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There exists a disjoint-type entire function such
that, for every connected component C of J(f), the
set CU {0} is a pseudo-arc.
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Definition 3

Let D1, Dy, ... be a sequence of chains, each of which connects
the distinct points a and b such that for each positive integer i,

1. Djy1 is crooked in D,
2. Every link of D; has diameter less that %, and

3. The closure of each link of D;,1 is a compact subset of a
link of D;

The set
M := m(UD,-))

is called a pseudo-arc
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A continuum X is decomposable provided that it can be written
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Figure : Knaster continuum
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Theorem 1
A pseudo-arc is hereditarily indecomposable.
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Thank you for your attention!
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