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Branch and wandering points

Definition
Let K be a connected and locally connected set. Then, w is a
branch point if K \ {w} has more than two components.

Definition
Let f : C→ C be a holomorphic map. We say that a point
w ∈ J (f ) is wandering if it has an infinite orbit.
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No wandering triangle
Thurston (1985): A branch point of a locally connected Julia set
of a quadratic polynomial P is either eventually periodic or
eventually critical.

J (P) locally connected =⇒ there is a lamination s.t.
J (P) ' D/ ∼.

Thurston (1985): There is no wandering triangle in quadratic
lamination.
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In the case of locally connected Julia sets of polynomials,

w is a branch point ⇐⇒ n ≥ 3 external rays land at w .



Wandering triangles: some results

• Thurston (1985):
There is no wandering triangle in quadratic lamination.
A branch point of a locally connected Julia set of a quadratic
polynomial is either eventually periodic or eventually critical.

• Kiwi (2002): Every non-preperiodic non-precritical gap in a
σd -invariant lamination is at most a d-gon.
A wandering non pre-critical branch point of a degree d
polynomial is the landing point of at most d external rays.

• Blokh (2005): If a cubic polynomial has wandering
non-precritical points then the two critical points are recurrent
one to each other.

• Blokh and Oversteegen (2008): There exist cubic polynomials
with wandering non-precritical branch points.
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A concrete example
Buff-C.-Roesch: There exist a sequence of postcritically finite
cubic polynomials (Ps) converging to a cubic polynomial with
wandering non-precritical branch points.

• We start with a post-critical finite cubic polynomial of a
certain type :

one critical point is iterated to the other and finally to a
periodic point uniquely accessible.

• we construct a sequence of polynomials of this type with
critical points close to the initial ones but

- with an increasing number of iterations
- with the dynamical role of the critical points exchanged (there

will be recurrent to each other)

• for each polynomial, some pre-image ys of the critical point is
separating 3 pre-periodic points

• At the limit the sequence (ys) converges to a wandering non
pre-critical branch point.
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Set up

We consider monic cubic polynomials P with two critical points c1
and c2 such that P(0) = 0.

We say that P has an (n,m)-configuration if

• The external ray of angle 0 is the only ray landing at 0.

• There are n,m > 0 such that Pn(c2) = c1 and Pm(c1) = 0.

c2 c1 0

Pn Pm

Note that the polynomials can be presented under the form

Pc1,c2(z) = z3 − 3(c1 + c2)z2/2 + 3c1c2z .
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Perturbation of (n,m)-configurations

Lemma
Let P0 be admissible with an (n,m)-configuration. Then, there are
admissible polynomials P0,l such that:

• The polynomials P0,l converge to P0 as l →∞.

• P0,l has critical points c ′2 and c ′1 which satisfy Pn+m
0,l (c ′2) = 0

and Pm
0,l(c ′1) = xl . (P0,l has an (m + l ,m + n)-configuration)

c2
c1 0xl

Pn
0 Pm

0

P l
0

c ′1c ′2 0
xl

Pn+m
0,l

Pm
0,l

P l
0,l



c2c1

P0: n = m = 1, c1 ≈ −2.5980762113533, c2 ≈ −0.8660254037844

c ′2
c ′1

P0,1 : n′ = 2, m′ = 2, c ′1 ≈ −2.5777842615361 + 0.1227176404951i ,
c ′2 ≈ −0.8735669310080 + 0.0386710407537i



c2c1

P0: n = m = 1, c1 ≈ −2.5980762113533, c2 ≈ −0.8660254037844

c ′2c ′1

P0,2 : n′ = 3, m′ = 2, c ′1 ≈ −2.5958326584619 + 0.0460203092748i ,
c ′2 ≈ −0.8674089841015 + 0.0151384906087



c2c1

P0: n = m = 1, c1 ≈ −2.5980762113533, c2 ≈ −0.8660254037844

c ′2c ′1

P0,3 : n′ = 4, m′ = 2, c ′1 ≈ −2.5978601369971 + 0.0176164681833i ,
c ′2 ≈ −0.8662705692505 + 0.0058563395448i



c2c1

P0: n = m = 1, c1 ≈ −2.5980762113533, c2 ≈ −0.8660254037844

c ′2c ′1

P0,4 : n′ = 5, m′ = 2, c ′1 ≈ −2.5980617426835 + 0.0067742534518i ,
c ′2 ≈ −0.8660676437257 + 0.0022569362336i



c2c1

P0: n = m = 1, c1 ≈ −2.5980762113533, c2 ≈ −0.8660254037844

c ′2c ′1

P0,8 : n′ = 9, m′ = 2, c ′1 ≈ −2.5980762166193 + 0.0000572180661i
c ′2 ≈ −0.8660254089001 + 0.0000190726873i ,
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Pull back of the 0-ray at critical points

Assume that P has an (n,m)-configuration.

• 0 is the landing point of a single external ray.

• Pm(c1) = 0. Hence, c1 is the landing point of 2 pre-images.

• Pn(c2) = c1. Hence, c2 is the landing point of 4 pre-images.



After perturbation



Rays near perturbed critical points



Separation of 3 points

Key lemma

Let P0 be admissible with an (n,m)− configuration. Let y be a
preimage of c2, Pk

0 (y) = c2, that separates preperiodic points ω, σ
and τ .
Then, if P0,l is close enough to P0, there exists a preimage yl of c ′1
which separates ω, σ and τ . Moreover, Pk+n

0,l (yl) = c ′1.

τ

ω

σ

y

yl

τ

ω

σ

y



Convergence of Carathéodory loops

The continuous extension ψ of the inverse φ−1 of the Böttcher
map φ restricts to a continuous map γ : S1 → J (P) called the
Carathéodory loop.

Proposition

Let Pn be cubic polynomials with locally connected Julia set which
converge to an admissible cubic polynomial P with an
(n,m)-configuration. Then, the Carathéodory loops γn of Pn

converge uniformly to the Carathéodory loop γ of P.
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Iterative perturbations

ω

σ

τ y0

ω

y0

y1

σ

τ

















Thank you for your attention!
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