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Based on the behavior of the iterates of a point z ∈ C under a
holomorphic function f the complex plane C is divided into two sets :

Fatou set F (f ): points with stable behaviour under iteration (Set of
normality).

Julia set: J (f ) = C\F (f ).

Another important set is the Escaping set, which is defined as follows

I (f ) := {z ∈ C : f n(z)→∞ as n→∞}.
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Dynamics of Polynomials

It is interesting to ask weather the Julia set is locally connected or not
since it implies a complete description of the topological dynamics.

∞ is a superattracting fixed point.

By Böttcher’s theorem there is a conformal map φ conjugating a
polynomial f of degree d ≥ 2 to z 7→ zd near ∞.

By Caratheodory -Torhorst Theorem the map φ−1 has a surjective
continuous extension mapping ∂D to J (f ) if and only if J (f ) is
connected.
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Dynamics of Transcendental Functions

local connectivity of the Julia set does not have the same implications
as in the polynomial case. The Julia set of the exponential map is C
which is locally connected.

∞ is an essential singularity.

There is no conformal isomorphism near ∞ like the Böttcher’s map.

However, the technique of pinched disk model can be used to study
the Julia set of some classes of transcendental functions.

There are results obtained by L. Rempe-Gillen and H. Mihaljevic
-Brandt for hyperbolic and strongly subhyperbolic entire maps.

Our goal is to extend these results to the setting of parabolic
transcendental entire maps.
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However, the technique of pinched disk model can be used to study
the Julia set of some classes of transcendental functions.

There are results obtained by L. Rempe-Gillen and H. Mihaljevic
-Brandt for hyperbolic and strongly subhyperbolic entire maps.

Our goal is to extend these results to the setting of parabolic
transcendental entire maps.



Dynamics of Transcendental Functions

local connectivity of the Julia set does not have the same implications
as in the polynomial case. The Julia set of the exponential map is C
which is locally connected.

∞ is an essential singularity.

There is no conformal isomorphism near ∞ like the Böttcher’s map.
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Let f be holomorphic

We say that ζ is a parabolic periodic point of period k if f k(ζ) = ζ,
|(f k)′(ζ)| = 1 and λ := (f k)′(ζ) = e2πip/q where (p, q) = 1.

f k(z) := ζ + λ(z − ζ) + a(z − ζ)m+1 + . . .

This means that ζ is a parabolic fixed point of the iterate f kq with
multiplier one.

f kq(z) = ζ + (z − ζ) + b(z − ζ)m+1 + . . .
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Attracting and repelling vectors

At any parabolic point there are attracting and repelling vectors and
the number of those vectors is determined by the expansion of f .

Let f (z) = z + azp+1 + · · ·, then f has p number of attracting
(repelling) vectors.

A complex number v called an attracting vector for f if pavp = 1,
and a repelling vector if pavp = −1.

Here the term ”vector” should be thought of as a tangent vector to C
at the origin. For example, as the tangent vector to the curve t 7→ tv
at t = 0.
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Attracting petal

Suppose that ζ is a parabolic fixed point for an entire function f . Let v be
an attracting vector at ζ, then an open connected set P is called an
attracting petal for f at ζ if the following hold:

f is univalent on P.

ζ ∈ ∂P.

f (P\{ζ}) ⊂ P.

z ∈ P if and only if there exists N ∈ N such that f k(z) ∈ P for all
k ≥ N via the vector v ( Arg(f k(z))→ Arg(v) for all k ≥ N ).

Similarly, P is a repelling petal for f if it is an attracting petal for some
local inverse g of f .
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f (z) = z + z5

This function has a parabolic fixed point at z = 0 with multiplier
f ′(0) = 1. It has four attracting (repelling) petals at zero.

1image source : https://commons.m.wikimedia.org
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Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f )

is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B

consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).



Dynamics of transcendental maps

The set of singular values S(f ) is the closure of the union of the
critical values and the asymptotic values of f .

The postsingular set of f

P(f ) = ∪n≥0f n(S(f )).

Class B consists of transcendental entire functions for which S(f) is
bounded.

The order of a holomorphic map f is defined to be

ρ(f ) = lim sup
r→∞

log logM(f , r)

log r
.

where M(f , r) is the maximum absolute value of f (z) where |z | = r .

f has finite order if there exists ρ,C > 0 such that for all r > 0
sup|z|=r |f (z)| ≤ C .exp(rρ).
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disjoint type map

We say that f ∈ B is of disjoint type, if the following hold:

F (f ) is connected and all points in F (f ) converge to an attracting
fixed point of f .

S(f ) ⊂ F (f ).

A Cantor bouquet, roughly, is a union of uncountably many pairwise
disjoint curves, each of which connects a distinguished point in the plane
to ∞.

Theorem[G. Rottenfusser, J. Ruckert, L. Rempe, and D. Schleicher]

If f ∈ B has finite order and of disjoint type. Then J (f ) is a Cantor
bouquet.
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Dynamics of Parabolic transcendental entire maps

Parabolic function

A transcendental entire map f ∈ B is called parabolic if the following hold:

1 PJ := P(f )
⋂
J (f ) is finite and nonempty.

2 PJ = Par(f ) the set of parabolic points of f .

3 S(f ) ⊂ F(f ).

Theorem

Let f ∈ B be parabolic, and let λ ∈ C be such that g(z) := f (λz) is of
disjoint-type.
Then there exists a continuous surjection φ : J (g)→ J (f ), such that
f (φ(z)) = φ(g(z)) for all z ∈ J (g).

Moreover, φ restricts to a homeomorphism between the escaping sets I (g)
and I (f ).
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Theorem 2

If f ∈ B parabolic and of finite order. Then the Julia set of f is a pinched
Cantor bouquet.

Corollary 1

The escaping set of a parabolic map is not connected.
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