
Hairs of a higher-dimensional analogue of the exponential
family

Patrick Comdühr

Christian-Albrechts-Universität zu Kiel

Barcelona, 3 October 2017

P. Comdühr (CAU Kiel) Hairs of Zorich maps 3 October 2017 1 / 19



Outline

1 Hairs of entire functions

2 Quasiregular maps

3 Zorich maps

4 Differentiability of hairs

P. Comdühr (CAU Kiel) Hairs of Zorich maps 3 October 2017 2 / 19



Outline

1 Hairs of entire functions

2 Quasiregular maps

3 Zorich maps

4 Differentiability of hairs

P. Comdühr (CAU Kiel) Hairs of Zorich maps 3 October 2017 2 / 19



Outline

1 Hairs of entire functions

2 Quasiregular maps

3 Zorich maps

4 Differentiability of hairs

P. Comdühr (CAU Kiel) Hairs of Zorich maps 3 October 2017 2 / 19



Outline

1 Hairs of entire functions

2 Quasiregular maps

3 Zorich maps

4 Differentiability of hairs

P. Comdühr (CAU Kiel) Hairs of Zorich maps 3 October 2017 2 / 19



Hairs of entire functions

Hairs of entire functions

P. Comdühr (CAU Kiel) Hairs of Zorich maps 3 October 2017 3 / 19



Hairs of entire functions

For an attracting fixed point ξ ∈ C of an entire function f

A(ξ) := {z ∈ C : f n(z)→ ξ as n→∞}

denotes the basin of attraction of ξ.

Fact
We have J (f ) = ∂A(ξ).

Consider the exponential family

Eλ : C→ C, Eλ(z) = λez , λ ∈ C \ {0}.

Fact
For 0 < λ < 1/e the function Eλ(z) has an attracting fixed point ξλ ∈ R.
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Hairs of entire functions

Theorem (Devaney, Krych 1984)

For 0 < λ < 1/e we have J (Eλ) = C \ A(ξλ) and J (Eλ) is a ”Cantor set
of curves”.

Figure: Part of J (Eλ) for λ = 1/4.
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Hairs of entire functions

Definition (Hairs)

We say that a subset H ⊂ C is a hair, if there exists a homeomorphism
γ : [0,∞)→ H such that lim

t→∞
γ(t) =∞. Moreover, we call γ(0) the

endpoint of the hair H.

Idea of Devaney’s and Krych’s proof:
Make a partition of C into horizontal strips of width 2π.
Define an equivalence relation between points z ,w ∈ C as follows:

z ∼ w :⇐⇒ E k
λ (z) and E k

λ (w) are in the same strip for all k ∈ N0

Show that the equivalence classes are hairs.
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Hairs of entire functions

History of hairs

Exponential family

Devaney, Krych (1984): For 0 < λ < 1/e the set J (Eλ) consists of an
uncountable union of pairwise disjoint hairs.
Devaney, Goldberg, Hubbard (1986): Hairs appear for all λ ∈ C \ {0}.

Larger classes of functions

Barański (2007): For a disjoint type map f of finite order, the set
J (f ) is a Cantor Bouquet.
Rottenfußer, Rückert, Rempe, Schleicher (2011): For a function f of
bounded type and of finite order, the set J (f ) contains an
uncountable union of hairs.
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Quasiregular maps

Motivation for quasiregular maps

Holomorphic case

For an open set U ⊂ R2 a function f : U → R2 is holomorphic, if
f is C 1 in the real sense,
‖Df (x)‖2 = Jf (x),

where Df (x) denotes the derivative of f in x , by Jf (x) we denote its
Jacobian determinant, and

‖Df (x)‖ := sup
‖h‖2=1

‖Df (x)h‖2

denotes the operator norm of Df in x .

Question: How do we find a suitable higher-dimensional counterpart?

First idea: Substitute the dimension 2 by any d ≥ 3.
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Quasiregular maps

Theorem (Liouville 1850)

A C 1 function f : Rd → Rd which maps spheres to spheres is either
constant or a Möbius transformation, i.e. a finite composition of reflections
on spheres and hyperplanes.

Remark. Liouville 1850: Proof for C 3 functions, Hartman 1958: Proof for
the C 1 case

We need a relaxation of the regularity (using Sobolev spaces) and of the
geometrical behaviour to obtain a larger class of functions.

Definition (Quasiregular)

Let G ⊂ Rd be a domain and let f ∈W 1,d
loc (G ) be continuous. We say that

f is quasiregular if there exists a constant K := K (f ) ≥ 1 such that

‖Df (x)‖d ≤ KJf (x) a.e.
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Zorich maps

Construction of Zorich maps

Consider first the exponential case:

πi

2

−πi
2

ez
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Zorich maps

Construction of Zorich maps

Consider first the exponential case:

πi

2

−πi
2

ez

With
h : [−π/2, π/2]→ C, h(y) = cos y + i sin y

and z = x + iy we obtain
ez = exh(y).
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Zorich maps

Idea: We keep the scaling function and replace h by a ”suitable” map.

Following Iwaniec and Martin, we use a bi-Lipschitz map h : Q → S+,
where Q := [−1, 1]d−1 and

S+ := {x ∈ Rd : ‖x‖2 = 1 and xd ≥ 0}.

h
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Zorich maps

Now we define a function F on the square beam Q × R as follows:

x

F (x) = exdh(x1, . . . , xd−1)

F
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Zorich maps

Now we define the function F on the square beam Q × R as follows:

F

x

x ′ F (x) = exdh(x1, . . . , xd−1)

F (x ′)

Via reflections we can extend F to Rd which we call a Zorich map.
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Zorich maps

Zorich maps with one attracting fixed point

Consider now the map

f : Rd → Rd , f (x) = F (x)− (0, . . . , 0, a),

where a > 0 is large.

Theorem (Bergweiler 2010)

Let f be as above. Then there exists a unique fixed point ξ = (ξ1, . . . , ξd)
and the set

J := {x ∈ Rd : f k(x) 9 ξ}

consists of uncountably many pairwise disjoint hairs.

Idea of the proof: Obtain the hairs as a locally uniform limit of a sequence
of certain curves
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Differentiability of hairs
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Differentiability of hairs

Differentiability of hairs for exponential maps

Theorem (Viana da Silva 1988)

The hairs of λez are C∞-smooth for all λ ∈ C \ {0} (except for endpoints).

Figure: Example of a nondifferentiable endpoint for f (z) = ez − 2.1

1Reference: L. Rempe, Dynamics of exponential maps, doctoral thesis,
Christian-Albrechts-Universität Kiel (2003), p. 34
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Differentiability of hairs

Differentiable hairs

Theorem 1 (C. 2016, simplified)

Let f be as in Bergweiler’s theorem. Assume that h|int(Q) is C 1 and Dh is
Hölder continuous. Then the hairs of f are C 1-smooth.

Question: Does the regularity of the function always transfer to the
regularity of the hairs?

Theorem 2 (C. 2017)

There exists a function of bounded type and of finite order, where every
hair is nowhere differentiable.
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The End

Thank you for your attention!
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