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The quadratic map

Consider the function F (z) = z2, z ∈ C.

Points on the circle stay on the circle.

Points inside the circle go to the origin. The origin is an attracting
fixed point.

Points outside the circle stay outside the circle while approaching ∞,
an attracting fixed point on the Riemann sphere.
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The dynamics of the quadratic map

As we iterate by F ,

the previous images are the output of a program approximating the
long term behavior of different initial z numerically.

Points that grow past some magnitude within some number of
iterations are filled in with a range of colors from red, orange, green,
blue and violet depending on how many iterations are needed.

Points that do not are colored black. The Riemann sphere colored in
by long term behavior is the dynamical plane.
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Julia and Fatou

The Julia set of F , denoted J (F ), has several equivalent definitions
more , but we’ll use this informal one:

J (F ) is the set of values for which a small perturbation can result in
drastic changes in the orbit of that value.

For F (z) = z2, the Julia set is S1.

Take a point on the circle. For any neighborhood of that point, some
z in that nbd go to 0, some stay on the circle, and some go to ∞.
Then J (F ) is the set of chaotic behavior, which is why it’s cooler
than

the Fatou Set, or F(F ). This is the complement of J (F ) in the
Riemann sphere.
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A bifurcation on the quadratic map

We will add a small parameter λ:

Fλ(z) = z2 + λ, z , λ ∈ C
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That’s not a circle...

If we move λ enough along the real axis, the attracting fixed point
becomes an attracting periodic cycle of period 2.

We are not restricted to the real axis. λ can take any value in C. We
keep λ small because there’s no qualitative change in the function
past some |λ|.
The parameter plane is the set of λ ∈ C for Fλ(z).
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Critical points and critical values

Fλ(z) = z2 + λ, z , λ ∈ C

A critical point cλ is a value of z for which F ′λ(z) = 0,

with corresponding critical value vλ = Fλ(cλ).

There is one critical point cλ = 0 with vλ = Fλ(0).

The program draws the parameter plane by looking at the orbit of the
critical value for a specific λ. If the critical value escapes, that λ
value is colored using the same scheme as in the dynamical plane. If
the critical value does not escape, that λ value is colored black.

The black region in the parameter plane for z2 + λ is the Mandelbrot
set. λ = 0 is in the main cardioid, and λ = −1 is in the period 2 bulb.

The orange region is the Cantor set locus. For parameters in the
Cantor set locus, J (Fλ) is homeomorphic to a Cantor set.
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J (Fλ) depends on λ
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A singular perturbation

Lets add poles to the function:

Fλ(z) = z2 + λ/z z , λ ∈ C

This is the rational map with n = 2, d = 1.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 12 / 86



A singular perturbation

Lets add poles to the function:

Fλ(z) = z2 + λ/z z , λ ∈ C

This is the rational map with n = 2, d = 1.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 12 / 86



A singular perturbation

Lets add poles to the function:

Fλ(z) = z2 + λ/z z , λ ∈ C

This is the rational map with n = 2, d = 1.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 12 / 86



A singular perturbation

Lets add poles to the function:

Fλ(z) = z2 + λ/z z , λ ∈ C

This is the rational map with n = 2, d = 1.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 12 / 86



The trap door and the basin

When |z | is large, |Fλ(z)| > |z | and so the point at ∞ is an attracting
fixed point in the Riemann sphere. We denote the immediate basin of
attraction of ∞ by Bλ.

There is a pole at the origin, so there is a nbd of the origin that is
mapped into Bλ. If the preimage of Bλ surrounding the origin is
disjoint from Bλ, we call this region the trap door and denote it by Tλ.
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The rational map with higher n, d

If we increase n and d further,

Fλ(z) = z3 + λ/z3 z , λ ∈ C
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The McMullen domain

The McMullen domain is the set of λ around the origin for which the
critical point enters the trap door after 1 iteration.
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Sierpinski holes

A Sierpinski hole is a set of λ for which the critical point enters the
trap door after 2 or more iterations.
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Outline

1 Introduction

2 z2 + λ/z3

3 z4 + λ/z3
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The Rational Map with n = 2, d = 3

What I have been studying is

Fλ(z) = z2 +
λ

z3
, z , λ ∈ C

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 18 / 86



The Rational Map with n = 2, d = 3

What I have been studying is

Fλ(z) = z2 +
λ

z3
, z , λ ∈ C

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 18 / 86



Critical points, critical values, and prepoles

For Fλ(z) = z2 +
λ

z3
, z , λ ∈ C

A critical point cλ is a value of z for which F ′λ(z) = 0.

There are 5 critical points given by cλ =

(
3λ

2

)1/5

.
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Critical points, critical values, and prepoles

For Fλ(z) = z2 +
λ

z3
, z , λ ∈ C

There are 5 critical values vλ = Fλ(cλ).

They are vλ =
5λ2/5

33/522/5
.

The dynamical plane exhibits symmetry under rotation, so discussing
one critical value covers all critical points and values.
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Critical points, critical values, and prepoles

For Fλ(z) = z2 +
λ

z3
, z , λ ∈ C

A prepole pλ is a value of z for which Fλ(z) = 0.

There are 5 prepoles given by pλ = (−λ)1/5.
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The Escape Trichotomy

We will talk about the critical point and its corresponding critical
value on the real axis (for a specific λ on the real axis in the
parameter plane). There is also a fixed point on the real axis.

We can classify the regions in the parameter plane by the orbit of that
critical value.
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Cantor set locus

vλ lies in Bλ. In this case it is known that J (Fλ) is a Cantor set.

The corresponding set of λ-values in the parameter plane is called the
Cantor set locus.
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McMullen domain

cλ enters Tλ after 1 iteration. J (Fλ) is a Cantor set of simple closed
curves.

If you take a slice of the Julia set, you can kind of see the Cantor set
in that interval.

The corresponding set of λ around the origin is the McMullen
domain. One time I clicked in that region on my first try: Link
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Sierpinski holes

cλ enters Tλ at iteration 2. For any λ such that cλ enters Tλ at
iteration 2 or higher, it is known that J (Fλ) is a Sierpinski curve, i.e.
a set that is homeomorphic to the Sierpinski carpet fractal.

The corresponding sets of λ are called Sierpinski holes.
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Sierpinski carpet fractal
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Mandelbrot sets and the connectedness locus

vλ does not escape to ∞.

The corresponding set of λ in the parameter plane includes, but is not
limited to, the Mandelbrot sets.

The complement of the Cantor set locus and the McMullen domain in
the Riemann sphere is the connectedness locus. This locus is the
union of the Mandelbrot sets, Sierpinski holes, and some other stuff.
J (Fλ) is a connected set for all λ in the connectedness locus.
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Sierpinski hole of higher escape time

For a λ in the next Sierpinski hole to the left:

cλ enters Tλ at iteration 3.

The next Sierpinski hole along the negative real axis probably has
escape time 4.

This idea of increasingly higher escape time Sierpinski holes might be
interesting...
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More Mandelbrot sets

There is the clearly visible principal Mandelbrot set.

Also two baby Mandelbrot sets.

Six more baby Mandelbrot sets. Are there more?
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Why yes there are

There is a Mandelbrot between the Sierpinski holes of cλ escape time
2 and 3.
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Further along the negative real axis

Looks like another Mandelbrot set between the next pair of Sierpinski
holes.
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Claim

There are infinitely many Sierpinski holes along the negative real axis
of the parameter plane.
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Claim

Between each of the infinitely many pairs of Sierpinski holes is a
Mandelbrot set.

This set of infinitely many alternating Sierpinski holes and Mandelbrot
sets along the negative real axis in the parameter plane is the
Sierpinski Mandelbrot arc.
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The dynamical plane for n = 2, d = 3

This is the dynamical plane for n = 2, d = 3 and λ in a Sierpinski
hole on the negative real axis.

To prove the existence of the Sierpinski Mandelbrot arc we will
consider some closed sets in the dynamical plane.

We will also restrict λ to an annular region in the parameter plane.
The details are not that interesting. more
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The left wedge Lλ

Let Lλ be the closed portion of the wedge with inner boundary in the
trapdoor, outer boundary in the basin, and straight line boundaries
that are part of the two adjacent prepole rays as shown.

There is one critical point cλ0 in the interior of Lλ.
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The right wedge Rλ

Let Rλ be the symmetric right wedge. The straight line boundaries
are part of two adjacent critical point rays.

There is one prepole pλ2 in the interior of Rλ.

vλ0 = Fλ(cλ0 ) is in Rλ.
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The (subset of the) trapdoor TA

Let TA be the closed subset of the trapdoor containing 0 such that
Lλ ∪ TA ∪ Rλ are connected, and they only intersect along
boundaries.

This union will be referred to informally as the bowtie.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 37 / 86



The (subset of the) trapdoor TA

Let TA be the closed subset of the trapdoor containing 0 such that
Lλ ∪ TA ∪ Rλ are connected, and they only intersect along
boundaries.

This union will be referred to informally as the bowtie.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 37 / 86



The (subset of the) trapdoor TA

Let TA be the closed subset of the trapdoor containing 0 such that
Lλ ∪ TA ∪ Rλ are connected, and they only intersect along
boundaries.

This union will be referred to informally as the bowtie.

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 37 / 86



Proposition

Proposition

For each λ in that annular region:

1. Fλ maps Rλ in 1-1 fashion onto a region that contains the interiors of
Lλ ∪ TA ∪ Rλ;
2. Fλ maps Lλ two-to-one over a region that contains the interior of Rλ;
3. Some stuff about the critical value winding around the boundary of Rλ0
that is not worth stating, justifying, or using for this talk.
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Justification for part 1

The critical point ray boundaries of Rλ are mapped two-to-one onto
the critical value rays.

For each λ in the annular region, the critical
value rays are disjoint from the interiors of Lλ, Rλ, and TA.

The boundary of Rλ in Bλ maps to the outer arc on the right.

The boundary of Rλ in TA maps to the outer arc on the left.

Then the image of Rλ properly contains the interiors Rλ, Lλ, and TA.
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Justification for part 2

The prepole rays map to the critical point rays passing through the
origin.

For each λ in the annular region, the critical point rays are
disjoint from the interior of Rλ.

The boundary of Lλ in Bλ maps to an arc on the right.

The boundary of Lλ in TA maps to a slightly longer arc on the right.

Then Fλ maps Lλ over Rλ in two-to-one fashion.
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Are the rays really disjoint for all λ?

Rotating λ clockwise or CCW by half a turn rotates the “bowtie” by
one tenth of a turn. The critical value rays rotate one fifth of a turn
but remain disjoint from Rλ0 .
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Drawing a picture

We can “put a bowtie” on the dynamical plane, and the Rλ portion
of the bowtie contains a preimage of the bowtie.
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Preimage of the bowtie in the bowtie

Here is the preimage of the bowtie containing a preimage of Rλ.
The preimage of Rλ in that preimage of the bowtie contains a
preimage of the preimage of the bowtie.
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Zooming in
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The dynamical 0TL arc

Here is a stylized representation of the 0TL arc in the dynamical
plane.

This is the arc of infinitely many preimages of Lλ and TA in
Rλ that accumulates at the fixed point in Rλ.
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Claim

The TL arc in the dynamical plane implies some corresponding
structure exists in the parameter plane.

So how do these closed regions in the dynamical plane prove the
existence of structures in the parameter plane?
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TA =⇒ S-hole

Each preimage of TA proves the existence of a Sierpinski hole on the
negative real axis of the parameter plane.

There is a prepole in Rλ. There is a λ such that vλ0 is that prepole.
That is the center of a Sierpinski hole in the parameter plane.

The preimage of the prepole in Rλ corresponds to the next Sierpinski
hole of higher escape time. The preimage of that corresponds to the
next one, and so on. more

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 47 / 86



TA =⇒ S-hole

Each preimage of TA proves the existence of a Sierpinski hole on the
negative real axis of the parameter plane.

There is a prepole in Rλ.

There is a λ such that vλ0 is that prepole.
That is the center of a Sierpinski hole in the parameter plane.

The preimage of the prepole in Rλ corresponds to the next Sierpinski
hole of higher escape time. The preimage of that corresponds to the
next one, and so on. more

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 47 / 86



TA =⇒ S-hole

Each preimage of TA proves the existence of a Sierpinski hole on the
negative real axis of the parameter plane.

There is a prepole in Rλ. There is a λ such that vλ0 is that prepole.

That is the center of a Sierpinski hole in the parameter plane.

The preimage of the prepole in Rλ corresponds to the next Sierpinski
hole of higher escape time. The preimage of that corresponds to the
next one, and so on. more

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 47 / 86



TA =⇒ S-hole

Each preimage of TA proves the existence of a Sierpinski hole on the
negative real axis of the parameter plane.

There is a prepole in Rλ. There is a λ such that vλ0 is that prepole.
That is the center of a Sierpinski hole in the parameter plane.

The preimage of the prepole in Rλ corresponds to the next Sierpinski
hole of higher escape time. The preimage of that corresponds to the
next one, and so on. more

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 47 / 86



TA =⇒ S-hole

Each preimage of TA proves the existence of a Sierpinski hole on the
negative real axis of the parameter plane.

There is a prepole in Rλ. There is a λ such that vλ0 is that prepole.
That is the center of a Sierpinski hole in the parameter plane.

The preimage of the prepole in Rλ corresponds to the next Sierpinski
hole of higher escape time.

The preimage of that corresponds to the
next one, and so on. more

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 47 / 86



TA =⇒ S-hole

Each preimage of TA proves the existence of a Sierpinski hole on the
negative real axis of the parameter plane.

There is a prepole in Rλ. There is a λ such that vλ0 is that prepole.
That is the center of a Sierpinski hole in the parameter plane.

The preimage of the prepole in Rλ corresponds to the next Sierpinski
hole of higher escape time. The preimage of that corresponds to the
next one, and so on. more

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 47 / 86



Visual justification

For λ the center of the Sierpinski hole with critical point escape time
2, we can see cλ0 → vλ0 = pλ2 → TA.

For λ the center of the Sierpinski hole with critical point escape time
3, we can see cλ0 → vλ0 → pλ2 → TA.
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Lλ =⇒ M-set

Each preimage of Lλ proves the existence of a Mandelbrot set on the
negative real axis of the parameter plane.

As shown by Douady and Hubbard, for a family of polynomial-like
maps that satisfy a set of hypotheses, there is a homeomorphic copy
of the Mandelbrot set in an open disk in the parameter plane.

We have shown that Fλ maps Lλ two-to-one over Rλ, which is one of
the hypotheses.
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dynamical TL arc =⇒ parameter SM arc

There is an arc of infinitely many alternating preimages of Lλ and TA
in Rλ in the dynamical plane.

We use this dynamical arc to prove the existence of infinitely many
alternating Sierpinski holes and Mandelbrot sets in the parameter
plane.

A Sierpinski Mandelbrot arc is an arc in the parameter plane that
passes alternately along the spines of infinitely many baby Mandelbrot
sets and through the centers of the same number of Sierpinski holes.
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Outline

1 Introduction

2 z2 + λ/z3

3 z4 + λ/z3
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The parameter and dynamical plane for n = 4, d = 3

There are still infinitely many alternating Sierpinski holes and
Mandelbrot sets along the negative real axis.

The argument is analogous.
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Analogous setup

There are now 7 critical points, critical values, and prepoles.

Critical values rotate four times as much as critical points and
prepoles, instead of twice as much. This is almost bad for our bowtie
method.

The parameter plane exhibits symmetry under rotation, so that we
only need to consider 2π/3 < Arg(λ) < 4π/3. We have an annular
sector of λ, instead of an annulus.

We need to check λ rotated one sixth of a turn CC and CW, instead
of one half of a turn, which is great!
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Analogous bowtie

Only needing to check λ rotated one sixth of a turn allows enough
room to add another right wedge to the construction.

Let’s arbitrarily
choose an upper right wedge, Rλ1 , in addition to the original right
wedge Rλ0 .

We will refer to Lλ ∪ TA ∪ Rλ0 ∪ Rλ1 as the “lopsided bowtie.”
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Analogous Proposition

Proposition

For each λ in that roughly annular region:

1. Fλ maps Rλ0 in 1-1 fashion onto a region that contains the interiors of
Lλ ∪ TA ∪ Rλ0 ∪ Rλ1 ;
2. Fλ maps Rλ1 in 1-1 fashion onto a region that contains the interiors of
Lλ ∪ TA ∪ Rλ0 ∪ Rλ1 ;
3. Fλ maps Lλ two-to-one over a region that contains the interior of Rλ0 ;
4. The winding index part again.
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Analogous justification for part 1 (and part 2)
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The bowtie in Rλ
1 is rotated

The orientation is preserved, but note that the outer boundary of Rλ1
maps to the left side, while the inner boundary maps to the right.
This means the bowtie is rotated inside Rλ1 (and all preimages of Rλ1 ).
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Symbolic dynamics

To keep track of all of these preimages of Lλ,TA,R
λ
0 , and Rλ1 , we

can name a preimage by the itinerary of the points inside it.

A
preimage will be named by a sequence of 0′s and 1′s followed by
L,T ,R0, or R1.

The preimage named 000L, or 03L is the set of z in the dynamical
plane that starts in Rλ0 , goes to Rλ0 , goes to Rλ0 , and then to Lλ.

The preimage named 01100T , or 01202T , is the set of z in the
dynamical plane that starts in Rλ0 , goes to Rλ1 , goes to Rλ1 , goes to
Rλ0 , goes to Rλ0 , and then to TA.
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Labeling
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Scale is a problem

Let’s make a stylized representation of the Rλ0 wedge to depict more
levels of this naming scheme.
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Analogous TL arc

If we ignore Rλ1 and its preimages, we still have the 0TL arc in the
dynamical plane.

It is named the 0TL arc because one can think of z passing through
the trap door, then 0L, then 0T , then 02L, then 02T , ... and
accumulating at the fixed point in Rλ0 with the name 0.

But the 0TL arc exists entirely in Rλ0 . Rλ1 contains a preimage of Rλ0 .
Therefore, Rλ1 contains a preimage of the 0TL arc. The preimage of
the 0TL arc in Rλ1 is the 10TL arc.

(The preimage of the 0TL arc in Rλ0 is itself.)
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Infinitely many TL arcs

Let’s keep going:

The preimage of the 10TL arc in Rλ1 is the 120TL arc.
The preimage of the 10TL arc in Rλ0 is the 010TL arc.

The preimage of the 120TL arc in Rλ1 is the 130TL arc.
The preimage of the 120TL arc in Rλ0 is the 0120TL arc.
The preimage of the 010TL arc in Rλ1 is the 1010TL arc.
The preimage of the 010TL arc in Rλ0 is the 0210TL arc.

That’s probably enough.
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Fixed points in Symbolic dynamics

0 is a fixed point in Σ2.

As is 1. What would 1 mean in the context
of our problem?

0 is the fixed point of Fλ that lies in Rλ0 . 1 is the fixed point of Fλ
that lies in Rλ1 .

The fixed point in Rλ0 lies on the boundary of the basin. The fixed
point in Rλ1 does not...

If we draw lopsided bowties in Rλ1 until we get tired of doing so, we
get something like:
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Stylized lopsided bowties
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All 1′s only
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All 1′s only
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Claim

There exists the 0TL arc in Rλ0 for the rational map for n = 4, d = 3

with the arc beginning on the boundary of Tλ and accumulating at
the fixed point on the boundary of Bλ.

There exists a different TL arc in Rλ1 for the rational map for
n = 4, d = 3 such that the arc grows from both the boundary in Tλ
and the boundary in Bλ, and accumulates at the fixed point in the
interior of Rλ1 .

The proof is basically looking at the rotated lopsided bowties inside
each preimage of Rλ1 .
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The dynamical 1TL arc

Here is a stylized representation of the 1TL arc in the dynamical
plane.

This is the arc of infinitely many preimages of Lλ and TA in
Rλ1 that accumulates at the fixed point in Rλ1 . Every preimage of Lλ

and TA with orbit not including Rλ0 is part of the 1TL arc.
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Infinitely many 0TL arcs
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Infinitely many 0TL arcs intersecting the 1TL arc
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A continuous path for λ
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The 1TL spiral
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Another representation of the 1TL spiral
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Claim

There is an arc of infinitely many alternating preimages of Lλ and TA
in Rλ1 in the dynamical plane.

This dynamical arc does NOT prove the existence of infinitely many
alternating Sierpinski holes and Mandelbrot sets in the parameter
plane.

Recall that Fλ maps Lλ two-to-one over Rλ0 , which contains the
lopsided bowtie. The statement is NOT true if we replace Rλ0 with
Rλ1 .

However, Rλ0 contains a preimage of Rλ1 . Then the preimage of the
1TL arc, the 01TL arc, is in Rλ0 .

This dynamical arc proves the existence of an SM arc in the
parameter plane.

And infinitely many 0 SM arcs pass through the 01 SM arc to make
the 01 SM spiral.
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Infinitely many TL spirals
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Infinitely many SM spirals
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Infinitely many stylized SM spirals
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How many times I can use the word infinitely?

We have found the 0TL arcs of infinitely many Sierpinski holes and
Mandelbrot sets, and infinitely many of its preimages.

We have also found a different 1TL arc of infinitely many Sierpinski
holes and Mandelbrot sets. There are infinitely many preimages of
this arc as well.
Infinitely many 0TL arcs pass through a 1TL arc to make a 1TL
spiral. There are infinitely many preimages of this spiral.
None of the infinitely many dynamical structures in Rλ1 can be used
to prove the existence of structures in the parameter plane, but there
are infinitely many preimages of these structures in Rλ0 .
Then the 0 SM arc and infinitely many of its “preimages” exist in the
parameter plane.
The 01 SM arc and infinitely many of its “preimages” exist in the
parameter plane.
The 01 SM spiral and infinitely many of its “preimages” exist in the
parameter plane.
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Thank you!

Thank you for listening!
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Outline

4 Insurance

E. Chang (Boston University) The Sierpinski Mandelbrot Spiral TCD2017 83 / 86



Equivalent definitions of the Julia Set

J (F ) is the set of all points at which the family of iterates of F fails to be
a normal family in the sense of Montel.

Equivalently, J (F ) is the closure
of the set of repelling periodic points of F , and it is also the boundary of
the set of points whose orbits tend to ∞ under iteration of F . back
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λ restricted to an annular region

back
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TA proves a Sierpinski hole

Basically, we need a unique zλk that varies analytically with λ and for
which F k−1

λ (zλk ) = 0.

Then for that zλk , we need to find a disk D in the
parameter plane for which a critical value winds once around zλk as λ
winds once around the boundary of D. Then there exists a unique λ for
which vλ = zλk , and that λ is the center of a Sierpinski hole with critical
point escape time k. back
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