The Sierpinski Mandelbrot Spiral

E. Chang

Department of Mathematics and Statistics Boston University

TCD2017

E. Chang (Boston University)

The Sierpinski Mandelbrot Spiral

◆ 王 ▶ 王 = つへへ TCD2017 1 / 86

イロト イ団ト イヨト イヨト

三日 のへで

1 Introduction

 $2 z^2 + \lambda/z^3$

 $3 z^4 + \lambda/z^3$

三日 のへで

• Consider the function $F(z) = z^2$, $z \in \mathbb{C}$.

• Points on the circle stay on the circle.

- Points on the circle stay on the circle.
- Points inside the circle go to the origin.

- Points on the circle stay on the circle.
- Points inside the circle go to the origin. The origin is an attracting fixed point.

- Points on the circle stay on the circle.
- Points inside the circle go to the origin. The origin is an attracting fixed point.
- Points outside the circle stay outside the circle while approaching ∞ , an attracting fixed point on the Riemann sphere.

• As we iterate by F,

- As we iterate by F,
- the previous images are the output of a program approximating the long term behavior of different initial *z* numerically.

- As we iterate by F,
- the previous images are the output of a program approximating the long term behavior of different initial *z* numerically.
- Points that grow past some magnitude within some number of iterations are filled in with a range of colors from red, orange, green, blue and violet depending on how many iterations are needed.

- As we iterate by F,
- the previous images are the output of a program approximating the long term behavior of different initial *z* numerically.
- Points that grow past some magnitude within some number of iterations are filled in with a range of colors from red, orange, green, blue and violet depending on how many iterations are needed.
- Points that do not are colored black.

- As we iterate by F,
- the previous images are the output of a program approximating the long term behavior of different initial *z* numerically.
- Points that grow past some magnitude within some number of iterations are filled in with a range of colors from red, orange, green, blue and violet depending on how many iterations are needed.
- Points that do not are colored black. The Riemann sphere colored in by long term behavior is the dynamical plane.

• The Julia set of *F*, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:

- The Julia set of F, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:
- $\mathcal{J}(F)$ is the set of values for which a small perturbation can result in drastic changes in the orbit of that value.

- The Julia set of F, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:
- $\mathcal{J}(F)$ is the set of values for which a small perturbation can result in drastic changes in the orbit of that value.
- For $F(z) = z^2$, the Julia set is S^1 .

- The Julia set of F, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:
- $\mathcal{J}(F)$ is the set of values for which a small perturbation can result in drastic changes in the orbit of that value.
- For $F(z) = z^2$, the Julia set is S^1 .
- Take a point on the circle.

- The Julia set of F, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:
- $\mathcal{J}(F)$ is the set of values for which a small perturbation can result in drastic changes in the orbit of that value.
- For $F(z) = z^2$, the Julia set is S^1 .
- Take a point on the circle. For any neighborhood of that point, some z in that nbd go to 0, some stay on the circle, and some go to ∞ .

- The Julia set of F, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:
- $\mathcal{J}(F)$ is the set of values for which a small perturbation can result in drastic changes in the orbit of that value.
- For $F(z) = z^2$, the Julia set is S^1 .
- Take a point on the circle. For any neighborhood of that point, some z in that nbd go to 0, some stay on the circle, and some go to ∞. Then J(F) is the set of chaotic behavior, which is why it's cooler than

- The Julia set of F, denoted $\mathcal{J}(F)$, has several equivalent definitions more, but we'll use this informal one:
- $\mathcal{J}(F)$ is the set of values for which a small perturbation can result in drastic changes in the orbit of that value.
- For $F(z) = z^2$, the Julia set is S^1 .
- Take a point on the circle. For any neighborhood of that point, some z in that nbd go to 0, some stay on the circle, and some go to ∞. Then J(F) is the set of chaotic behavior, which is why it's cooler than
- the Fatou Set, or $\mathcal{F}(F)$. This is the complement of $\mathcal{J}(F)$ in the Riemann sphere.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

 If we move λ enough along the real axis, the attracting fixed point becomes an attracting periodic cycle of period 2.

- If we move λ enough along the real axis, the attracting fixed point becomes an attracting periodic cycle of period 2.
- We are not restricted to the real axis. λ can take any value in \mathbb{C} .

- If we move λ enough along the real axis, the attracting fixed point becomes an attracting periodic cycle of period 2.
- We are not restricted to the real axis. λ can take any value in C. We keep λ small because there's no qualitative change in the function past some |λ|.

- If we move λ enough along the real axis, the attracting fixed point becomes an attracting periodic cycle of period 2.
- We are not restricted to the real axis. λ can take any value in C. We keep λ small because there's no qualitative change in the function past some |λ|.
- The parameter plane is the set of $\lambda \in \mathbb{C}$ for $F_{\lambda}(z)$.

- If we move λ enough along the real axis, the attracting fixed point becomes an attracting periodic cycle of period 2.
- We are not restricted to the real axis. λ can take any value in C. We keep λ small because there's no qualitative change in the function past some |λ|.
- The parameter plane is the set of $\lambda \in \mathbb{C}$ for $F_{\lambda}(z)$.

$$F_{\lambda}(z)=z^2+\lambda, \ \ z,\lambda\in\mathbb{C}$$

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

• A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

• A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,

• with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ.
$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ. If the critical value escapes, that λ value is colored using the same scheme as in the dynamical plane.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ. If the critical value escapes, that λ value is colored using the same scheme as in the dynamical plane. If the critical value does not escape, that λ value is colored black.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ. If the critical value escapes, that λ value is colored using the same scheme as in the dynamical plane. If the critical value does not escape, that λ value is colored black.
- The black region in the parameter plane for $z^2 + \lambda$ is the Mandelbrot set.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ. If the critical value escapes, that λ value is colored using the same scheme as in the dynamical plane. If the critical value does not escape, that λ value is colored black.
- The black region in the parameter plane for z² + λ is the Mandelbrot set. λ = 0 is in the main cardioid, and λ = -1 is in the period 2 bulb.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ. If the critical value escapes, that λ value is colored using the same scheme as in the dynamical plane. If the critical value does not escape, that λ value is colored black.
- The black region in the parameter plane for $z^2 + \lambda$ is the Mandelbrot set. $\lambda = 0$ is in the main cardioid, and $\lambda = -1$ is in the period 2 bulb.
- The orange region is the Cantor set locus.

$$F_{\lambda}(z) = z^2 + \lambda, \ z, \lambda \in \mathbb{C}$$

- A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$,
- with corresponding critical value $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- There is one critical point $c^{\lambda} = 0$ with $v^{\lambda} = F_{\lambda}(0)$.
- The program draws the parameter plane by looking at the orbit of the critical value for a specific λ. If the critical value escapes, that λ value is colored using the same scheme as in the dynamical plane. If the critical value does not escape, that λ value is colored black.
- The black region in the parameter plane for $z^2 + \lambda$ is the Mandelbrot set. $\lambda = 0$ is in the main cardioid, and $\lambda = -1$ is in the period 2 bulb.
- The orange region is the Cantor set locus. For parameters in the Cantor set locus, *J*(*F_λ*) is homeomorphic to a Cantor set.

イロト イヨト イヨト イヨト

三日 のへの

E. Chang (Boston University)

TCD2017 10 / 86

E 990

E. Chang (Boston University)

TCD2017 11 / 86

• Lets add poles to the function:

• Lets add poles to the function:

$$F_{\lambda}(z) = z^2 + \lambda/z \ \ z, \lambda \in \mathbb{C}$$

• Lets add poles to the function:

$$F_{\lambda}(z) = z^2 + \lambda/z \ \ z, \lambda \in \mathbb{C}$$

TCD2017 12 / 86

= 200

• • • • • • • • • • • •

• Lets add poles to the function:

$$F_{\lambda}(z) = z^2 + \lambda/z \ \ z, \lambda \in \mathbb{C}$$

• This is the rational map with n = 2, d = 1.

Image: Image:

= nav

< ∃ > <

TCD2017 13 / 86

• When |z| is large, $|F_{\lambda}(z)| > |z|$ and so the point at ∞ is an attracting fixed point in the Riemann sphere.

• When |z| is large, $|F_{\lambda}(z)| > |z|$ and so the point at ∞ is an attracting fixed point in the Riemann sphere. We denote the immediate basin of attraction of ∞ by B_{λ} .

- When |z| is large, $|F_{\lambda}(z)| > |z|$ and so the point at ∞ is an attracting fixed point in the Riemann sphere. We denote the immediate basin of attraction of ∞ by B_{λ} .
- There is a pole at the origin, so there is a nbd of the origin that is mapped into B_λ.

- When |z| is large, $|F_{\lambda}(z)| > |z|$ and so the point at ∞ is an attracting fixed point in the Riemann sphere. We denote the immediate basin of attraction of ∞ by B_{λ} .
- There is a pole at the origin, so there is a nbd of the origin that is mapped into B_λ. If the preimage of B_λ surrounding the origin is disjoint from B_λ, we call this region the trap door and denote it by T_λ.

The rational map with higher n, d

• If we increase *n* and *d* further,

$$F_{\lambda}(z) = z^3 + \lambda/z^3 \ z, \lambda \in \mathbb{C}$$

The rational map with higher n, d

• If we increase *n* and *d* further,

$$F_{\lambda}(z) = z^3 + \lambda/z^3 \ z, \lambda \in \mathbb{C}$$

The Sierpinski Mandelbrot Spiral

TCD2017 14 / 86

The McMullen domain

TCD2017 15 / 86

三日 のへの

<ロ> (日) (日) (日) (日) (日)

The McMullen domain

• The McMullen domain is the set of λ around the origin for which the critical point enters the trap door after 1 iteration.

= nav

Sierpinski holes

TCD2017 16 / 86

三日 のへの

イロン イヨン イヨン イヨン

 A Sierpinski hole is a set of λ for which the critical point enters the trap door after 2 or more iterations.

= 900

< ∃ > <

3 $z^4 + \lambda/z^3$

E. Chang (Boston University)

メロト メポト メヨト メヨト

三日 のへで

The Rational Map with n = 2, d = 3

• What I have been studying is

$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

The Rational Map with n = 2, d = 3

• What I have been studying is

$${\sf F}_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

The Sierpinski Mandelbrot Spiral

TCD2017 18 / 86

For
$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^3}, \ z, \lambda \in \mathbb{C}$$

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

• A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$.

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

• A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$. • There are 5 critical points given by $c^{\lambda} = \left(\frac{3\lambda}{2}\right)^{1/5}$.

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

• A critical point c^{λ} is a value of z for which $F'_{\lambda}(z) = 0$. • There are 5 critical points given by $c^{\lambda} = \left(\frac{3\lambda}{2}\right)^{1/5}$.

For
$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^3}, \ z, \lambda \in \mathbb{C}$$

For
$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^3}, \ z, \lambda \in \mathbb{C}$$

• There are 5 critical values $v^{\lambda} = F_{\lambda}(c^{\lambda})$.

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

• There are 5 critical values $v^{\lambda} = F_{\lambda}(c^{\lambda})$. • They are $v^{\lambda} = \frac{5\lambda^{2/5}}{3^{3/5}2^{2/5}}$.

ELE SQC

- 4 回 ト 4 回 ト 4

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

- There are 5 critical values $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- They are $v^{\lambda} = \frac{5\lambda^{2/5}}{3^{3/5}2^{2/5}}.$
- The dynamical plane exhibits symmetry under rotation, so discussing one critical value covers all critical points and values.
For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

- There are 5 critical values $v^{\lambda} = F_{\lambda}(c^{\lambda})$.
- They are $v^{\lambda} = \frac{5\lambda^{2/5}}{3^{3/5}2^{2/5}}.$
- The dynamical plane exhibits symmetry under rotation, so discussing one critical value covers all critical points and values.

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

For
$${\it F}_{\lambda}(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

• A prepole p^{λ} is a value of z for which $F_{\lambda}(z) = 0$.

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

- A prepole p^{λ} is a value of z for which $F_{\lambda}(z) = 0$.
- There are 5 prepoles given by $p^{\lambda} = (-\lambda)^{1/5}$.

For
$$F_\lambda(z)=z^2+rac{\lambda}{z^3}, \ \ z,\lambda\in\mathbb{C}$$

• A prepole p^{λ} is a value of z for which $F_{\lambda}(z) = 0$.

• There are 5 prepoles given by $p^{\lambda} = (-\lambda)^{1/5}$.

《 문 ▶ 문 문 ♡ Q (TCD2017 22 / 86

.∃ >

 We will talk about the critical point and its corresponding critical value on the real axis (for a specific λ on the real axis in the parameter plane).

 We will talk about the critical point and its corresponding critical value on the real axis (for a specific λ on the real axis in the parameter plane). There is also a fixed point on the real axis.

- We will talk about the critical point and its corresponding critical value on the real axis (for a specific λ on the real axis in the parameter plane). There is also a fixed point on the real axis.
- We can classify the regions in the parameter plane by the orbit of that critical value.

Cantor set locus

三日 のへの

イロン イヨン イヨン イヨン

Cantor set locus

• v^{λ} lies in B_{λ} . In this case it is known that $\mathcal{J}(F_{\lambda})$ is a Cantor set.

-

= nar

• • • • • • • • • • • •

Cantor set locus

- v^{λ} lies in B_{λ} . In this case it is known that $\mathcal{J}(F_{\lambda})$ is a Cantor set.
- The corresponding set of λ -values in the parameter plane is called the Cantor set locus.

TCD2017 24 / 86

イロト イヨト イヨト イヨト

三日 のへの

c^λ enters T_λ after 1 iteration. J(F_λ) is a Cantor set of simple closed curves.

I= nan

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- c^λ enters T_λ after 1 iteration. J(F_λ) is a Cantor set of simple closed curves.
- If you take a slice of the Julia set, you can kind of see the Cantor set in that interval.

1 = nar

∃ ▶ ∢

- c^{λ} enters T_{λ} after 1 iteration. $\mathcal{J}(F_{\lambda})$ is a Cantor set of simple closed curves.
- If you take a slice of the Julia set, you can kind of see the Cantor set in that interval.
- The corresponding set of λ around the origin is the McMullen domain.

Image: Image:

= nar

- c^{λ} enters T_{λ} after 1 iteration. $\mathcal{J}(F_{\lambda})$ is a Cantor set of simple closed curves.
- If you take a slice of the Julia set, you can kind of see the Cantor set in that interval.
- The corresponding set of λ around the origin is the McMullen domain. One time I clicked in that region on my first try:

E. Chang (Boston University)

The Sierpinski Mandelbrot Spiral

TCD2017 24 / 86

Sierpinski holes

TCD2017 25 / 86

三日 のへの

イロン イヨン イヨン イヨン

• c^{λ} enters T_{λ} at iteration 2.

三日 のへの

イロト イヨト イヨト

• c^{λ} enters T_{λ} at iteration 2. For any λ such that c^{λ} enters T_{λ} at iteration 2 or higher, it is known that $\mathcal{J}(F_{\lambda})$ is a Sierpinski curve,

ELE NOR

∃ > <</p>

Image: Image:

• c^{λ} enters T_{λ} at iteration 2. For any λ such that c^{λ} enters T_{λ} at iteration 2 or higher, it is known that $\mathcal{J}(F_{\lambda})$ is a Sierpinski curve, i.e. a set that is homeomorphic to the Sierpinski carpet fractal.

ELE SQC

- c^{λ} enters T_{λ} at iteration 2. For any λ such that c^{λ} enters T_{λ} at iteration 2 or higher, it is known that $\mathcal{J}(F_{\lambda})$ is a Sierpinski curve, i.e. a set that is homeomorphic to the Sierpinski carpet fractal.
- The corresponding sets of λ are called Sierpinski holes.

1 = nar

3 1 4

Sierpinski carpet fractal

	8.29.38.29.38.29.3	
	808808	

E. Chang (Boston University)

TCD2017 26 / 8

- ∢ 🗗 ト

.∃ >

= 990

TCD2017 27 / 86

I= nar

-

• • • • • • • • • • • •

• v^{λ} does not escape to ∞ .

Image: Image:

→ ∃ →

= 200

- v^{λ} does not escape to ∞ .
- The corresponding set of λ in the parameter plane includes, but is not limited to, the Mandelbrot sets.

- v^{λ} does not escape to ∞ .
- The corresponding set of λ in the parameter plane includes, but is not limited to, the Mandelbrot sets.
- The complement of the Cantor set locus and the McMullen domain in the Riemann sphere is the connectedness locus.

- v^{λ} does not escape to ∞ .
- The corresponding set of λ in the parameter plane includes, but is not limited to, the Mandelbrot sets.
- The complement of the Cantor set locus and the McMullen domain in the Riemann sphere is the connectedness locus. This locus is the union of the Mandelbrot sets, Sierpinski holes, and some other stuff.

- v^{λ} does not escape to ∞ .
- The corresponding set of λ in the parameter plane includes, but is not limited to, the Mandelbrot sets.
- The complement of the Cantor set locus and the McMullen domain in the Riemann sphere is the connectedness locus. This locus is the union of the Mandelbrot sets, Sierpinski holes, and some other stuff. *J*(*F*_λ) is a connected set for all λ in the connectedness locus.

TCD2017 28 / 86

ELE NOR

• • • • • • • • • • • •

• For a λ in the next Sierpinski hole to the left:

Image: Image:

- For a λ in the next Sierpinski hole to the left:
- c^{λ} enters T_{λ} at iteration 3.

.⊒ . ►

- For a λ in the next Sierpinski hole to the left:
- c^{λ} enters T_{λ} at iteration 3.
- The next Sierpinski hole along the negative real axis probably has escape time 4.

- For a λ in the next Sierpinski hole to the left:
- c^{λ} enters T_{λ} at iteration 3.
- The next Sierpinski hole along the negative real axis probably has escape time 4.
- This idea of increasingly higher escape time Sierpinski holes might be interesting...

More Mandelbrot sets

More Mandelbrot sets

• There is the clearly visible principal Mandelbrot set.
More Mandelbrot sets

- There is the clearly visible principal Mandelbrot set.
- Also two baby Mandelbrot sets.

More Mandelbrot sets

- There is the clearly visible principal Mandelbrot set.
- Also two baby Mandelbrot sets.
- Six more baby Mandelbrot sets. Are there more?

Why yes there are

- ∢ ∃ ▶

= 990

Why yes there are

TCD2017 30 / 86

= 990

・ロト ・日下 ・ 日下

Why yes there are

• There is a Mandelbrot between the Sierpinski holes of c^{λ} escape time 2 and 3.

Further along the negative real axis

Further along the negative real axis

Further along the negative real axis

• Looks like another Mandelbrot set between the next pair of Sierpinski holes.

TCD2017 32 / 86

• Between each of the infinitely many pairs of Sierpinski holes is a Mandelbrot set.

• Between each of the infinitely many pairs of Sierpinski holes is a Mandelbrot set.

• Between each of the infinitely many pairs of Sierpinski holes is a Mandelbrot set.

 Between each of the infinitely many pairs of Sierpinski holes is a Mandelbrot set.

• This set of infinitely many alternating Sierpinski holes and Mandelbrot sets along the negative real axis in the parameter plane is the *Sierpinski Mandelbrot arc.*

TCD2017 34 / 86

3 ×

 This is the dynamical plane for n = 2, d = 3 and λ in a Sierpinski hole on the negative real axis.

- This is the dynamical plane for n = 2, d = 3 and λ in a Sierpinski hole on the negative real axis.
- To prove the existence of the Sierpinski Mandelbrot arc we will consider some closed sets in the dynamical plane.

- This is the dynamical plane for n = 2, d = 3 and λ in a Sierpinski hole on the negative real axis.
- To prove the existence of the Sierpinski Mandelbrot arc we will consider some closed sets in the dynamical plane.
- We will also restrict λ to an annular region in the parameter plane. The details are not that interesting. more

The left wedge L^{λ}

< ∃ > <

= 990

• Let L^{λ} be the closed portion of the wedge with inner boundary in the trapdoor, outer boundary in the basin, and straight line boundaries that are part of the two adjacent prepole rays as shown.

- Let L^{λ} be the closed portion of the wedge with inner boundary in the trapdoor, outer boundary in the basin, and straight line boundaries that are part of the two adjacent prepole rays as shown.
- There is one critical point c_0^{λ} in the interior of L^{λ} .

◆ □ ▶ ◆ 🗇

- ∢ ∃ ▶

TCD2017 36 / 86

= 990

 Let R^λ be the symmetric right wedge. The straight line boundaries are part of two adjacent critical point rays.

- Let R^λ be the symmetric right wedge. The straight line boundaries are part of two adjacent critical point rays.
- There is one prepole p_2^{λ} in the interior of R^{λ} .

- Let R^λ be the symmetric right wedge. The straight line boundaries are part of two adjacent critical point rays.
- There is one prepole p_2^{λ} in the interior of R^{λ} .

•
$$v_0^{\lambda} = F_{\lambda}(c_0^{\lambda})$$
 is in R^{λ} .

The (subset of the) trapdoor T_A

The (subset of the) trapdoor T_A

 Let *T_A* be the closed subset of the trapdoor containing 0 such that *L^λ* ∪ *T_A* ∪ *R^λ* are connected, and they only intersect along boundaries.

The (subset of the) trapdoor T_A

- Let *T_A* be the closed subset of the trapdoor containing 0 such that *L^λ* ∪ *T_A* ∪ *R^λ* are connected, and they only intersect along boundaries.
- This union will be referred to informally as the bowtie.

Proposition

For each λ in that annular region:

Proposition

For each λ in that annular region:

1. F_{λ} maps R^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R^{\lambda}$;

Proposition

For each λ in that annular region:

1. F_{λ} maps R^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R^{\lambda}$;

2. F_{λ} maps L^{λ} two-to-one over a region that contains the interior of R^{λ} ;

For each λ in that annular region:

1. F_{λ} maps R^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R^{\lambda}$;

2. F_{λ} maps L^{λ} two-to-one over a region that contains the interior of R^{λ} ;

3. Some stuff about the critical value winding around the boundary of R_0^{λ} that is not worth stating, justifying, or using for this talk.

Justification for part 1

• The critical point ray boundaries of R^{λ} are mapped two-to-one onto the critical value rays.

Justification for part 1

• The critical point ray boundaries of R^{λ} are mapped two-to-one onto the critical value rays. For each λ in the annular region, the critical value rays are disjoint from the interiors of L^{λ} , R^{λ} , and $T_{\mathcal{A}}$.

- The critical point ray boundaries of R^{λ} are mapped two-to-one onto the critical value rays. For each λ in the annular region, the critical value rays are disjoint from the interiors of L^{λ} , R^{λ} , and $T_{\mathcal{A}}$.
- The boundary of R^{λ} in B^{λ} maps to the outer arc on the right.

- The critical point ray boundaries of R^{λ} are mapped two-to-one onto the critical value rays. For each λ in the annular region, the critical value rays are disjoint from the interiors of L^{λ} , R^{λ} , and $T_{\mathcal{A}}$.
- The boundary of R^{λ} in B^{λ} maps to the outer arc on the right.
- The boundary of R^{λ} in $T_{\mathcal{A}}$ maps to the outer arc on the left.

- The critical point ray boundaries of R^{λ} are mapped two-to-one onto the critical value rays. For each λ in the annular region, the critical value rays are disjoint from the interiors of L^{λ} , R^{λ} , and $T_{\mathcal{A}}$.
- The boundary of R^{λ} in B^{λ} maps to the outer arc on the right.
- The boundary of R^{λ} in $T_{\mathcal{A}}$ maps to the outer arc on the left.
- Then the image of R^{λ} properly contains the interiors R^{λ} , L^{λ} , and $T_{\mathcal{A}}$.

• The prepole rays map to the critical point rays passing through the origin.

The prepole rays map to the critical point rays passing through the origin. For each λ in the annular region, the critical point rays are disjoint from the interior of R^λ.

- The prepole rays map to the critical point rays passing through the origin. For each λ in the annular region, the critical point rays are disjoint from the interior of R^λ.
- The boundary of L^{λ} in B^{λ} maps to an arc on the right.

- The prepole rays map to the critical point rays passing through the origin. For each λ in the annular region, the critical point rays are disjoint from the interior of R^λ.
- The boundary of L^{λ} in B^{λ} maps to an arc on the right.
- The boundary of L^{λ} in $\mathcal{T}_{\mathcal{A}}$ maps to a slightly longer arc on the right.

- The prepole rays map to the critical point rays passing through the origin. For each λ in the annular region, the critical point rays are disjoint from the interior of R^λ.
- The boundary of L^{λ} in B^{λ} maps to an arc on the right.
- The boundary of L^{λ} in $T_{\mathcal{A}}$ maps to a slightly longer arc on the right.
- Then F_{λ} maps L^{λ} over R^{λ} in two-to-one fashion.

Are the rays really disjoint for all λ ?

Are the rays really disjoint for all λ ?

• Rotating λ clockwise or CCW by half a turn rotates the "bowtie" by one tenth of a turn.

Are the rays really disjoint for all λ ?

 Rotating λ clockwise or CCW by half a turn rotates the "bowtie" by one tenth of a turn. The critical value rays rotate one fifth of a turn but remain disjoint from R₀^λ.

Drawing a picture

三日 のへで

イロン イ理ト イヨト イヨト

Drawing a picture

 We can "put a bowtie" on the dynamical plane, and the R^λ portion of the bowtie contains a preimage of the bowtie.

Drawing a picture

 We can "put a bowtie" on the dynamical plane, and the R^λ portion of the bowtie contains a preimage of the bowtie.

The Sierpinski Mandelbrot Spiral

• Here is the preimage of the bowtie containing a preimage of R^{λ} .

- Here is the preimage of the bowtie containing a preimage of R^{λ} .
- The preimage of R^λ in that preimage of the bowtie contains a preimage of the preimage of the bowtie.

- Here is the preimage of the bowtie containing a preimage of R^{λ} .
- The preimage of R^λ in that preimage of the bowtie contains a preimage of the preimage of the bowtie.

三日 のへの

・ロト ・日 ・ ・ ヨト ・

3

= 990

・ロト ・日 ・ ・ ヨト ・

= 990

・ロト ・ 日 ト ・ 日 ト ・

э.

= 990

・ロト ・回ト ・ヨト ・

э

= 990

・ロト ・日下・ ・ ヨト・

The dynamical $\overline{0}TL$ arc

• Here is a stylized representation of the $\overline{0}TL$ arc in the dynamical plane.

The dynamical $\overline{0}TL$ arc

• Here is a stylized representation of the $\overline{0}TL$ arc in the dynamical plane. This is the arc of infinitely many preimages of L^{λ} and $T_{\mathcal{A}}$ in R^{λ} that accumulates at the fixed point in R^{λ} .

The dynamical $\overline{0}TL$ arc

• Here is a stylized representation of the $\overline{0}TL$ arc in the dynamical plane. This is the arc of infinitely many preimages of L^{λ} and $T_{\mathcal{A}}$ in R^{λ} that accumulates at the fixed point in R^{λ} .

• The *TL* arc in the dynamical plane implies some corresponding structure exists in the parameter plane.

Claim

- The *TL* arc in the dynamical plane implies some corresponding structure exists in the parameter plane.
- So how do these closed regions in the dynamical plane prove the existence of structures in the parameter plane?

• Each preimage of T_A proves the existence of a Sierpinski hole on the negative real axis of the parameter plane.

- Each preimage of T_A proves the existence of a Sierpinski hole on the negative real axis of the parameter plane.
- There is a prepole in R^{λ} .

- Each preimage of T_A proves the existence of a Sierpinski hole on the negative real axis of the parameter plane.
- There is a prepole in R^{λ} . There is a λ such that v_0^{λ} is that prepole.

- Each preimage of T_A proves the existence of a Sierpinski hole on the negative real axis of the parameter plane.
- There is a prepole in R^{λ} . There is a λ such that v_0^{λ} is that prepole. That is the center of a Sierpinski hole in the parameter plane.

- Each preimage of T_A proves the existence of a Sierpinski hole on the negative real axis of the parameter plane.
- There is a prepole in R^{λ} . There is a λ such that v_0^{λ} is that prepole. That is the center of a Sierpinski hole in the parameter plane.
- The preimage of the prepole in R^{λ} corresponds to the next Sierpinski hole of higher escape time.

- Each preimage of T_A proves the existence of a Sierpinski hole on the negative real axis of the parameter plane.
- There is a prepole in R^{λ} . There is a λ such that v_0^{λ} is that prepole. That is the center of a Sierpinski hole in the parameter plane.
- The preimage of the prepole in R^{λ} corresponds to the next Sierpinski hole of higher escape time. The preimage of that corresponds to the next one, and so on. more

Visual justification

• For λ the center of the Sierpinski hole with critical point escape time 2, we can see $c_0^{\lambda} \rightarrow v_0^{\lambda} = p_2^{\lambda} \rightarrow T_{\mathcal{A}}$.

Visual justification

• For λ the center of the Sierpinski hole with critical point escape time 2, we can see $c_0^{\lambda} \rightarrow v_0^{\lambda} = p_2^{\lambda} \rightarrow T_{\mathcal{A}}$.

= 900

3 🕨 🖌 3
Visual justification

• For λ the center of the Sierpinski hole with critical point escape time 2, we can see $c_0^{\lambda} \rightarrow v_0^{\lambda} = p_2^{\lambda} \rightarrow T_{\mathcal{A}}$.

• For λ the center of the Sierpinski hole with critical point escape time 3, we can see $c_0^{\lambda} \rightarrow v_0^{\lambda} \rightarrow p_2^{\lambda} \rightarrow T_{\mathcal{A}}$.

Visual justification

• For λ the center of the Sierpinski hole with critical point escape time 2, we can see $c_0^{\lambda} \rightarrow v_0^{\lambda} = p_2^{\lambda} \rightarrow T_{\mathcal{A}}$.

• For λ the center of the Sierpinski hole with critical point escape time 3, we can see $c_0^{\lambda} \rightarrow v_0^{\lambda} \rightarrow p_2^{\lambda} \rightarrow T_{\mathcal{A}}$.

E. Chang (Boston University)

= 900

 Each preimage of L^λ proves the existence of a Mandelbrot set on the negative real axis of the parameter plane.

- Each preimage of L^λ proves the existence of a Mandelbrot set on the negative real axis of the parameter plane.
- As shown by Douady and Hubbard, for a family of polynomial-like maps that satisfy a set of hypotheses, there is a homeomorphic copy of the Mandelbrot set in an open disk in the parameter plane.

- Each preimage of L^λ proves the existence of a Mandelbrot set on the negative real axis of the parameter plane.
- As shown by Douady and Hubbard, for a family of polynomial-like maps that satisfy a set of hypotheses, there is a homeomorphic copy of the Mandelbrot set in an open disk in the parameter plane.
- We have shown that F_{λ} maps L^{λ} two-to-one over R^{λ} , which is one of the hypotheses.

- Each preimage of L^λ proves the existence of a Mandelbrot set on the negative real axis of the parameter plane.
- As shown by Douady and Hubbard, for a family of polynomial-like maps that satisfy a set of hypotheses, there is a homeomorphic copy of the Mandelbrot set in an open disk in the parameter plane.
- We have shown that F_{λ} maps L^{λ} two-to-one over R^{λ} , which is one of the hypotheses.

dynamical TL arc \implies parameter SM arc

There is an arc of infinitely many alternating preimages of L^λ and T_A in R^λ in the dynamical plane.

- There is an arc of infinitely many alternating preimages of L^{λ} and T_{A} in R^{λ} in the dynamical plane.
- We use this dynamical arc to prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.

- There is an arc of infinitely many alternating preimages of L^{λ} and T_{A} in R^{λ} in the dynamical plane.
- We use this dynamical arc to prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- A Sierpinski Mandelbrot arc is an arc in the parameter plane that passes alternately along the spines of infinitely many baby Mandelbrot sets and through the centers of the same number of Sierpinski holes.

- There is an arc of infinitely many alternating preimages of L^{λ} and T_{A} in R^{λ} in the dynamical plane.
- We use this dynamical arc to prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- A Sierpinski Mandelbrot arc is an arc in the parameter plane that passes alternately along the spines of infinitely many baby Mandelbrot sets and through the centers of the same number of Sierpinski holes.

Outline

Introduction

 $2 z^2 + \lambda/z^3$

3 $z^4 + \lambda/z^3$

メロト メポト メヨト メヨト

三日 のへの

The parameter and dynamical plane for n = 4, d = 3

3 ×

The parameter and dynamical plane for n = 4, d = 3

• There are still infinitely many alternating Sierpinski holes and Mandelbrot sets along the negative real axis.

The parameter and dynamical plane for n = 4, d = 3

- There are still infinitely many alternating Sierpinski holes and Mandelbrot sets along the negative real axis.
- The argument is analogous.

• There are now 7 critical points, critical values, and prepoles.

- There are now 7 critical points, critical values, and prepoles.
- Critical values rotate four times as much as critical points and prepoles, instead of twice as much. This is almost bad for our bowtie method.

- There are now 7 critical points, critical values, and prepoles.
- Critical values rotate four times as much as critical points and prepoles, instead of twice as much. This is almost bad for our bowtie method.
- The parameter plane exhibits symmetry under rotation, so that we only need to consider 2π/3 < Arg(λ) < 4π/3.

- There are now 7 critical points, critical values, and prepoles.
- Critical values rotate four times as much as critical points and prepoles, instead of twice as much. This is almost bad for our bowtie method.
- The parameter plane exhibits symmetry under rotation, so that we only need to consider $2\pi/3 < Arg(\lambda) < 4\pi/3$. We have an annular sector of λ , instead of an annulus.

- There are now 7 critical points, critical values, and prepoles.
- Critical values rotate four times as much as critical points and prepoles, instead of twice as much. This is almost bad for our bowtie method.
- The parameter plane exhibits symmetry under rotation, so that we only need to consider $2\pi/3 < Arg(\lambda) < 4\pi/3$. We have an annular sector of λ , instead of an annulus.
- We need to check λ rotated one sixth of a turn CC and CW, instead of one half of a turn, which is great!

• Only needing to check λ rotated one sixth of a turn allows enough room to add another right wedge to the construction.

• Only needing to check λ rotated one sixth of a turn allows enough room to add another right wedge to the construction. Let's arbitrarily choose an upper right wedge, R_1^{λ} , in addition to the original right wedge R_0^{λ} .

• Only needing to check λ rotated one sixth of a turn allows enough room to add another right wedge to the construction. Let's arbitrarily choose an upper right wedge, R_1^{λ} , in addition to the original right wedge R_0^{λ} .

• Only needing to check λ rotated one sixth of a turn allows enough room to add another right wedge to the construction. Let's arbitrarily choose an upper right wedge, R_1^{λ} , in addition to the original right wedge R_0^{λ} .

• Only needing to check λ rotated one sixth of a turn allows enough room to add another right wedge to the construction. Let's arbitrarily choose an upper right wedge, R_1^{λ} , in addition to the original right wedge R_0^{λ} .

• We will refer to $L^{\lambda} \cup T_{\mathcal{A}} \cup R_0^{\lambda} \cup R_1^{\lambda}$ as the "lopsided bowtie."

Proposition

For each λ in that roughly annular region:

Proposition

For each λ in that roughly annular region: 1. F_{λ} maps R_0^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R_0^{\lambda} \cup R_1^{\lambda}$;

Proposition

For each λ in that roughly annular region:

1. F_{λ} maps R_0^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R_0^{\lambda} \cup R_1^{\lambda}$; 2. F_{λ} maps R_1^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R_0^{\lambda} \cup R_1^{\lambda}$;

Proposition

For each λ in that roughly annular region:

1. F_{λ} maps R_0^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_A \cup R_0^{\lambda} \cup R_1^{\lambda}$;

2. F_{λ} maps R_1^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R_0^{\lambda} \cup R_1^{\lambda}$;

3. F_{λ} maps L^{λ} two-to-one over a region that contains the interior of R_0^{λ} ;

Proposition

For each λ in that roughly annular region:

1. F_{λ} maps R_0^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_A \cup R_0^{\lambda} \cup R_1^{\lambda}$;

2. F_{λ} maps R_1^{λ} in 1-1 fashion onto a region that contains the interiors of $L^{\lambda} \cup T_{\mathcal{A}} \cup R_0^{\lambda} \cup R_1^{\lambda}$;

3. F_{λ} maps L^{λ} two-to-one over a region that contains the interior of R_0^{λ} ;

4. The winding index part again.

TCD2017 56 / 86

The bowtie in R_1^{λ} is rotated

The bowtie in R_1^{λ} is rotated

 The orientation is preserved, but note that the outer boundary of R^λ₁ maps to the left side, while the inner boundary maps to the right.

The bowtie in R_1^{λ} is rotated

 The orientation is preserved, but note that the outer boundary of R₁^λ maps to the left side, while the inner boundary maps to the right. This means the bowtie is rotated inside R₁^λ (and all preimages of R₁^λ).
• To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it.

• To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .

- To keep track of all of these preimages of L^λ, T_A, R₀^λ, and R₁^λ, we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R₀, or R₁.
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} ,

- To keep track of all of these preimages of L^λ, T_A, R₀^λ, and R₁^λ, we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R₀, or R₁.
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} ,

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} ,

- To keep track of all of these preimages of L^λ, T_A, R₀^λ, and R₁^λ, we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R₀, or R₁.
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .
- The preimage named 01100 T, or 01₂0₂ T, is the set of z in the dynamical plane that starts in R₀^λ,

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .
- The preimage named 01100 T, or 01₂0₂ T, is the set of z in the dynamical plane that starts in R₀^λ, goes to R₁^λ,

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .
- The preimage named 01100 T, or 01₂0₂T, is the set of z in the dynamical plane that starts in R₀^λ, goes to R₁^λ, goes to R₁^λ,

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .
- The preimage named 01100*T*, or 01_20_2T , is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_1^{λ} , goes to R_1^{λ} , goes to R_0^{λ} ,

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .
- The preimage named 01100*T*, or 01_20_2T , is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_1^{λ} , goes to R_1^{λ} , goes to R_0^{λ} , goes to R_0^{λ} ,

- To keep track of all of these preimages of L^{λ} , $T_{\mathcal{A}}$, R_0^{λ} , and R_1^{λ} , we can name a preimage by the itinerary of the points inside it. A preimage will be named by a sequence of 0's and 1's followed by L, T, R_0 , or R_1 .
- The preimage named 000*L*, or 0_3L is the set of *z* in the dynamical plane that starts in R_0^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to L^{λ} .
- The preimage named 01100 T, or 01_20_2T , is the set of z in the dynamical plane that starts in R_0^{λ} , goes to R_1^{λ} , goes to R_1^{λ} , goes to R_0^{λ} , goes to R_0^{λ} , and then to $T_{\mathcal{A}}$.

Labeling

E. Chang (Boston University)

The Sierpinski Mandelbrot Spiral

TCD2017 59 / 86

三日 のへで

Scale is a problem

 Let's make a stylized representation of the R₀^λ wedge to depict more levels of this naming scheme.

Scale is a problem

 Let's make a stylized representation of the R₀^λ wedge to depict more levels of this naming scheme.

• If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the 0TL arc because one can think of z passing through the trap door, then 0L, then 0T, then 02L, then 02T, ...

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the $\overline{0}TL$ arc because one can think of z passing through the trap door, then 0L, then 0T, then 0_2L , then 0_2T , ... and accumulating at the fixed point in R_0^{λ} with the name $\overline{0}$.

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the $\overline{0}TL$ arc because one can think of z passing through the trap door, then 0L, then 0T, then 0_2L , then 0_2T , ... and accumulating at the fixed point in R_0^{λ} with the name $\overline{0}$.
- But the $\overline{0}TL$ arc exists entirely in R_0^{λ} .

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the $\overline{0}TL$ arc because one can think of z passing through the trap door, then 0L, then 0T, then 0_2L , then 0_2T , ... and accumulating at the fixed point in R_0^{λ} with the name $\overline{0}$.
- But the $\overline{0}TL$ arc exists entirely in R_0^{λ} . R_1^{λ} contains a preimage of R_0^{λ} .

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the $\overline{0}TL$ arc because one can think of z passing through the trap door, then 0L, then 0T, then 0_2L , then 0_2T , ... and accumulating at the fixed point in R_0^{λ} with the name $\overline{0}$.
- But the $\overline{0}TL$ arc exists entirely in R_0^{λ} . R_1^{λ} contains a preimage of R_0^{λ} . Therefore, R_1^{λ} contains a preimage of the $\overline{0}TL$ arc.

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the $\overline{0}TL$ arc because one can think of z passing through the trap door, then 0L, then 0T, then 0_2L , then 0_2T , ... and accumulating at the fixed point in R_0^{λ} with the name $\overline{0}$.
- But the 0TL arc exists entirely in R₀^λ. R₁^λ contains a preimage of R₀^λ. Therefore, R₁^λ contains a preimage of the 0TL arc. The preimage of the 0TL arc in R₁^λ is the 10TL arc.

- If we ignore R_1^{λ} and its preimages, we still have the $\overline{0}TL$ arc in the dynamical plane.
- It is named the $\overline{0}TL$ arc because one can think of z passing through the trap door, then 0L, then 0T, then 0_2L , then 0_2T , ... and accumulating at the fixed point in R_0^{λ} with the name $\overline{0}$.
- But the 0TL arc exists entirely in R₀^λ. R₁^λ contains a preimage of R₀^λ. Therefore, R₁^λ contains a preimage of the 0TL arc. The preimage of the 0TL arc in R₁^λ is the 10TL arc.
- (The preimage of the $\overline{0}TL$ arc in R_0^{λ} is itself.)

• Let's keep going:

< ∃ ►

= nar

• Let's keep going: The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc.

• Let's keep going:

The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc. The preimage of the $1\overline{0}TL$ arc in R_0^{λ} is the $01\overline{0}TL$ arc.

- Let's keep going:
 - The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc. The preimage of the $1\overline{0}TL$ arc in R_0^{λ} is the $01\overline{0}TL$ arc.
- The preimage of the $1_2\overline{0}TL$ arc in R_1^{λ} is the $1_3\overline{0}TL$ arc.

- Let's keep going:
 - The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc. The preimage of the $1\overline{0}TL$ arc in R_0^{λ} is the $01\overline{0}TL$ arc.
- The preimage of the $1_2\overline{0}TL$ arc in R_1^{λ} is the $1_3\overline{0}TL$ arc. The preimage of the $1_2\overline{0}TL$ arc in R_0^{λ} is the $01_2\overline{0}TL$ arc.

- Let's keep going:
 - The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc. The preimage of the $1\overline{0}TL$ arc in R_0^{λ} is the $01\overline{0}TL$ arc.
- The preimage of the $1_2\overline{0}TL$ arc in R_1^{λ} is the $1_3\overline{0}TL$ arc. The preimage of the $1_2\overline{0}TL$ arc in R_0^{λ} is the $01_2\overline{0}TL$ arc. The preimage of the $01\overline{0}TL$ arc in R_1^{λ} is the $101\overline{0}TL$ arc.

- Let's keep going:
 - The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc. The preimage of the $1\overline{0}TL$ arc in R_0^{λ} is the $01\overline{0}TL$ arc.
- The preimage of the $1_2\overline{0}TL$ arc in R_1^{λ} is the $1_3\overline{0}TL$ arc. The preimage of the $1_2\overline{0}TL$ arc in R_0^{λ} is the $01_2\overline{0}TL$ arc. The preimage of the $01\overline{0}TL$ arc in R_1^{λ} is the $101\overline{0}TL$ arc. The preimage of the $01\overline{0}TL$ arc in R_0^{λ} is the $0_2\overline{1}\overline{0}TL$ arc.

- Let's keep going:
 - The preimage of the $1\overline{0}TL$ arc in R_1^{λ} is the $1_2\overline{0}TL$ arc. The preimage of the $1\overline{0}TL$ arc in R_0^{λ} is the $01\overline{0}TL$ arc.
- The preimage of the $1_2\overline{0}TL$ arc in R_1^{λ} is the $1_3\overline{0}TL$ arc. The preimage of the $1_2\overline{0}TL$ arc in R_0^{λ} is the $01_2\overline{0}TL$ arc. The preimage of the $01\overline{0}TL$ arc in R_1^{λ} is the $101\overline{0}TL$ arc. The preimage of the $01\overline{0}TL$ arc in R_0^{λ} is the $0_2\overline{1}\overline{0}TL$ arc.
- That's probably enough.

• $\overline{0}$ is a fixed point in Σ_2 .

• $\overline{0}$ is a fixed point in Σ_2 . As is $\overline{1}$.

• $\overline{0}$ is a fixed point in Σ_2 . As is $\overline{1}$. What would $\overline{1}$ mean in the context of our problem?

- $\overline{0}$ is a fixed point in Σ_2 . As is $\overline{1}$. What would $\overline{1}$ mean in the context of our problem?
- 0 is the fixed point of F_λ that lies in R₀^λ. 1 is the fixed point of F_λ that lies in R₁^λ.

- $\overline{0}$ is a fixed point in Σ_2 . As is $\overline{1}$. What would $\overline{1}$ mean in the context of our problem?
- 0 is the fixed point of F_λ that lies in R₀^λ. 1 is the fixed point of F_λ that lies in R₁^λ.
- The fixed point in R_0^{λ} lies on the boundary of the basin. The fixed point in R_1^{λ} does not...
Fixed points in Symbolic dynamics

- $\overline{0}$ is a fixed point in Σ_2 . As is $\overline{1}$. What would $\overline{1}$ mean in the context of our problem?
- 0 is the fixed point of F_λ that lies in R₀^λ. 1 is the fixed point of F_λ that lies in R₁^λ.
- The fixed point in R_0^{λ} lies on the boundary of the basin. The fixed point in R_1^{λ} does not...
- If we draw lopsided bowties in R_1^λ until we get tired of doing so, we get something like:

Stylized lopsided bowties

E. Chang (Boston University)

· 토▷ 토⊫ · 오< TCD2017 64 / 86

All 1's only

E. Chang (Boston University)

TCD2017 65 / 86

三日 のへで

All 1's only

E. Chang (Boston University)

TCD2017 66 / 86

三日 のへで

<ロ> (日) (日) (日) (日) (日)

• There exists the $\overline{0}TL$ arc in R_0^λ for the rational map for n=4, d=3

• There exists the $\overline{0}TL$ arc in R_0^{λ} for the rational map for n = 4, d = 3 with the arc beginning on the boundary of T_{λ}

• There exists the $\overline{0}TL$ arc in R_0^{λ} for the rational map for n = 4, d = 3 with the arc beginning on the boundary of T_{λ} and accumulating at the fixed point on the boundary of B_{λ} .

- There exists the $\overline{0}TL$ arc in R_0^{λ} for the rational map for n = 4, d = 3 with the arc beginning on the boundary of T_{λ} and accumulating at the fixed point on the boundary of B_{λ} .
- There exists a different TL arc in R_1^{λ} for the rational map for n = 4, d = 3

- There exists the $\overline{0}TL$ arc in R_0^{λ} for the rational map for n = 4, d = 3 with the arc beginning on the boundary of T_{λ} and accumulating at the fixed point on the boundary of B_{λ} .
- There exists a different TL arc in R_1^{λ} for the rational map for n = 4, d = 3 such that the arc grows from both the boundary in T_{λ} and the boundary in B_{λ} ,

- There exists the $\overline{0}TL$ arc in R_0^{λ} for the rational map for n = 4, d = 3 with the arc beginning on the boundary of T_{λ} and accumulating at the fixed point on the boundary of B_{λ} .
- There exists a different TL arc in R_1^{λ} for the rational map for n = 4, d = 3 such that the arc grows from both the boundary in T_{λ} and the boundary in B_{λ} , and accumulates at the fixed point in the interior of R_1^{λ} .

- There exists the $\overline{0}TL$ arc in R_0^{λ} for the rational map for n = 4, d = 3 with the arc beginning on the boundary of T_{λ} and accumulating at the fixed point on the boundary of B_{λ} .
- There exists a different TL arc in R_1^{λ} for the rational map for n = 4, d = 3 such that the arc grows from both the boundary in T_{λ} and the boundary in B_{λ} , and accumulates at the fixed point in the interior of R_1^{λ} .
- The proof is basically looking at the rotated lopsided bowties inside each preimage of R_1^{λ} .

• Here is a stylized representation of the $\overline{1}TL$ arc in the dynamical plane.

• Here is a stylized representation of the $\overline{1}TL$ arc in the dynamical plane. This is the arc of infinitely many preimages of L^{λ} and $T_{\mathcal{A}}$ in R_1^{λ} that accumulates at the fixed point in R_1^{λ} .

• Here is a stylized representation of the $\overline{1}TL$ arc in the dynamical plane. This is the arc of infinitely many preimages of L^{λ} and $T_{\mathcal{A}}$ in R_1^{λ} that accumulates at the fixed point in R_1^{λ} . Every preimage of L^{λ} and $T_{\mathcal{A}}$ with orbit not including R_0^{λ} is part of the $\overline{4}TL$ arc. If $\mathcal{A} = 2000$ E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 68 / 86

• Here is a stylized representation of the $\overline{1}TL$ arc in the dynamical plane. This is the arc of infinitely many preimages of L^{λ} and $T_{\mathcal{A}}$ in R_1^{λ} that accumulates at the fixed point in R_1^{λ} . Every preimage of L^{λ} and $T_{\mathcal{A}}$ with orbit not including R_0^{λ} is part of the $\overline{4}TL$ arc. If $\mathcal{A} = 200^{\circ}$ E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 68 / 86

Infinitely many $\overline{0}TL$ arcs

E. Chang (Boston University)

TCD2017 69 / 86

< ∃ >

Infinitely many $\overline{0}TL$ arcs intersecting the $\overline{1}TL$ arc

E. Chang (Boston University)

TCD2017 70 / 86

A continuous path for λ

E. Chang (Boston University)

TCD2017 71 / 86

3 ×

The $\overline{1}TL$ spiral

E. Chang (Boston University)

◆ □ ▶ ◆ 🗇

→ Ξ →

TCD2017 72 / 86

Another representation of the $\overline{1}TL$ spiral

 There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- Recall that F_{λ} maps L^{λ} two-to-one over R_0^{λ} , which contains the lopsided bowtie.

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- Recall that F_{λ} maps L^{λ} two-to-one over R_0^{λ} , which contains the lopsided bowtie. The statement is NOT true if we replace R_0^{λ} with R_1^{λ} .

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- Recall that F_{λ} maps L^{λ} two-to-one over R_0^{λ} , which contains the lopsided bowtie. The statement is NOT true if we replace R_0^{λ} with R_1^{λ} .
- However, R_0^{λ} contains a preimage of R_1^{λ} .

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- Recall that F_{λ} maps L^{λ} two-to-one over R_0^{λ} , which contains the lopsided bowtie. The statement is NOT true if we replace R_0^{λ} with R_1^{λ} .
- However, R_0^{λ} contains a preimage of R_1^{λ} . Then the preimage of the $\overline{1}TL$ arc, the $0\overline{1}TL$ arc, is in R_0^{λ} .

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- Recall that F_{λ} maps L^{λ} two-to-one over R_0^{λ} , which contains the lopsided bowtie. The statement is NOT true if we replace R_0^{λ} with R_1^{λ} .
- However, R_0^{λ} contains a preimage of R_1^{λ} . Then the preimage of the $\overline{1}TL$ arc, the $0\overline{1}TL$ arc, is in R_0^{λ} .
- This dynamical arc proves the existence of an SM arc in the parameter plane.

- There is an arc of infinitely many alternating preimages of L^λ and T_A in R₁^λ in the dynamical plane.
- This dynamical arc does NOT prove the existence of infinitely many alternating Sierpinski holes and Mandelbrot sets in the parameter plane.
- Recall that F_{λ} maps L^{λ} two-to-one over R_0^{λ} , which contains the lopsided bowtie. The statement is NOT true if we replace R_0^{λ} with R_1^{λ} .
- However, R_0^{λ} contains a preimage of R_1^{λ} . Then the preimage of the $\overline{1}TL$ arc, the $0\overline{1}TL$ arc, is in R_0^{λ} .
- This dynamical arc proves the existence of an SM arc in the parameter plane.
- And infinitely many $\overline{0}$ SM arcs pass through the $0\overline{1}$ SM arc to make the $0\overline{1}$ SM spiral.

< ∃ > <

E. Chang (Boston University)

э TCD2017 76 / 86

→ Ξ →

E. Chang (Boston University)

TCD2017 77 / 86

э.

E. Chang (Boston University)

TCD2017 78 / 86

ELE DQC

E. Chang (Boston University)

The Sierpinski Mandelbrot Spiral

TCD2017 79 / 86

Infinitely many stylized SM spirals

▲ 문 ▶ 문 문 ♡ < 0
TCD2017 80 / 86

How many times I can use the word infinitely?

• We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.

How many times I can use the word infinitely?

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets.
- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many $\overline{0}TL$ arcs pass through a $\overline{1}TL$ arc to make a $\overline{1}TL$ spiral.

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many $\overline{0}TL$ arcs pass through a $\overline{1}TL$ arc to make a $\overline{1}TL$ spiral. There are infinitely many preimages of this spiral.

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many $\overline{0}TL$ arcs pass through a $\overline{1}TL$ arc to make a $\overline{1}TL$ spiral. There are infinitely many preimages of this spiral.
- None of the infinitely many dynamical structures in R_1^{λ} can be used to prove the existence of structures in the parameter plane,

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many $\overline{0}TL$ arcs pass through a $\overline{1}TL$ arc to make a $\overline{1}TL$ spiral. There are infinitely many preimages of this spiral.
- None of the infinitely many dynamical structures in R_1^{λ} can be used to prove the existence of structures in the parameter plane, but there are infinitely many preimages of these structures in R_0^{λ} .

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many 0*TL* arcs pass through a 1*TL* arc to make a 1*TL* spiral. There are infinitely many preimages of this spiral.
- None of the infinitely many dynamical structures in R_1^{λ} can be used to prove the existence of structures in the parameter plane, but there are infinitely many preimages of these structures in R_0^{λ} .
- Then the 0 SM arc and infinitely many of its "preimages" exist in the parameter plane.

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many 0*TL* arcs pass through a 1*TL* arc to make a 1*TL* spiral. There are infinitely many preimages of this spiral.
- None of the infinitely many dynamical structures in R_1^{λ} can be used to prove the existence of structures in the parameter plane, but there are infinitely many preimages of these structures in R_0^{λ} .
- Then the $\overline{0}$ SM arc and infinitely many of its "preimages" exist in the parameter plane.

The $0\overline{1}$ SM arc and infinitely many of its "preimages" exist in the parameter plane.

- We have found the 0*TL* arcs of infinitely many Sierpinski holes and Mandelbrot sets, and infinitely many of its preimages.
- We have also found a different $\overline{1}TL$ arc of infinitely many Sierpinski holes and Mandelbrot sets. There are infinitely many preimages of this arc as well.
- Infinitely many 0*TL* arcs pass through a 1*TL* arc to make a 1*TL* spiral. There are infinitely many preimages of this spiral.
- None of the infinitely many dynamical structures in R_1^{λ} can be used to prove the existence of structures in the parameter plane, but there are infinitely many preimages of these structures in R_0^{λ} .
- Then the $\overline{0}$ SM arc and infinitely many of its "preimages" exist in the parameter plane.

The $0\overline{1}$ SM arc and infinitely many of its "preimages" exist in the parameter plane.

The $0\overline{1}$ SM spiral and infinitely many of its "preimages" exist in the parameter plane.

Thank you!

Thank you for listening!

Image: A matrix

.∃ >

= 990

メロト メポト メヨト メヨ

三日 のへの

 $\mathcal{J}(F)$ is the set of all points at which the family of iterates of F fails to be a normal family in the sense of Montel.

 $\mathcal{J}(F)$ is the set of all points at which the family of iterates of F fails to be a normal family in the sense of Montel. Equivalently, $\mathcal{J}(F)$ is the closure of the set of repelling periodic points of F,

 $\mathcal{J}(F)$ is the set of all points at which the family of iterates of F fails to be a normal family in the sense of Montel. Equivalently, $\mathcal{J}(F)$ is the closure of the set of repelling periodic points of F, and it is also the boundary of the set of points whose orbits tend to ∞ under iteration of F.

 $\mathcal{J}(F)$ is the set of all points at which the family of iterates of F fails to be a normal family in the sense of Montel. Equivalently, $\mathcal{J}(F)$ is the closure of the set of repelling periodic points of F, and it is also the boundary of the set of points whose orbits tend to ∞ under iteration of F. back

λ restricted to an annular region

λ restricted to an annular region

Basically, we need a unique z_k^{λ} that varies analytically with λ and for which $F_{\lambda}^{k-1}(z_k^{\lambda}) = 0$.

Basically, we need a unique z_k^{λ} that varies analytically with λ and for which $F_{\lambda}^{k-1}(z_k^{\lambda}) = 0$. Then for that z_k^{λ} , we need to find a disk D in the parameter plane for which a critical value winds once around z_k^{λ} as λ winds once around the boundary of D.

Basically, we need a unique z_k^{λ} that varies analytically with λ and for which $F_{\lambda}^{k-1}(z_k^{\lambda}) = 0$. Then for that z_k^{λ} , we need to find a disk D in the parameter plane for which a critical value winds once around z_k^{λ} as λ winds once around the boundary of D. Then there exists a unique λ for which $v^{\lambda} = z_k^{\lambda}$,

Basically, we need a unique z_k^{λ} that varies analytically with λ and for which $F_{\lambda}^{k-1}(z_k^{\lambda}) = 0$. Then for that z_k^{λ} , we need to find a disk D in the parameter plane for which a critical value winds once around z_k^{λ} as λ winds once around the boundary of D. Then there exists a unique λ for which $v^{\lambda} = z_k^{\lambda}$, and that λ is the center of a Sierpinski hole with critical point escape time k.