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Definition
Let f : C — C be a holomorphic map. We say that a point
w € J(f) is wandering if it has an infinite orbit.
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No wandering triangle
Thurston (1985): A branch point of a locally connected Julia set
of a quadratic polynomial P is either eventually periodic or
eventually critical.

J(P) locally connected = there is a lamination s.t.
J(P) =D/ ~.

Thurston (1985): There is no wandering triangle in quadratic
lamination.



In the case of locally connected Julia sets of polynomials,

w is a branch point <= n > 3 external rays land at w.
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Wandering triangles: some results

Thurston (1985):

There is no wandering triangle in quadratic lamination.

A branch point of a locally connected Julia set of a quadratic
polynomial is either eventually periodic or eventually critical.
Kiwi (2002): Every non-preperiodic non-precritical gap in a
og-invariant lamination is at most a d-gon.

A wandering non pre-critical branch point of a degree d
polynomial is the landing point of at most d external rays.

Blokh (2005): If a cubic polynomial has wandering
non-precritical points then the two critical points are recurrent
one to each other.

Blokh and Oversteegen (2008): There exist cubic polynomials
with wandering non-precritical branch points.
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A concrete example

Buff-C.-Roesch: There exist a sequence of postcritically finite
cubic polynomials (Ps) converging to a cubic polynomial with
wandering non-precritical branch points.

e We start with a post-critical finite cubic polynomial of a
certain type :

one critical point is iterated to the other and finally to a
periodic point uniquely accessible.

e we construct a sequence of polynomials of this type with
critical points close to the initial ones but
- with an increasing number of iterations
- with the dynamical role of the critical points exchanged (there
will be recurrent to each other)

e for each polynomial, some pre-image ys of the critical point is
separating 3 pre-periodic points

e At the limit the sequence (ys) converges to a wandering non
pre-critical branch point.
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Set up

We consider monic cubic polynomials P with two critical points ¢
and ¢ such that P(0) = 0.

We say that P has an (n, m)-configuration if
e The external ray of angle 0 is the only ray landing at 0.
e There are n,m > 0 such that P"(c2) = ¢; and P™(c1) = 0.

Note that the polynomials can be presented under the form

Per(2) = 22 = 3(c1 + ©)2°/2 + 3c100z.



Perturbation of (n, m)-configurations

Lemma
Let Py be admissible with an (n, m)-configuration. Then, there are
admissible polynomials Py ; such that:
e The polynomials Py converge to Py as | — oo.
e Py, has critical points cj and c| which satisfy P{T™(cb) =0
and Pg’y(c) = x. (Po, has an (m+ I, m + n)-configuration)
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c5 ~ —0.8674089841015 + 0.0151384906087
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Pog:n' =9, m =2, ¢ ~—25980762166193 + 0.0000572180661i
¢} ~ —0.8660254089001 + 0.0000190726873,



@ Branching: a sequence of perturbations



Pull back of the O-ray at critical points

Assume that P has an (n, m)-configuration.

e 0 is the landing point of a single external ray.

e P™(c1) = 0. Hence, ¢ is the landing point of 2 pre-images.

e P"(c) = c1. Hence, ¢ is the landing point of 4 pre-images.
\\\
/
\\ ‘:‘f—'
\ i T
i - ud
i T 4 + )
T :\:*, TR S4B S
i T i
; } 1 % i i %
/\ i 1
1
|



After perturbation




Rays near perturbed critical points
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Separation of 3 points

Key lemma

Let Py be admissible with an (n, m) — configuration. Let y be a
preimage of c2, P¥(y) = co, that separates preperiodic points w, o
and 7.

Then, if Py is close enough to Py, there exists a preimage y; of ¢}

i k+n o
which separates w, o and 7. Moreover, 'Do,/ (y1) = cf.




Convergence of Carathéodory loops

The continuous extension 1 of the inverse ¢! of the Bottcher
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Convergence of Carathéodory loops

The continuous extension 1 of the inverse ¢! of the Bottcher

map ¢ restricts to a continuous map v : S — J(P) called the
Carathéodory loop.

Proposition

Let P, be cubic polynomials with locally connected Julia set which
converge to an admissible cubic polynomial P with an

(n, m)-configuration. Then, the Carathéodory loops ~, of P,
converge uniformly to the Carathéodory loop v of P.



Iterative perturbations
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Thank you for your attention!
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