The Dynamics of Parabolic Transcendental Maps

Mashael Alhamd

University of Liverpool

October 3, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• Fatou set F(f): points with stable behaviour under iteration (Set of normality).

• Fatou set F(f): points with stable behaviour under iteration (Set of normality).

• Julia set: $\mathcal{J}(f) = \mathbb{C} \setminus F(f)$.

• Fatou set *F*(*f*): points with stable behaviour under iteration (Set of normality).

• Julia set:
$$\mathcal{J}(f) = \mathbb{C} \setminus F(f)$$
.

Another important set is the Escaping set, which is defined as follows

$$I(f) := \{z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

• It is interesting to ask weather the Julia set is locally connected or not since it implies a complete description of the topological dynamics.

• It is interesting to ask weather the Julia set is locally connected or not since it implies a complete description of the topological dynamics.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• ∞ is a *superattracting* fixed point.

• It is interesting to ask weather the Julia set is locally connected or not since it implies a complete description of the topological dynamics.

- ∞ is a *superattracting* fixed point.
- By Böttcher's theorem there is a conformal map φ conjugating a polynomial f of degree d ≥ 2 to z → z^d near ∞.

- It is interesting to ask weather the Julia set is locally connected or not since it implies a complete description of the topological dynamics.
- ∞ is a *superattracting* fixed point.
- By Böttcher's theorem there is a conformal map φ conjugating a polynomial f of degree d ≥ 2 to z → z^d near ∞.
- By Caratheodory -Torhorst Theorem the map φ⁻¹ has a surjective continuous extension mapping ∂D to J(f) if and only if J(f) is connected.

• local connectivity of the Julia set does not have the same implications as in the polynomial case. The Julia set of the exponential map is \mathbb{C} which is locally connected.

• local connectivity of the Julia set does not have the same implications as in the polynomial case. The Julia set of the exponential map is \mathbb{C} which is locally connected.

ullet ∞ is an essential singularity.

- local connectivity of the Julia set does not have the same implications as in the polynomial case. The Julia set of the exponential map is \mathbb{C} which is locally connected.
- ullet ∞ is an essential singularity.
- There is no conformal isomorphism near ∞ like the Böttcher's map.

- local connectivity of the Julia set does not have the same implications as in the polynomial case. The Julia set of the exponential map is \mathbb{C} which is locally connected.
- ullet ∞ is an essential singularity.
- There is no conformal isomorphism near ∞ like the Böttcher's map.
- However, the technique of pinched disk model can be used to study the Julia set of some classes of transcendental functions.

- local connectivity of the Julia set does not have the same implications as in the polynomial case. The Julia set of the exponential map is \mathbb{C} which is locally connected.
- ullet ∞ is an essential singularity.
- There is no conformal isomorphism near ∞ like the Böttcher's map.
- However, the technique of pinched disk model can be used to study the Julia set of some classes of transcendental functions.

• There are results obtained by L. Rempe-Gillen and H. Mihaljevic -Brandt for hyperbolic and strongly subhyperbolic entire maps.

- local connectivity of the Julia set does not have the same implications as in the polynomial case. The Julia set of the exponential map is C which is locally connected.
- ullet ∞ is an essential singularity.
- There is no conformal isomorphism near ∞ like the Böttcher's map.
- However, the technique of pinched disk model can be used to study the Julia set of some classes of transcendental functions.

- There are results obtained by L. Rempe-Gillen and H. Mihaljevic -Brandt for hyperbolic and strongly subhyperbolic entire maps.
- Our goal is to extend these results to the setting of parabolic transcendental entire maps.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• We say that ζ is a parabolic periodic point of period k if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We say that ζ is a parabolic periodic point of period k if $f^k(\zeta) = \zeta$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We say that ζ is a parabolic periodic point of period k if f^k(ζ) = ζ, |(f^k)'(ζ)| = 1

• We say that ζ is a parabolic periodic point of period k if $f^k(\zeta) = \zeta$, $|(f^k)'(\zeta)| = 1$ and $\lambda := (f^k)'(\zeta) = e^{2\pi i p/q}$ where (p, q) = 1.

• We say that ζ is a parabolic periodic point of period k if $f^k(\zeta) = \zeta$, $|(f^k)'(\zeta)| = 1$ and $\lambda := (f^k)'(\zeta) = e^{2\pi i p/q}$ where (p, q) = 1.

$$f^k(z) := \zeta + \lambda(z-\zeta) + a(z-\zeta)^{m+1} + \dots$$

• We say that ζ is a parabolic periodic point of period k if $f^k(\zeta) = \zeta$, $|(f^k)'(\zeta)| = 1$ and $\lambda := (f^k)'(\zeta) = e^{2\pi i p/q}$ where (p, q) = 1.

$$f^k(z) := \zeta + \lambda(z-\zeta) + a(z-\zeta)^{m+1} + \dots$$

 This means that ζ is a parabolic fixed point of the iterate f^{kq} with multiplier one.

• We say that ζ is a parabolic periodic point of period k if $f^k(\zeta) = \zeta$, $|(f^k)'(\zeta)| = 1$ and $\lambda := (f^k)'(\zeta) = e^{2\pi i p/q}$ where (p, q) = 1.

$$f^k(z) := \zeta + \lambda(z-\zeta) + a(z-\zeta)^{m+1} + \dots$$

 This means that ζ is a parabolic fixed point of the iterate f^{kq} with multiplier one.

$$f^{kq}(z) = \zeta + (z - \zeta) + b(z - \zeta)^{m+1} + \dots$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - の��

• At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.

• At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.

• Let $f(z) = z + az^{p+1} + \cdots$, then f has p number of attracting (repelling) vectors.

• At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.

- Let $f(z) = z + az^{p+1} + \cdots$, then f has p number of attracting (repelling) vectors.
- A complex number \mathbf{v} called an attracting vector for f

- At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.
- Let $f(z) = z + az^{p+1} + \cdots$, then f has p number of attracting (repelling) vectors.
- A complex number **v** called an attracting vector for f if $pav^p = 1$,

- At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.
- Let $f(z) = z + az^{p+1} + \cdots$, then f has p number of attracting (repelling) vectors.
- A complex number **v** called an attracting vector for f if $pav^p = 1$, and a repelling vector

- At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.
- Let $f(z) = z + az^{p+1} + \cdots$, then f has p number of attracting (repelling) vectors.
- A complex number **v** called an attracting vector for f if $pa\mathbf{v}^p = 1$, and a repelling vector if $pa\mathbf{v}^p = -1$.

- At any parabolic point there are attracting and repelling vectors and the number of those vectors is determined by the expansion of *f*.
- Let $f(z) = z + az^{p+1} + \cdots$, then f has p number of attracting (repelling) vectors.
- A complex number **v** called an attracting vector for f if $pa\mathbf{v}^{p} = 1$, and a repelling vector if $pa\mathbf{v}^{p} = -1$.
- Here the term "vector" should be thought of as a tangent vector to C at the origin. For example, as the tangent vector to the curve t → tv at t = 0.

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

Suppose that ζ is a parabolic fixed point for an entire function f.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose that ζ is a parabolic fixed point for an entire function f. Let ${\bf v}$ be an attracting vector at $\zeta,$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose that ζ is a parabolic fixed point for an entire function f. Let **v** be an attracting vector at ζ , then an open connected set \mathcal{P} is called an attracting petal for f at ζ if the following hold:

Suppose that ζ is a parabolic fixed point for an entire function f. Let **v** be an attracting vector at ζ , then an open connected set \mathcal{P} is called an attracting petal for f at ζ if the following hold:

• f is univalent on \mathcal{P} .

Suppose that ζ is a parabolic fixed point for an entire function f. Let **v** be an attracting vector at ζ , then an open connected set \mathcal{P} is called an attracting petal for f at ζ if the following hold:

- f is univalent on \mathcal{P} .
- $\zeta \in \partial \mathcal{P}$.

Suppose that ζ is a parabolic fixed point for an entire function f. Let **v** be an attracting vector at ζ , then an open connected set \mathcal{P} is called an attracting petal for f at ζ if the following hold:

- f is univalent on \mathcal{P} .
- $\zeta \in \partial \mathcal{P}$.
- $f(\overline{\mathcal{P}} \setminus \{\zeta\}) \subset \mathcal{P}.$

Suppose that ζ is a parabolic fixed point for an entire function f. Let **v** be an attracting vector at ζ , then an open connected set \mathcal{P} is called an attracting petal for f at ζ if the following hold:

- f is univalent on \mathcal{P} .
- $\zeta \in \partial \mathcal{P}$.
- $f(\overline{\mathcal{P}} \setminus \{\zeta\}) \subset \mathcal{P}.$
- $z \in \mathcal{P}$ if and only if there exists $N \in \mathbb{N}$ such that $f^k(z) \in \mathcal{P}$ for all $k \ge N$ via the vector **v** ($\operatorname{Arg}(f^k(z)) \to \operatorname{Arg}(v)$ for all $k \ge N$).

Suppose that ζ is a parabolic fixed point for an entire function f. Let **v** be an attracting vector at ζ , then an open connected set \mathcal{P} is called an attracting petal for f at ζ if the following hold:

- f is univalent on \mathcal{P} .
- $\zeta \in \partial \mathcal{P}$.
- $f(\overline{\mathcal{P}} \setminus \{\zeta\}) \subset \mathcal{P}.$
- $z \in \mathcal{P}$ if and only if there exists $N \in \mathbb{N}$ such that $f^k(z) \in \mathcal{P}$ for all $k \ge N$ via the vector \mathbf{v} ($\operatorname{Arg}(f^k(z)) \to \operatorname{Arg}(v)$ for all $k \ge N$).

Similarly, P is a repelling petal for f if it is an attracting petal for some local inverse g of f.

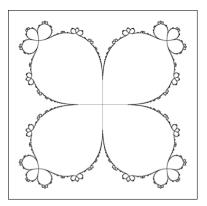
$f(z) = z + z^5$

$f(z) = z + z^5$

This function has a parabolic fixed point at z = 0 with multiplier f'(0) = 1. It has four attracting (repelling) petals at zero.

$f(z)=z+z^5$

This function has a parabolic fixed point at z = 0 with multiplier f'(0) = 1. It has four attracting (repelling) petals at zero.



▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

• The set of singular values S(f)

• The set of singular values S(f) is the closure of the union of the critical values and the asymptotic values of f.

• The set of *singular values* S(f) is the closure of the union of the critical values and the asymptotic values of f.

• The *postsingular* set of *f*

- The set of *singular values* S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

- The set of *singular values* S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Class \mathcal{B}

- The set of singular values S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

 \bullet Class ${\cal B}$ consists of transcendental entire functions for which S(f) is bounded.

- The set of singular values S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

- Class $\mathcal B$ consists of transcendental entire functions for which S(f) is bounded.
- The order of a holomorphic map f is defined to be

- The set of singular values S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

- \bullet Class ${\cal B}$ consists of transcendental entire functions for which S(f) is bounded.
- The order of a holomorphic map f is defined to be

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log M(f, r)}{\log r}.$$

where M(f, r) is the maximum absolute value of f(z) where |z| = r.

- The set of *singular values* S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

- \bullet Class ${\cal B}$ consists of transcendental entire functions for which S(f) is bounded.
- The order of a holomorphic map f is defined to be

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log M(f, r)}{\log r}.$$

where M(f, r) is the maximum absolute value of f(z) where |z| = r. • f has finite order

- The set of singular values S(f) is the closure of the union of the critical values and the asymptotic values of f.
- The *postsingular* set of *f*

$$P(f) = \overline{\bigcup_{n\geq 0} f^n(S(f))}.$$

- \bullet Class ${\cal B}$ consists of transcendental entire functions for which S(f) is bounded.
- The order of a holomorphic map f is defined to be

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log M(f, r)}{\log r}.$$

where M(f, r) is the maximum absolute value of f(z) where |z| = r.

• f has finite order if there exists ρ , C > 0 such that for all r > 0 $\sup_{|z|=r} |f(z)| \le C.exp(r^{\rho}).$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

We say that $f \in \mathcal{B}$ is of *disjoint type*, if the following hold:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We say that $f \in \mathcal{B}$ is of *disjoint type*, if the following hold:

• *F*(*f*) is connected and all points in *F*(*f*) converge to an attracting fixed point of *f*.

We say that $f \in \mathcal{B}$ is of *disjoint type*, if the following hold:

• *F*(*f*) is connected and all points in *F*(*f*) converge to an attracting fixed point of *f*.

• $S(f) \subset F(f)$.

We say that $f \in \mathcal{B}$ is of *disjoint type*, if the following hold:

- F(f) is connected and all points in F(f) converge to an attracting fixed point of f.
- $S(f) \subset F(f)$.

A Cantor bouquet, roughly, is a union of uncountably many pairwise disjoint curves, each of which connects a distinguished point in the plane to ∞ .

Theorem[G. Rottenfusser, J. Ruckert, L. Rempe, and D. Schleicher]

We say that $f \in \mathcal{B}$ is of *disjoint type*, if the following hold:

- *F*(*f*) is connected and all points in *F*(*f*) converge to an attracting fixed point of *f*.
- $S(f) \subset F(f)$.

A Cantor bouquet, roughly, is a union of uncountably many pairwise disjoint curves, each of which connects a distinguished point in the plane to ∞ .

Theorem[G. Rottenfusser, J. Ruckert, L. Rempe, and D. Schleicher]

If $f \in \mathcal{B}$ has finite order and of disjoint type.

We say that $f \in \mathcal{B}$ is of *disjoint type*, if the following hold:

- *F*(*f*) is connected and all points in *F*(*f*) converge to an attracting fixed point of *f*.
- $S(f) \subset F(f)$.

A Cantor bouquet, roughly, is a union of uncountably many pairwise disjoint curves, each of which connects a distinguished point in the plane to ∞ .

Theorem[G. Rottenfusser, J. Ruckert, L. Rempe, and D. Schleicher] If $f \in \mathcal{B}$ has finite order and of disjoint type. Then $\mathcal{J}(f)$ is a Cantor bouquet.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Parabolic function

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

• $P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$ is finite and nonempty.

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

- $P_{\mathcal{J}} := P(f) \cap \mathcal{J}(f)$ is finite and nonempty.
- **2** $P_{\mathcal{J}} = \operatorname{Par}(f)$ the set of parabolic points of f.

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

- $P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$ is finite and nonempty.
- **2** $P_{\mathcal{J}} = \operatorname{Par}(f)$ the set of parabolic points of f.

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

- $P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$ is finite and nonempty.
- **2** $P_{\mathcal{J}} = \operatorname{Par}(f)$ the set of parabolic points of f.

Theorem

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

- $P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$ is finite and nonempty.
- **2** $P_{\mathcal{J}} = \operatorname{Par}(f)$ the set of parabolic points of f.

Theorem

Let $f \in \mathcal{B}$ be parabolic,

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

•
$$P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$$
 is finite and nonempty.

2
$$P_{\mathcal{J}} = \operatorname{Par}(f)$$
 the set of parabolic points of f .

Theorem

Let $f \in \mathcal{B}$ be parabolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is of disjoint-type.

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

- $P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$ is finite and nonempty.
- **2** $P_{\mathcal{J}} = \operatorname{Par}(f)$ the set of parabolic points of f.

Theorem

Let $f \in \mathcal{B}$ be parabolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is of disjoint-type.

Then there exists a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$, such that $f(\phi(z)) = \phi(g(z))$ for all $z \in \mathcal{J}(g)$.

Parabolic function

A transcendental entire map $f \in \mathcal{B}$ is called parabolic if the following hold:

- $P_{\mathcal{J}} := P(f) \bigcap \mathcal{J}(f)$ is finite and nonempty.
- **2** $P_{\mathcal{J}} = \operatorname{Par}(f)$ the set of parabolic points of f.

Theorem

Let $f \in \mathcal{B}$ be parabolic, and let $\lambda \in \mathbb{C}$ be such that $g(z) := f(\lambda z)$ is of disjoint-type.

Then there exists a continuous surjection $\phi : \mathcal{J}(g) \to \mathcal{J}(f)$, such that $f(\phi(z)) = \phi(g(z))$ for all $z \in \mathcal{J}(g)$.

Moreover, ϕ restricts to a homeomorphism between the escaping sets I(g) and I(f).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

If $f \in \mathcal{B}$ parabolic and of finite order.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $f \in \mathcal{B}$ parabolic and of finite order. Then the Julia set of f is a pinched Cantor bouquet.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If $f \in \mathcal{B}$ parabolic and of finite order. Then the Julia set of f is a pinched Cantor bouquet.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary 1

If $f \in \mathcal{B}$ parabolic and of finite order. Then the Julia set of f is a pinched Cantor bouquet.

Corollary 1

The escaping set of a parabolic map is not connected.

hyperbolic vs parabolic Julia sets

¹source of images: Lasse Rempe-Gillen

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

hyperbolic vs parabolic Julia sets

Figure: $f(z) = \frac{1}{2}(e^{z} - 1)$

¹source of images: Lasse Rempe-Gillen

(日)、

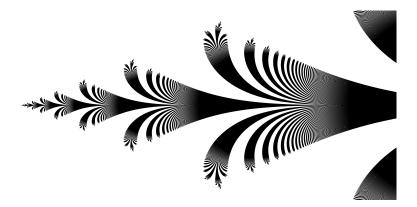
hyperbolic vs parabolic Julia sets

Figure: $f(z) = \frac{1}{2}(e^{z} - 1)$

Figure: $g(z) = e^z - 1$

¹source of images: Lasse Rempe-Gillen

hyperbolic function $f(z) = \frac{1}{2}(e^z - 1)$

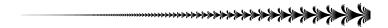


<ロト <回ト < 注ト < 注ト

э

¹source of image: Lasse Rempe-Gillen

parabolic function $g(z) = e^z - 1$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

¹source of image: Lasse Rempe-Gillen

Thank you !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?