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An inverse problem

Shabat entire functions

Definition
We call f a Shabat entire function, if f is an entire function with exactly
two critical values ±1 and no asymptotic values.

For any Shabat entire function f , put Tf := f−1([−1,1]).
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An inverse problem

Trees arising from entire functions

Observation
Let f be a Shabat entire function. Then Tf is a tree in the plane.
(1) If f is a polynomial, then Tf is a finite tree;
(2) if f is transcendental, then Tf is an infinite tree.

Examples: z 7→ 4z3 − 3z; z 7→ sin(z).
Tf is called a true tree if f is a Shabat entire function.
Two trees T1 and T2 in the plane (not necessarily being true trees)
are equivalent, if there is a homeomorphism ϕ : C→ C such that
ϕ(T1) = T2.

Weiwei Cui (CAU Kiel) Entire functions arising from trees October 2, 2017 5 / 24



An inverse problem

Trees arising from entire functions

Observation
Let f be a Shabat entire function. Then Tf is a tree in the plane.
(1) If f is a polynomial, then Tf is a finite tree;
(2) if f is transcendental, then Tf is an infinite tree.

Examples: z 7→ 4z3 − 3z; z 7→ sin(z).

Tf is called a true tree if f is a Shabat entire function.
Two trees T1 and T2 in the plane (not necessarily being true trees)
are equivalent, if there is a homeomorphism ϕ : C→ C such that
ϕ(T1) = T2.

Weiwei Cui (CAU Kiel) Entire functions arising from trees October 2, 2017 5 / 24



An inverse problem

Trees arising from entire functions

Observation
Let f be a Shabat entire function. Then Tf is a tree in the plane.
(1) If f is a polynomial, then Tf is a finite tree;
(2) if f is transcendental, then Tf is an infinite tree.

Examples: z 7→ 4z3 − 3z; z 7→ sin(z).
Tf is called a true tree if f is a Shabat entire function.

Two trees T1 and T2 in the plane (not necessarily being true trees)
are equivalent, if there is a homeomorphism ϕ : C→ C such that
ϕ(T1) = T2.

Weiwei Cui (CAU Kiel) Entire functions arising from trees October 2, 2017 5 / 24



An inverse problem

Trees arising from entire functions

Observation
Let f be a Shabat entire function. Then Tf is a tree in the plane.
(1) If f is a polynomial, then Tf is a finite tree;
(2) if f is transcendental, then Tf is an infinite tree.

Examples: z 7→ 4z3 − 3z; z 7→ sin(z).
Tf is called a true tree if f is a Shabat entire function.
Two trees T1 and T2 in the plane (not necessarily being true trees)
are equivalent, if there is a homeomorphism ϕ : C→ C such that
ϕ(T1) = T2.

Weiwei Cui (CAU Kiel) Entire functions arising from trees October 2, 2017 5 / 24



An inverse problem

An inverse problem
Given any tree T in the plane, is there a true tree which is equivalent to
T?

If there is such a true tree, then we call Tf a true form of T .
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An inverse problem

Known results

Theorem (<∞, Dessins d’enfants)
Any finite tree in the plane has a true form.

"Theorem" (=∞, Quasiconformal folding)

Let T be an infinite tree in the plane. Suppose that Te is obtained by
"adding" some finite trees to T , then Te has a true form.

"Adding" is necessary!

"Theorem" (Nevanlinna)
Any homogeneous tree of valence ≥ 3 does not have a true form.
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Topological uniformness condition

Topological uniformness condition
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Topological uniformness condition

Kernel

"Definition"
Let T be an infinite tree in the plane. The kernel K(T ) of T is defined
from T by cutting all finite trees attached to some vertices of T .
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Topological uniformness condition

Word metric

Definition
Let Γ be a connected graph. The word metric is defined to assume that
every edge is isometric to a unit interval on the real line.
Let v ,w be two vertices on Γ. The combinatorial distance, dist(v ,w), is
defined to be the infimum of length of paths connecting v and w in Γ.

Remark
A connected, infinite and locally finite graph Γ, endowed with the word
metric, is a geodesic metric space.
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Topological uniformness condition

Topological uniformness condition

Let T be an infinite tree in the plane, satisfying the following conditions:
(1) the local valence of the tree is uniformly bounded;
(2) T has finitely many complementary components in the plane;
(3) dist(v ,K(T )) is uniformly bounded above for any vertex v of T .

Theorem (Cui, 2017)
Any tree satisfying the topological uniformness condition has a true
form.
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Topological uniformness condition

Observation ("Large-scale geometry")

Any tree satisfying the topological uniformness condition, when
observed from far away, "looks like" its kernel.

Remark
• (Sharpness) Every item in the topological uniformness condition

cannot be dropped.
• (Extension) Every item can be generalized.
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Type problem

Type problem
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Type problem

Überlagerungsfläche

Theorem (Conformal uniformization)
Every open, simply connected Riemann surface X is conformally
equivalent to either the unit disk D or the complex plane C.

X is said to be of hyperbolic type if X is conformally equivalent to D,
and of parabolic type otherwise.

Definition (Surfaces spread over the sphere)

A surface spread over the sphere is a pair (X ,p), where X is an open,
simply connected topological surface, and p : X → Ĉ is a topological
holomorphic map.

Stoïlow: There is a unique conformal structure on X which makes X a
Riemann surface.
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holomorphic map.

Stoïlow: There is a unique conformal structure on X which makes X a
Riemann surface.

Weiwei Cui (CAU Kiel) Entire functions arising from trees October 2, 2017 14 / 24



Type problem

Überlagerungsfläche

Theorem (Conformal uniformization)
Every open, simply connected Riemann surface X is conformally
equivalent to either the unit disk D or the complex plane C.

X is said to be of hyperbolic type if X is conformally equivalent to D,
and of parabolic type otherwise.

Definition (Surfaces spread over the sphere)

A surface spread over the sphere is a pair (X ,p), where X is an open,
simply connected topological surface, and p : X → Ĉ is a topological
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Type problem

Meromorphic functions

Type problem

Let (X ,p) be a surface spread over the sphere. What is the type of X?

If X is parabolic, then there is a conformal map φ : C→ X such
that f := p ◦ φ : C→ Ĉ is meromorphic.
If X is hyperbolic, then there is a conformal map ψ : D→ X such
that g := p ◦ ψ : D→ Ĉ is meromorphic.
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Type problem

Surfaces of class S

Definition
A surface (X ,p) spread over the sphere belongs to class S, if there are
q <∞ points A := {a1, . . . ,aq} such that

p : X \ p−1(A)→ Ĉ \A

is a covering map.
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Type problem

Speiser graph

Let (X ,p) ∈ S and suppose that {a1, . . . ,aq} is as before.

Fix an oriented Jordan curve on the sphere, passing through
a1, . . . ,aq in cyclic order (thus viewed as a graph on the sphere).
Let Γ′ be the dual graph.
Let Γ := p−1(Γ′) and identify Γ with its embedding in R2 by an o.p.
homeomorphism from X onto R2.
The graph Γ is called a Speiser graph, which is infinite, connected,
bipartite and homogeneous of valence q.
Two Speiser graphs are equivalent, if they are ambiently
homeomorphic.
Conversely, Speiser graphs provide a combinatorial pattern to
construct surfaces spread over the sphere in class S.
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Realization of entire functions

Quasi-isometry

Definition

Let (X1,d1) and (X2,d2) be two metric spaces. A map Φ : X1 → X2 is
called a quasi-isometry, if it satisfies the following two conditions:
(1) for some ε > 0, the ε-neighborhood of the image of Φ in X2 covers

X2;
(2) there are constants k ≥ 1, C ≥ 0 such that for all x1, x2 ∈ X1,

1
k
· d1(x1, x2)− C ≤ d2(Φ(x1),Φ(x2)) ≤ k · d1(x1, x2) + C.

Example

The two dimensional lattice Z× Z is quasi-isometric to E2.
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Realization of entire functions

Type of a graph

Definition
An infinite, locally finite, connected graph is parabolic (hyperbolic), if
the simple random walk on the graph is recurrent (transient).

Example (Pólya’s recurrence theorem)
A d-dimensional lattice is parabolic for d = 1,2, hyperbolic for d ≥ 3.

S. Kakutani: A drunk man will always find his way home, but a drunk
bird may get lost forever.

Proposition
Two connected finite valence graph which are quasi-isometric are
simultaneously hyperbolic or parabolic.
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Realization of entire functions

Doyle-Merenkov criterion

Definition
Let Γ be the Speiser graph of the surface (X ,p). Fix n ∈ N. The
extended Speiser graph Γn is defined by replacing each face with
infinitely many edges on the boundary by a half-plane lattice Λ, and
each face of Γ with 2k edges on the boundary, k ≥ n, by the
half-cylinder lattice Λ2k := Λ/2kZ.

Theorem (DM criterion)

Let n ∈ N be fixed. A surface spread over the sphere (X ,p) ∈ S is
parabolic if and only if Γn is parabolic.
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Realization of entire functions

Outline of proof
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Thank you !
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