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1. Recap

e To each minimal rotation set X form, : ¢ +— d -t (mod 7Z) we associate a
rotation number p(X) € R/Z and deployment vector

8(X) = (B1,....84-1) € AT CRITY,

where §; = ulzi—1,zi).
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1. Recap

e Deployment Theorem: For any “admissible” pair (6, §) € (R/Z) x A4—2

there exists a unique minimal rotation set X for m  such that p(X) = 6 and
5(X) =4.



1. Recap

e Deployment Theorem: For any “admissible” pair (6, §) € (R/Z) x A4—2

there exists a unique minimal rotation set X for m  such that p(X) = 6 and
5(X) =4.

e The key tool is the gap measure

d—1 oo

b= Y Y d kL, L,

i=1k=0

which can be used to effectively construct X .



1. Recap
e Let w denote the leading angle of X .
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where No > 0 is the number of 0’s in o(X).
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1. Recap

e Let w denote the leading angle of X .

Theorem
No
= 0,60
10} 71 v(0, 6] + 71
d—1
1 1 No
=d_lz Z dk+1+d—1
i=10<0;—k0<6

where No > 0 is the number of 0’s in o(X).

This gives an explicit algorithm for computing the base d expansion of the
angle (d — w.




2. Rotation sets under doubling
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w+1/2

z > @270y 4 ;2 p(X)=16



2. Rotation sets under doubling




3. Rotation sets under tripling

Theorem

For every irrational number 0 and every § € [0, 1] there is a unique minimal

rotation set X under the tripling map t — 3t (mod Z) with p(X) = 6 and
5(X)=(5,1-9).
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3. Rotation sets under tripling

Theorem

For every irrational number 0 and every § € [0, 1] there is a unique minimal

rotation set X under the tripling map t — 3t (mod Z) with p(X) = 6 and
5(X)=(5,1-9).

“\_major gap
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Notice that X + 1/2 is also a rotation set under tripling, with the same rotation
number 6 but deployment vector (1 — §, §).



3. Rotation sets under tripling

Theorem
There are countably many possibilities for the lengths of major gaps of X :
(1) If 8 = 0 (mod Z), then X has a major gap of length %
(ii) If§ = £nb (mod Z) for some n > 1, then X has a pair of major gaps
of lengths % and % + EESE

(iii) For all other values of 8, X has a pair of major gaps of length %
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4. A cubic family

Fix an irrational number 6 of bounded type and let A = ¢27%?.
Definition

P (M) is the space of conjugacy classes of cubic polynomials C — C with a
fixed point of multiplier A at the origin.




4. A cubic family

Fix an irrational number 6 of bounded type and let A = ¢27%?.

Definition

P (M) is the space of conjugacy classes of cubic polynomials C — C with a
fixed point of multiplier A at the origin.

Each element of &?(A) is represented by a monic polynomial of the form
fa:ZI—>/\z+a22+z3 aeC,
where a is uniquely determined up to the sign. Thus, the parameter
b=a’>eC

is a complete invariant for the space ().



4. A cubic family

a-plane = double-cover of Z(A)



4. A cubic family

b-plane == (1)



5. Cubic Siegel disks
Since 6 is bounded type, each f, has a Siegel disk A, centered at 0.

Theorem
For every a € C, the boundary dA, is a quasicircle containing at least one

critical point of f,.
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6. The connectedness locus

Definition
The connectedness locus is defined as

‘é(k) = {a € C: K(f,) is connected}.
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6. The connectedness locus

Definition

The connectedness locus is defined as

‘f()t) = {a € C: K(f,) is connected}.

?()&) is compact, connected and full. The quotient (g(k) /£ defines the
connectedness locus €' (1) C Z(A).

Every interior component of € (1) is of one of the following types:

e capture, where the orbit of one critical point eventually hits the Siegel
disk; or

e hyperbolic-like, where the orbit of one critical point converges to an
attracting cycle; or

o queer, where the Julia set has positive measure and admits an invariant
line field.



6. The connectedness locus




7. The arc I

Theorem

There is an embedded arc I' C €' (L) connecting b = 0 to b = 3\ with the
property that b = a® € T if and only if A, contains both critical points of f,.




7. The arc I

Theorem

There is an embedded arc ' C € (L) connecting b = 0to b = 34 with the
property that b = a? € T if and only if A, contains both critical points of f,.




7. The arc I

Theorem

There is an embedded arc ' C € (L) connecting b = 0to b = 34 with the
property that b = a? € T if and only if A, contains both critical points of f,.




7. The arc I




7. The arc I

e [ is parametrized by the conformal angle between the two critical points.



7. The arc I

e [ is parametrized by the conformal angle between the two critical points.

e [ is the locus where the Siegel disk boundary fails to move
holomorphically.



8. Capture components along I’

For each n > 0 there is a unique parameter b, = a2 € I' where the n-th iterate
of one critical point of f,, hits the other critical point.
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9. Dynamic and parameter rays

When a € €()), the Bttcher coordinate 0a(z) = z + O(1) of f, defines the
dynamic ray of f, at angle ¢:

Ry(t) = {(pgl(rezmt) cr > 13},
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When a ¢ % (1), the Béttcher coordinate @q is defined and holomorphic in
some neighborhood of the escaping co-critical point c),.
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is a conformal isomorphism. Since ®(—a) = —P(a), the map
VU:CN€(A) > C~D U(b) = (P(VD))?

is a well-defined conformal isomorphism.



9. Dynamic and parameter rays

Whena € ¢ (A), the Bottcher coordinate ¢,(z) = z + O(1) of f, defines the
dynamic ray of f, at angle ¢:

Ry(t) = {(pgl(rezmt) cr > 13},

When a ¢ % (1), the Béttcher coordinate @q is defined and holomorphic in
some neighborhood of the escaping co-critical point c),.

The map A _
®:CF(A)—>C~D ®(a) = @a(cy)
is a conformal isomorphism. Since ®(—a) = —P(a), the map
VU:CN€(A) > C~D W(b) = (P(VD))?

is a well-defined conformal isomorphism.

We define the parameter ray of &?(A) at angle ¢ by

R(t) = (¥ (e ) r > 1).
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There are two parameter rays R (), R(t(;" ) landing at the root by of Cy. They
define the limb L of € (A) containing Cy.
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10. Limbs attached to I

For each n > 1, there are three parameter rays R(z;, ), R(z,), R(z,) landing at

the root b, of C,,. The pair R(t,jt) define the limb L, of (1) containing C,,
while R(z,) lies on the opposite side of T
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the root b, of C,,. The pair R(t,jt) define the limb L, of (1) containing C,,
while R(z,) lies on the opposite side of T

Nt L




10. Limbs attached to I

For any non-root parameter b € I', there are two parameter rays R(t), R(t*)
landing on b from opposite sides of I" (t = ¢t* when b = 0).
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Now suppose a € ‘é()t) so K( fa) is connected.
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11. The Cantor set associated with £,

Now suppose a € ‘é()t) so K( fa) is connected.
Definition

X/ = {t € T : The dynamic ray R,(¢) lands on dA,}.

Theorem

X/, contains a unique minimal rotation set X, under tripling.

The difference X ~. X, can have at most countably many isolated points, all
eventually mapping to X, under tripling.



11. The Cantor set associated with £,

Let (84, 1 — &4) be the deployment vector of X,,.
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11. The Cantor set associated with f,

Let (84, 1 — 8,) be the deployment vector of X,,.
Notice that
X_a:Xa+1/2, SO S_aZI_Sa.

Thus, to each b = a? € €' (A) we can assign a well-defined deployment
probability 5, € [0,1/2].



12. Deployment probability and I

Theorem

For every parameter b = a® € T, 8, is the conformal angle between the two
critical points of f,.
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Theorem

For every parameter b = a® € T, 8, is the conformal angle between the two
critical points of f5.




12. Deployment probability and I

Theorem

e8, =0(mod Z) <= b € Ly.

e 8y = £nf (mod Z) for somen > 1 <= b € L.
o §;, takes other values <= b € I' \ {roots points}.
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to the unique rotation set under doubling with rotation number 6.



13. Computing angles

The relation
o _m o 2
n T T Fnl

always holds.

The angles #;5, 1% can be expressed in terms of a base angle » which is related
to the unique rotation set under doubling with rotation number 6.

For the golden mean § = (/5 — 1)/2,

o = 0.128099593431 - - -



11. Computing angles

Theorem
We have
th =20+ %
0 - 3’
and forn > 1,
+ @G"+ 1D o+ pn
L, = 3
* n 1
where 0 < p, < 3" is a (computable) integer depending on 6.




11. Computing angles

For example,

4 w
+
! = —
1 3
o+ 10w+1
2 9
t+:28a)+22
3 27
t+:82a)+4
4 81

L 2440 +31
e = ———
s 243



11. Computing angles

e o < 0. 1790 "
R >, \ 2171048 6.170799
SN g S Nz, & x
%=07 \i-';- e & R S
Zs *&9 °
N\

AN

Y= 6.5
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