The pseudo-arc

Tania Gricel Benitez López

University of Liverpool

Topics in Complex Dynamics

October, 2017

Motivation:

Recently Rempe-Gillen has characterised the topology of Julia continua of disjoint type functions. More precisely, he gave an almost complete description of the possible topology of their components.

Motivation:

Recently Rempe-Gillen has characterised the topology of Julia continua of disjoint type functions. More precisely, he gave an almost complete description of the possible topology of their components.

There exists a disjoint-type entire function such that, for every connected component C of J(f), the set $C \cup \{\infty\}$ is a *pseudo-arc*.

Definition 1

A chain $\mathcal{D} = \{D_1, D_2, \dots, D_n\}$ is a collection of open sets in the plane, called *links*, D_1, D_2, \dots, D_n such that $D_i \cap D_j \neq \emptyset$ iff $|i-j| \leq 1$

Definition 1

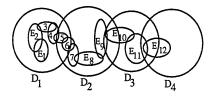
A chain $\mathcal{D} = \{D_1, D_2, \dots, D_n\}$ is a collection of open sets in the plane, called *links*, D_1, D_2, \dots, D_n such that $D_i \cap D_j \neq \emptyset$ iff $|i-j| \leq 1$

A refinement \mathcal{E} of a chain \mathcal{D} is a chain such that every link of \mathcal{E} is contained in a link of \mathcal{D} , denoted by $\mathcal{E} < \mathcal{D}$.

Definition 1

A chain $\mathcal{D} = \{D_1, D_2, \dots, D_n\}$ is a collection of open sets in the plane, called *links*, D_1, D_2, \dots, D_n such that $D_i \cap D_j \neq \emptyset$ iff $|i-j| \leq 1$

A refinement \mathcal{E} of a chain \mathcal{D} is a chain such that every link of \mathcal{E} is contained in a link of \mathcal{D} , denoted by $\mathcal{E} < \mathcal{D}$.



 ${\mathcal E}$ is called *crooked* in ${\mathcal D},$ if:

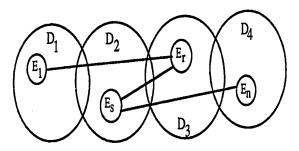
- \mathcal{E} is called *crooked* in \mathcal{D} , if:
 - $1. \ \mathcal{E} < \mathcal{D},$

- \mathcal{E} is called *crooked* in \mathcal{D} , if:
 - $1. \ \mathcal{E} < \mathcal{D},$
 - 2. If a subchain $\mathcal{E}(i,j)$ is such that $E_i \cap D_h \neq \emptyset$, $E_j \cap D_k \neq \emptyset$ and |h-k| > 2,

- \mathcal{E} is called *crooked* in \mathcal{D} , if:
 - $1. \ \mathcal{E} < \mathcal{D},$
 - 2. If a subchain $\mathcal{E}(i,j)$ is such that $E_i \cap D_h \neq \emptyset$, $E_j \cap D_k \neq \emptyset$ and |h-k| > 2, then $\mathcal{E}(i,j) = \mathcal{E}(i,r) \cup \mathcal{E}(r,s) \cup \mathcal{E}(s,j)$

- \mathcal{E} is called *crooked* in \mathcal{D} , if:
 - $1. \ \mathcal{E} < \mathcal{D},$
 - 2. If a subchain $\mathcal{E}(i,j)$ is such that $E_i \cap D_h \neq \emptyset$, $E_j \cap D_k \neq \emptyset$ and |h-k| > 2, then $\mathcal{E}(i,j) = \mathcal{E}(i,r) \bigcup \mathcal{E}(r,s) \bigcup \mathcal{E}(s,j)$ such that i < r < s < j, $E_r \subset D_{k-1}$, and $E_s \subset D_{h+1}$.

- \mathcal{E} is called *crooked* in \mathcal{D} , if:
 - $1. \ \mathcal{E} < \mathcal{D},$
 - 2. If a subchain $\mathcal{E}(i,j)$ is such that $E_i \cap D_h \neq \emptyset$, $E_j \cap D_k \neq \emptyset$ and |h-k| > 2, then $\mathcal{E}(i,j) = \mathcal{E}(i,r) \bigcup \mathcal{E}(r,s) \bigcup \mathcal{E}(s,j)$ such that i < r < s < j, $E_r \subset D_{k-1}$, and $E_s \subset D_{h+1}$.



Let $\mathcal{D}_1, \mathcal{D}_2, \ldots$ be a sequence of chains, each of which connects the distinct points a and b such that for each positive integer i,

Definition 3

Let $\mathcal{D}_1, \mathcal{D}_2, \ldots$ be a sequence of chains, each of which connects the distinct points a and b such that for each positive integer i,

1. \mathcal{D}_{i+1} is crooked in \mathcal{D}_i ,

Definition 3

Let $\mathcal{D}_1, \mathcal{D}_2, \ldots$ be a sequence of chains, each of which connects the distinct points a and b such that for each positive integer i,

- 1. \mathcal{D}_{i+1} is crooked in \mathcal{D}_i ,
- 2. Every link of \mathcal{D}_i has diameter less that $\frac{1}{i}$, and

Definition 3

Let $\mathcal{D}_1, \mathcal{D}_2, \ldots$ be a sequence of chains, each of which connects the distinct points a and b such that for each positive integer i,

- 1. \mathcal{D}_{i+1} is crooked in \mathcal{D}_i ,
- 2. Every link of \mathcal{D}_i has diameter less that $\frac{1}{i}$, and
- 3. The closure of each link of \mathcal{D}_{i+1} is a compact subset of a link of \mathcal{D}_i

Definition 3

Let $\mathcal{D}_1, \mathcal{D}_2, \ldots$ be a sequence of chains, each of which connects the distinct points a and b such that for each positive integer i,

- 1. \mathcal{D}_{i+1} is crooked in \mathcal{D}_i ,
- 2. Every link of \mathcal{D}_i has diameter less that $\frac{1}{i}$, and
- 3. The closure of each link of \mathcal{D}_{i+1} is a compact subset of a link of \mathcal{D}_i

The set

$$M:=\bigcap_i(\overline{\cup \mathcal{D}_i)})$$

Definition 3

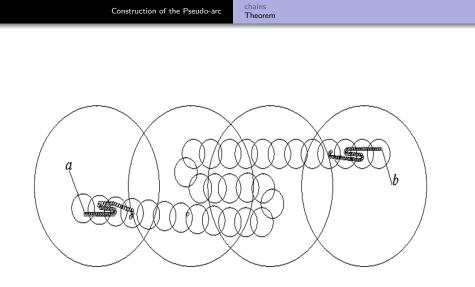
Let $\mathcal{D}_1, \mathcal{D}_2, \ldots$ be a sequence of chains, each of which connects the distinct points a and b such that for each positive integer i,

- 1. \mathcal{D}_{i+1} is crooked in \mathcal{D}_i ,
- 2. Every link of \mathcal{D}_i has diameter less that $\frac{1}{i}$, and
- 3. The closure of each link of \mathcal{D}_{i+1} is a compact subset of a link of \mathcal{D}_i

The set

$$M:=\bigcap_i(\overline{\cup \mathcal{D}_i)})$$

is called a pseudo-arc



A continuum X is *decomposable* provided that it can be written as the union of two of its proper subcontinua. Otherwise, X is *indecomposable*.

A continuum X is *decomposable* provided that it can be written as the union of two of its proper subcontinua. Otherwise, X is *indecomposable*. We say X is *hereditarily decomposable* (*indecomposable*) if each nondegenerate subcontinuum of X is decomposable (indecomposable, respectively).

A continuum X is *decomposable* provided that it can be written as the union of two of its proper subcontinua. Otherwise, X is *indecomposable*. We say X is *hereditarily decomposable* (*indecomposable*) if each nondegenerate subcontinuum of X is decomposable (indecomposable, respectively).

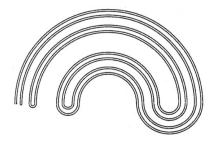


Figure : Knaster continuum

Theorem 1

A pseudo-arc is hereditarily indecomposable.

Thank you for your attention!