# Conjugacy classes of disjoint-type functions

## Simon Albrecht

### ( joint work with Anna Benini and Lasse Rempe-Gillen )

University of Liverpool

# TCD 2017 Barcelona, 2 October 2017

# Let $f : \mathbb{C} \to \mathbb{C}$ be entire.

$$f^n := \underbrace{f \circ f \circ \ldots \circ f}_{n\text{-times}}.$$

$$f^n := \underbrace{f \circ f \circ \ldots \circ f}_{n\text{-times}}.$$

$$\mathcal{F}(f) = \mathsf{Fatou} \text{ set of } f = \text{ set of stability}$$

$$f^n := \underbrace{f \circ f \circ \ldots \circ f}_{n\text{-times}}.$$

 $\mathcal{F}(f) = \text{Fatou set of } f = \text{ set of stability}$  $= \{z \in \mathbb{C} : \{f^n : n \in \mathbb{N}\} \text{ is equicontinuous in } z\}$ 

$$f^n := \underbrace{f \circ f \circ \ldots \circ f}_{n\text{-times}}.$$

$$\mathcal{F}(f) = \text{Fatou set of } f = \text{ set of stability}$$
$$= \{z \in \mathbb{C} : \{f^n : n \in \mathbb{N}\} \text{ is equicontinuous in } z\}$$
$$\mathcal{J}(f) = \text{Julia set of } f = \mathbb{C} \setminus \mathcal{F}(f)$$

We say that two entire functions f and g are *conjugate* if there exists a homeomorphism  $T : \mathbb{C} \to \mathbb{C}$  with  $f \circ T = T \circ g$ .

We say that two entire functions f and g are *conjugate* if there exists a homeomorphism  $T : \mathbb{C} \to \mathbb{C}$  with  $f \circ T = T \circ g$ . Then:

•  $f^n \circ T = T \circ g^n$  for all  $n \in \mathbb{N}$ .

We say that two entire functions f and g are *conjugate* if there exists a homeomorphism  $T : \mathbb{C} \to \mathbb{C}$  with  $f \circ T = T \circ g$ . Then:

• 
$$f^n \circ T = T \circ g^n$$
 for all  $n \in \mathbb{N}$ .

• 
$$\mathcal{F}(f) = T(\mathcal{F}(g))$$
 and  $\mathcal{J}(f) = T(\mathcal{J}(g))$ .

We say that two entire functions f and g are *conjugate* if there exists a homeomorphism  $T : \mathbb{C} \to \mathbb{C}$  with  $f \circ T = T \circ g$ . Then:

• 
$$f^n \circ T = T \circ g^n$$
 for all  $n \in \mathbb{N}$ .  
•  $\mathcal{F}(f) = T(\mathcal{F}(g))$  and  $\mathcal{J}(f) = T(\mathcal{J}(g))$ .

Example:

$$f(z) = z^2, g(z) = 2z^2 - 2z + 1, T(z) = 2z - 1$$

Example 1: 
$$f(z) = z^2 - 1$$
.

Example 1: 
$$f(z) = z^2 - 1$$
.



Source of image: Prokofiev, Wikimedia commons, http://commons.wikimedia.org/wiki/File:Julia\_z2-1.png

Example 2: 
$$f(z) = e^{z} - 2$$
.

Example 2: 
$$f(z) = e^{z} - 2$$
.



Image created by Lasse Rempe-Gillen.

Example 2: 
$$f(z) = e^{z} - 2$$
.



Image created by Lasse Rempe-Gillen.

• Collection of injective curves to  $\infty$ .

- Collection of injective curves to  $\infty$ .
- Each curve has a finite endpoint.

- Collection of injective curves to  $\infty$ .
- Each curve has a finite endpoint.
- The set of endpoints is dense in the Cantor bouquet.

- Collection of injective curves to  $\infty$ .
- Each curve has a finite endpoint.
- The set of endpoints is dense in the Cantor bouquet.

**Fact:** All Cantor bouquets are homeomorphic to each other by ambient homeomorphisms (that is by homeomorphisms which can be extended to the whole plane).

Example 3: 
$$f(z) = -\frac{3}{4}\cos(z) + \frac{3}{4}$$
.

Example 3: 
$$f(z) = -\frac{3}{4}\cos(z) + \frac{3}{4}$$
.



Image created by Lasse Rempe-Gillen.











Example:

 $e^z - 2$  is of disjoint type,



Example:

 $e^z - 2$  is of disjoint type,  $e^z$  is not of disjoint type.

 $|f(z)| \leq c \cdot \exp(|z|^{
ho})$  for all  $z \in \mathbb{C}$ .

$$|f(z)| \leq c \cdot \exp(|z|^{
ho})$$
 for all  $z \in \mathbb{C}$ .

The infimum of the possible  $\rho$  is called *order of f*, denoted  $\rho(f)$ .

$$|f(z)| \leq c \cdot \exp(|z|^{
ho})$$
 for all  $z \in \mathbb{C}$ .

The infimum of the possible  $\rho$  is called *order of f*, denoted  $\rho(f)$ . In fact,

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log \max_{|z|=r} |f(z)|}{\log r}.$$

$$|f(z)| \leq c \cdot \exp(|z|^{
ho})$$
 for all  $z \in \mathbb{C}$ .

The infimum of the possible  $\rho$  is called *order of f*, denoted  $\rho(f)$ . In fact,

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log \max_{|z|=r} |f(z)|}{\log r}.$$

**Examples:** 

• 
$$\rho(P) = 0$$
 for every polynomial  $P$ .

$$|f(z)| \leq c \cdot \exp(|z|^{
ho})$$
 for all  $z \in \mathbb{C}$ .

The infimum of the possible  $\rho$  is called *order of f*, denoted  $\rho(f)$ . In fact,

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log \max_{|z|=r} |f(z)|}{\log r}.$$

## Examples:

$$|f(z)| \leq c \cdot \exp(|z|^{
ho})$$
 for all  $z \in \mathbb{C}$ .

The infimum of the possible  $\rho$  is called *order of f*, denoted  $\rho(f)$ . In fact,

$$\rho(f) = \limsup_{r \to \infty} \frac{\log \log \max_{|z|=r} |f(z)|}{\log r}$$

## **Examples:**

- $\rho(P) = 0$  for every polynomial *P*.
- $\rho(\exp(z^n)) = n$ .
- $\rho(\exp(\exp(z))) = \infty$ .

**Fact:** Every disjoint-type transcendental entire function of finite order has a Cantor bouquet Julia set.

**Fact:** Every disjoint-type transcendental entire function of finite order has a Cantor bouquet Julia set. Hence, the Julia sets of two such functions f and g are homeomorphic (by ambient homeomorphisms).

**Fact:** Every disjoint-type transcendental entire function of finite order has a Cantor bouquet Julia set. Hence, the Julia sets of two such functions f and g are homeomorphic (by ambient homeomorphisms).

#### Question

Are f and g conjugate on their Julia sets?

**Fact:** Every disjoint-type transcendental entire function of finite order has a Cantor bouquet Julia set. Hence, the Julia sets of two such functions f and g are homeomorphic (by ambient homeomorphisms).

#### Question

Are f and g conjugate on their Julia sets?





Let f and g be disjoint-type transcendental entire functions of order less than 1.

Let f and g be disjoint-type transcendental entire functions of order less than 1. Then f and g are conjugate on their Julia sets by an ambient homeomorphism.

Let f and g be disjoint-type transcendental entire functions of order less than 1. Then f and g are conjugate on their Julia sets by an ambient homeomorphism.

However, there exist uncountably many disjoint-type functions of order 1 which are pairwise not conjugate on their Julia sets.

Let f and g be disjoint-type transcendental entire functions of order less than 1. Then f and g are conjugate on their Julia sets by an ambient homeomorphism.

However, there exist uncountably many disjoint-type functions of order 1 which are pairwise not conjugate on their Julia sets.

The conjugacy in general only holds on the Julia sets, not on the entire complex plane.

# Thank you very much for your attention.