Wandering triangles from the point of view of perturbations of postcritically finite maps

Jordi Canela

Institut de Mathématiques de Toulouse Université Paul Sabatier

Joint work with: Xavier Buff and Pascale Roesch

Barcelona, 6 October 2017

1 Branch points, wandering points, some results

- **2** A proof by perturbations
- **3** Perturbation of postcritically finite maps
- **4** Branching: a sequence of perturbations

1 Branch points, wandering points, some results

- 2 A proof by perturbations
- ③ Perturbation of postcritically finite maps
- **4** Branching: a sequence of perturbations

Branch and wandering points

Definition

Let K be a connected and locally connected set. Then, w is a branch point if $K \setminus \{w\}$ has more than two components.

Definition

Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic map. We say that a point $w \in \mathcal{J}(f)$ is *wandering* if it has an infinite orbit.

Branch and wandering points

Definition

Let K be a connected and locally connected set. Then, w is a branch point if $K \setminus \{w\}$ has more than two components.

Definition

Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic map. We say that a point $w \in \mathcal{J}(f)$ is *wandering* if it has an infinite orbit.

Thurston (1985): A branch point of a locally connected Julia set of a quadratic polynomial P is either eventually periodic or eventually critical.

 $\mathcal{J}(P)$ locally connected \implies there is a lamination s.t. $\mathcal{J}(P) \simeq \overline{\mathbb{D}} / \sim$.

Thurston (1985): A branch point of a locally connected Julia set of a quadratic polynomial P is either eventually periodic or eventually critical.

 $\mathcal{J}(P)$ locally connected \implies there is a lamination s.t. $\mathcal{J}(P) \simeq \overline{\mathbb{D}} / \sim$.

Thurston (1985): A branch point of a locally connected Julia set of a quadratic polynomial P is either eventually periodic or eventually critical.

 $\mathcal{J}(P)$ locally connected \implies there is a lamination s.t. $\mathcal{J}(P) \simeq \overline{\mathbb{D}}/\sim$.

Thurston (1985): A branch point of a locally connected Julia set of a quadratic polynomial P is either eventually periodic or eventually critical.

 $\mathcal{J}(P)$ locally connected \implies there is a lamination s.t. $\mathcal{J}(P) \simeq \overline{\mathbb{D}}/\sim.$

In the case of locally connected Julia sets of polynomials,

w is a branch point $\iff n \ge 3$ external rays land at w.

• Thurston (1985):

There is no wandering triangle in quadratic lamination. A branch point of a locally connected Julia set of a quadratic polynomial is either eventually periodic or eventually critical.

 Kiwi (2002): Every non-preperiodic non-precritical gap in a *σ*_d-invariant lamination is at most a *d*-gon.

 A wandering non pre-critical branch point of a degree *d*

polynomial is the landing point of at most d external rays.

- Blokh (2005): If a cubic polynomial has wandering non-precritical points then the two critical points are recurrent one to each other.
- Blokh and Oversteegen (2008): There exist cubic polynomials with wandering non-precritical branch points.

• Thurston (1985):

There is no wandering triangle in quadratic lamination. A branch point of a locally connected Julia set of a quadratic polynomial is either eventually periodic or eventually critical.

• Kiwi (2002): Every non-preperiodic non-precritical gap in a σ_d -invariant lamination is at most a *d*-gon.

A wandering non pre-critical branch point of a degree d polynomial is the landing point of at most d external rays.

- Blokh (2005): If a cubic polynomial has wandering non-precritical points then the two critical points are recurrent one to each other.
- Blokh and Oversteegen (2008): There exist cubic polynomials with wandering non-precritical branch points.

• Thurston (1985):

There is no wandering triangle in quadratic lamination. A branch point of a locally connected Julia set of a quadratic polynomial is either eventually periodic or eventually critical.

• Kiwi (2002): Every non-preperiodic non-precritical gap in a σ_d -invariant lamination is at most a *d*-gon.

A wandering non pre-critical branch point of a degree d polynomial is the landing point of at most d external rays.

- Blokh (2005): If a cubic polynomial has wandering non-precritical points then the two critical points are recurrent one to each other.
- Blokh and Oversteegen (2008): There exist cubic polynomials with wandering non-precritical branch points.

• Thurston (1985):

There is no wandering triangle in quadratic lamination. A branch point of a locally connected Julia set of a quadratic polynomial is either eventually periodic or eventually critical.

• Kiwi (2002): Every non-preperiodic non-precritical gap in a σ_d -invariant lamination is at most a d-gon.

A wandering non pre-critical branch point of a degree d polynomial is the landing point of at most d external rays.

- Blokh (2005): If a cubic polynomial has wandering non-precritical points then the two critical points are recurrent one to each other.
- Blokh and Oversteegen (2008): There exist cubic polynomials with wandering non-precritical branch points.

1 Branch points, wandering points, some results

2 A proof by perturbations

- ③ Perturbation of postcritically finite maps
- **4** Branching: a sequence of perturbations

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

Buff-C.-Roesch: There exist a sequence of postcritically finite cubic polynomials (P_s) converging to a cubic polynomial with wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a certain type :

- we construct a sequence of polynomials of this type with critical points close to the initial ones but
 - with an increasing number of iterations
 - with the dynamical role of the critical points exchanged (there will be recurrent to each other)
- for each polynomial, some pre-image y_s of the critical point is separating 3 pre-periodic points
- At the limit the sequence (y_s) converges to a wandering non pre-critical branch point.

1 Branch points, wandering points, some results

2 A proof by perturbations

3 Perturbation of postcritically finite maps

In the sequence of perturbations
In the sequence of perturbations

We consider monic cubic polynomials P with two critical points c_1 and c_2 such that P(0) = 0.

We say that P has an (n, m)-configuration if

- The external ray of angle 0 is the only ray landing at 0.
- There are n, m > 0 such that $P^n(c_2) = c_1$ and $P^m(c_1) = 0$.

$$P_{c_1,c_2}(z) = z^3 - 3(c_1 + c_2)z^2/2 + 3c_1c_2z$$

We consider monic cubic polynomials P with two critical points c_1 and c_2 such that P(0) = 0.

We say that P has an (n, m)-configuration if

- The external ray of angle 0 is the only ray landing at 0.
- There are n, m > 0 such that $P^n(c_2) = c_1$ and $P^m(c_1) = 0$.

$$P_{c_1,c_2}(z) = z^3 - 3(c_1 + c_2)z^2/2 + 3c_1c_2z.$$

We consider monic cubic polynomials P with two critical points c_1 and c_2 such that P(0) = 0.

We say that P has an (n, m)-configuration if

- The external ray of angle 0 is the only ray landing at 0.
- There are n, m > 0 such that $P^n(c_2) = c_1$ and $P^m(c_1) = 0$.

$$P_{c_1,c_2}(z) = z^3 - 3(c_1 + c_2)z^2/2 + 3c_1c_2z.$$

We consider monic cubic polynomials P with two critical points c_1 and c_2 such that P(0) = 0.

We say that P has an (n, m)-configuration if

- The external ray of angle 0 is the only ray landing at 0.
- There are n, m > 0 such that $P^n(c_2) = c_1$ and $P^m(c_1) = 0$.

$$P_{c_1,c_2}(z) = z^3 - 3(c_1 + c_2)z^2/2 + 3c_1c_2z.$$

Perturbation of (n, m)-configurations

Lemma

Let P_0 be admissible with an (n, m)-configuration. Then, there are admissible polynomials $P_{0,l}$ such that:

- The polynomials $P_{0,l}$ converge to P_0 as $l \to \infty$.
- $P_{0,l}$ has critical points c'_2 and c'_1 which satisfy $P_{0,l}^{n+m}(c'_2) = 0$ and $P_{0,l}^m(c'_1) = x_l$. ($P_{0,l}$ has an (m + l, m + n)-configuration)

 $P_{0,1}:n'=2,\ m'=2,\ c_1'\approx-2.5777842615361+0.1227176404951i, c_2'\approx-0.8735669310080+0.0386710407537i$

 $P_{0,2}:n'=3,\ m'=2,\ c_1'\approx-2.5958326584619+0.0460203092748i, \\ c_2'\approx-0.8674089841015+0.0151384906087$

 $P_{0,3}:n'=4,\ m'=2,\ c_1'\approx-2.5978601369971+0.0176164681833i, c_2'\approx-0.8662705692505+0.0058563395448i$

 $P_{0,4}:n'=5,\ m'=2,\ c_1'\approx-2.5980617426835+0.0067742534518i, c_2'\approx-0.8660676437257+0.0022569362336i$

 $P_{0,8}:n'=9,\ m'=2,\ c_1'\approx-2.5980762166193+0.0000572180661i \\ c_2'\approx-0.8660254089001+0.0000190726873i,$

1 Branch points, wandering points, some results

- 2 A proof by perturbations
- 3 Perturbation of postcritically finite maps
- **4** Branching: a sequence of perturbations

Pull back of the 0-ray at critical points

Assume that P has an (n, m)-configuration.

- 0 is the landing point of a single external ray.
- $P^m(c_1) = 0$. Hence, c_1 is the landing point of 2 pre-images.
- $P^n(c_2) = c_1$. Hence, c_2 is the landing point of 4 pre-images.

After perturbation

Separation of 3 points

Key lemma

Let P_0 be admissible with an (n, m) – configuration. Let y be a preimage of c_2 , $P_0^k(y) = c_2$, that separates preperiodic points ω , σ and τ .

Then, if $P_{0,l}$ is close enough to P_0 , there exists a preimage y_l of c'_1 which separates ω , σ and τ . Moreover, $P_{0,l}^{k+n}(y_l) = c'_1$.

Convergence of Carathéodory loops

The continuous extension $\overline{\psi}$ of the inverse ϕ^{-1} of the Böttcher map ϕ restricts to a continuous map $\gamma : \mathbb{S}^1 \to \mathcal{J}(P)$ called the Carathéodory loop.

Proposition

Let P_n be cubic polynomials with locally connected Julia set which converge to an admissible cubic polynomial P with an (n, m)-configuration. Then, the Carathéodory loops γ_n of P_n converge uniformly to the Carathéodory loop γ of P.

Convergence of Carathéodory loops

The continuous extension $\overline{\psi}$ of the inverse ϕ^{-1} of the Böttcher map ϕ restricts to a continuous map $\gamma : \mathbb{S}^1 \to \mathcal{J}(P)$ called the Carathéodory loop.

Proposition

Let P_n be cubic polynomials with locally connected Julia set which converge to an admissible cubic polynomial P with an (n, m)-configuration. Then, the Carathéodory loops γ_n of P_n converge uniformly to the Carathéodory loop γ of P.

Iterative perturbations

Thank you for your attention!