
 $Q_k := P_{k-1}^2 + P_{k-1}P_k + P_k^2 - 3a^2.$

• (b-a) divides Q_k and so, $Q_k = (b-a)R_k$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- $F_{a,b}(z) = z^3 3a^2z + 2a^3 + b$, $(a,b) \in \mathbb{C}^2$.
- 𝒫₃ is obtained by identifying (a, b) with (−a, −b).
 𝒫_k := 𝑘^{◦k}_{a,b}(a) :

$$P_0 = a, \quad P_1 = b \quad \text{and} \quad P_{k+1} = P_k^3 - 3a^2P_k + 2a^3 + b.$$

• $F_{a,b}(z) - F_{a,b}(w) = (z - w)(z^2 + zw + w^2 - 3a^2).$
 $Q_k := P_{k-1}^2 + P_{k-1}P_k + P_k^2 - 3a^2.$

• (b-a) divides Q_k and so, $Q_k = (b-a)R_k$.

•
$$R_1 = 2a + b$$

• $R_2 = (2a + b)^2 (b - a)^3 - 3b(2a + b)(a - b) + 3(a + b).$
• $R_3 = (2a + b)^6 (b - a)^{11} + \dots + 3(a + b).$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● のへぐ

Behavior near the origin

• From now on, $k \ge 2$.

Lemma

The homogeneous part of least degree of R_k is 3(a + b).

ヘロト ヘアト ヘビト ヘビト

Behavior near the origin

• From now on, $k \ge 2$.

Lemma

The homogeneous part of least degree of R_k is 3(a + b).

Corollary

The polynomial $R_k \in \mathbb{Z}[a, b]$ is irreducible over \mathbb{C} if and only if it is irreducible over \mathbb{Q} .

ヘロト ヘアト ヘビト ヘビト

Behavior near the origin

• From now on, $k \ge 2$.

Lemma

The homogeneous part of least degree of R_k is 3(a + b).

Corollary

The polynomial $R_k \in \mathbb{Z}[a, b]$ is irreducible over \mathbb{C} if and only if it is irreducible over \mathbb{Q} .

Proof: the curve $\{R_k = 0\}$ contains a non singular point with rational coordinates.

ヘロト 人間 ト ヘヨト ヘヨト

Lemma

The homogeneous part of highest degree of R_k is

$$(b-a)^{4\cdot 3^{k-2}-1}\cdot (2a+b)^{2\cdot 3^{k-2}}$$

Corollary

The curve $\{R_k = 0\}$ intersects the line at infinity at two points: [1 : 1 : 0] with multiplicity $4 \cdot 3^{k-2} - 1$, and [1 : -2 : 0] with multiplicity $2 \cdot 3^{k-2}$.

ヘロン 人間 とくほ とくほ とう

Intersection with the line $\{a = 0\}$

•
$$f_b(z) := F_{0,b}(z) = z^3 + b$$
,

・ロン・西方・ ・ ヨン・ ヨン・

Intersection with the line $\{a = 0\}$

•
$$f_b(z) := F_{0,b}(z) = z^3 + b$$
,
• $p_k(b) := P_k(0,b), q_k(b) := Q_k(0,b) \text{ and } r_k(b) := R_k(0,b)$.
• $p_{k+1} = p_k^3 + b, q_{k+1} = p_k^2 + p_k p_{k+1} + p_{k+1}^2$.
• $q_k = br_k = bs_k$.

Proposition (Goksel)

The polynomial $s_k \in \mathbb{Z}[b]$ is irreductible over \mathbb{Q} .

Proof:

• Work in
$$\mathbb{F}_{3}[b]$$
.
• $p_{k} \equiv b^{3^{k-1}} + b^{3^{k-2}} + \dots + b^{3} + b \pmod{3}$.
• $p_{k+1} - p_{k} \equiv b^{3^{k}} \pmod{3}$.
• $s_{k} \equiv b^{2 \cdot 3^{k-1} - 2} \pmod{3}$.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Intersection with the line $\{a = 0\}$

•
$$f_b(z) := F_{0,b}(z) = z^3 + b$$
,
• $p_k(b) := P_k(0,b), q_k(b) := Q_k(0,b) \text{ and } r_k(b) := R_k(0,b)$.
• $p_{k+1} = p_k^3 + b, q_{k+1} = p_k^2 + p_k p_{k+1} + p_{k+1}^2$.
• $q_k = br_k = bs_k$.

Proposition (Goksel)

The polynomial $s_k \in \mathbb{Z}[b]$ is irreductible over \mathbb{Q} .

Proof:

• Work in
$$\mathbb{F}_{3}[b]$$
.
• $p_{k} \equiv b^{3^{k-1}} + b^{3^{k-2}} + \dots + b^{3} + b \pmod{3}$.
• $p_{k+1} - p_{k} \equiv b^{3^{k}} \pmod{3}$.
• $s_{k} \equiv b^{2 \cdot 3^{k-1} - 2} \pmod{3}$.
• Since $s_{k}(0) = 3$, apply the Eisenstein criterion.