Rotation Sets and Complex Dynamics Lecture III

November 26, 2015

• To each minimal rotation set X for $m_d : t \mapsto d \cdot t \pmod{\mathbb{Z}}$ we associate a *rotation number* $\rho(X) \in \mathbb{R}/\mathbb{Z}$ and *deployment vector*

$$\delta(X) = (\delta_1, \dots, \delta_{d-1}) \in \Delta^{d-2} \subset \mathbb{R}^{d-1},$$

where $\delta_i = \mu[z_{i-1}, z_i)$.

• To each minimal rotation set X for $m_d : t \mapsto d \cdot t \pmod{\mathbb{Z}}$ we associate a *rotation number* $\rho(X) \in \mathbb{R}/\mathbb{Z}$ and *deployment vector*

$$\delta(X) = (\delta_1, \dots, \delta_{d-1}) \in \Delta^{d-2} \subset \mathbb{R}^{d-1},$$

where $\delta_i = \mu[z_{i-1}, z_i)$.

• Deployment Theorem: For any "admissible" pair $(\theta, \delta) \in (\mathbb{R}/\mathbb{Z}) \times \Delta^{d-2}$ there exists a unique minimal rotation set X for m_d such that $\rho(X) = \theta$ and $\delta(X) = \delta$.

• Deployment Theorem: For any "admissible" pair $(\theta, \delta) \in (\mathbb{R}/\mathbb{Z}) \times \Delta^{d-2}$ there exists a unique minimal rotation set X for m_d such that $\rho(X) = \theta$ and $\delta(X) = \delta$.

• The key tool is the *gap measure*

$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta},$$

which can be used to effectively construct X.

• Let ω denote the *leading angle* of *X*.

• Let ω denote the *leading angle* of *X*.

This gives an explicit algorithm for computing the base d expansion of the angle $(d-1)\omega$.

2. Rotation sets under doubling

$$z \mapsto e^{2\pi i (2/5)} z + z^2$$

2. Rotation sets under doubling

$$z \mapsto e^{2\pi i \theta} z + z^2$$

 $\rho(X) = \theta$

2. Rotation sets under doubling

Theorem

For every irrational number θ and every $\delta \in [0, 1]$ there is a unique minimal rotation set X under the tripling map $t \mapsto 3t \pmod{\mathbb{Z}}$ with $\rho(X) = \theta$ and $\delta(X) = (\delta, 1 - \delta)$.

Theorem

For every irrational number θ and every $\delta \in [0, 1]$ there is a unique minimal rotation set X under the tripling map $t \mapsto 3t \pmod{\mathbb{Z}}$ with $\rho(X) = \theta$ and $\delta(X) = (\delta, 1 - \delta)$.

Theorem

For every irrational number θ and every $\delta \in [0, 1]$ there is a unique minimal rotation set X under the tripling map $t \mapsto 3t \pmod{\mathbb{Z}}$ with $\rho(X) = \theta$ and $\delta(X) = (\delta, 1 - \delta)$.

Notice that X + 1/2 is also a rotation set under tripling, with the same rotation number θ but deployment vector $(1 - \delta, \delta)$.

Theorem

There are countably many possibilities for the lengths of major gaps of X:

- (i) If $\delta = 0 \pmod{\mathbb{Z}}$, then X has a major gap of length $\frac{2}{3}$.
- (ii) If $\delta = \pm n\theta \pmod{\mathbb{Z}}$ for some $n \ge 1$, then X has a pair of major gaps of lengths $\frac{1}{3}$ and $\frac{1}{3} + \frac{1}{3^{n+1}}$.

(iii) For all other values of δ , X has a pair of major gaps of length $\frac{1}{3}$.

Theorem

There are countably many possibilities for the lengths of major gaps of X:

- (i) If $\delta = 0 \pmod{\mathbb{Z}}$, then X has a major gap of length $\frac{2}{3}$.
- (ii) If $\delta = \pm n\theta \pmod{\mathbb{Z}}$ for some $n \ge 1$, then X has a pair of major gaps of lengths $\frac{1}{3}$ and $\frac{1}{3} + \frac{1}{3^{n+1}}$.
- (iii) For all other values of δ , X has a pair of major gaps of length $\frac{1}{3}$.

Fix an irrational number θ of bounded type and let $\lambda = e^{2\pi i \theta}$.

Definition

 $\mathscr{P}(\lambda)$ is the space of conjugacy classes of cubic polynomials $\mathbb{C} \to \mathbb{C}$ with a fixed point of multiplier λ at the origin.

Fix an irrational number θ of bounded type and let $\lambda = e^{2\pi i \theta}$

Definition

 $\mathscr{P}(\lambda)$ is the space of conjugacy classes of cubic polynomials $\mathbb{C} \to \mathbb{C}$ with a fixed point of multiplier λ at the origin.

Each element of $\mathscr{P}(\lambda)$ is represented by a monic polynomial of the form

$$f_a: z \mapsto \lambda z + az^2 + z^3 \qquad a \in \mathbb{C},$$

where a is uniquely determined up to the sign. Thus, the parameter

$$b = a^2 \in \mathbb{C}$$

is a complete invariant for the space $\mathscr{P}(\lambda)$.

a-plane \cong double-cover of $\mathscr{P}(\lambda)$

b-plane $\cong \mathscr{P}(\lambda)$

5. Cubic Siegel disks

Since θ is bounded type, each f_a has a Siegel disk Δ_a centered at 0.

Theorem

For every $a \in \mathbb{C}$, the boundary $\partial \Delta_a$ is a quasicircle containing at least one critical point of f_a .

5. Cubic Siegel disks

Since θ is bounded type, each f_a has a Siegel disk Δ_a centered at 0.

Theorem

For every $a \in \mathbb{C}$, the boundary $\partial \Delta_a$ is a quasicircle containing at least one critical point of f_a .

Definition

The connectedness locus is defined as

 $\hat{\mathscr{C}}(\lambda) = \{a \in \mathbb{C} : K(f_a) \text{ is connected}\}.$

Definition

The connectedness locus is defined as

 $\hat{\mathscr{C}}(\lambda) = \{a \in \mathbb{C} : K(f_a) \text{ is connected}\}.$

 $\hat{\mathscr{C}}(\lambda)$ is compact, connected and full. The quotient $\hat{\mathscr{C}}(\lambda)/\pm$ defines the connectedness locus $\mathscr{C}(\lambda) \subset \mathscr{P}(\lambda)$.

Definition

The connectedness locus is defined as

 $\hat{\mathscr{C}}(\lambda) = \{a \in \mathbb{C} : K(f_a) \text{ is connected}\}.$

 $\hat{\mathscr{C}}(\lambda)$ is compact, connected and full. The quotient $\hat{\mathscr{C}}(\lambda)/\pm$ defines the connectedness locus $\mathscr{C}(\lambda) \subset \mathscr{P}(\lambda)$.

Every interior component of $\mathscr{C}(\lambda)$ is of one of the following types:

- *capture*, where the orbit of one critical point eventually hits the Siegel disk; or
- *hyperbolic-like*, where the orbit of one critical point converges to an attracting cycle; or
- *queer*, where the Julia set has positive measure and admits an invariant line field.

Theorem

There is an embedded arc $\Gamma \subset \mathscr{C}(\lambda)$ connecting b = 0 to $b = 3\lambda$ with the property that $b = a^2 \in \Gamma$ if and only if $\partial \Delta_a$ contains both critical points of f_a .

Theorem

There is an embedded arc $\Gamma \subset \mathscr{C}(\lambda)$ connecting b = 0 to $b = 3\lambda$ with the property that $b = a^2 \in \Gamma$ if and only if $\partial \Delta_a$ contains both critical points of f_a .

Theorem

There is an embedded arc $\Gamma \subset \mathscr{C}(\lambda)$ connecting b = 0 to $b = 3\lambda$ with the property that $b = a^2 \in \Gamma$ if and only if $\partial \Delta_a$ contains both critical points of f_a .

• Γ is parametrized by the conformal angle between the two critical points.

- Γ is parametrized by the conformal angle between the two critical points.
- Γ is the locus where the Siegel disk boundary fails to move holomorphically.

8. Capture components along Γ

For each $n \ge 0$ there is a unique parameter $b_n = a_n^2 \in \Gamma$ where the *n*-th iterate of one critical point of f_{a_n} hits the other critical point.

8. Capture components along Γ

For each $n \ge 0$ there is a unique parameter $b_n = a_n^2 \in \Gamma$ where the *n*-th iterate of one critical point of f_{a_n} hits the other critical point.

This parameter b_n is the root point of a capture component C_n .

8. Capture components along Γ

For each $n \ge 0$ there is a unique parameter $b_n = a_n^2 \in \Gamma$ where the *n*-th iterate of one critical point of f_{a_n} hits the other critical point.

This parameter b_n is the root point of a capture component C_n .

When $a \in \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate $\varphi_a(z) = z + O(1)$ of f_a defines the *dynamic ray* of f_a at angle *t*:

$$R_a(t) = \{\varphi_a^{-1}(re^{2\pi it}) : r > 1\}.$$

When $a \in \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate $\varphi_a(z) = z + O(1)$ of f_a defines the *dynamic ray* of f_a at angle *t*:

$$R_a(t) = \{\varphi_a^{-1}(re^{2\pi it}) : r > 1\}.$$

When $a \notin \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate φ_a is defined and holomorphic in some neighborhood of the *escaping co-critical point* c'_a .

When $a \in \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate $\varphi_a(z) = z + O(1)$ of f_a defines the *dynamic ray* of f_a at angle *t*:

$$R_a(t) = \{\varphi_a^{-1}(re^{2\pi it}) : r > 1\}.$$

When $a \notin \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate φ_a is defined and holomorphic in some neighborhood of the *escaping co-critical point* c'_a . The map

$$\Phi: \mathbb{C} \smallsetminus \hat{\mathscr{C}}(\lambda) \to \mathbb{C} \smallsetminus \overline{\mathbb{D}} \qquad \Phi(a) = \varphi_a(c'_a)$$

is a conformal isomorphism. Since $\Phi(-a) = -\Phi(a)$, the map

$$\Psi: \mathbb{C} \smallsetminus \mathscr{C}(\lambda) \to \mathbb{C} \smallsetminus \overline{\mathbb{D}} \qquad \quad \Psi(b) = (\Phi(\sqrt{b}))^2$$

is a well-defined conformal isomorphism.

When $a \in \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate $\varphi_a(z) = z + O(1)$ of f_a defines the *dynamic ray* of f_a at angle *t*:

$$R_a(t) = \{\varphi_a^{-1}(re^{2\pi it}) : r > 1\}.$$

When $a \notin \hat{\mathscr{C}}(\lambda)$, the Böttcher coordinate φ_a is defined and holomorphic in some neighborhood of the *escaping co-critical point* c'_a . The map

$$\Phi: \mathbb{C} \smallsetminus \hat{\mathscr{C}}(\lambda) \to \mathbb{C} \smallsetminus \overline{\mathbb{D}} \qquad \Phi(a) = \varphi_a(c'_a)$$

is a conformal isomorphism. Since $\Phi(-a) = -\Phi(a)$, the map

$$\Psi: \mathbb{C} \smallsetminus \mathscr{C}(\lambda) \to \mathbb{C} \smallsetminus \overline{\mathbb{D}} \qquad \Psi(b) = (\Phi(\sqrt{b}))^2$$

is a well-defined conformal isomorphism.

We define the *parameter ray* of $\mathscr{P}(\lambda)$ at angle *t* by

$$\mathcal{R}(t) = \{ \Psi^{-1}(re^{2\pi i t}) : r > 1 \}.$$

There are two parameter rays $\mathcal{R}(t_0^-)$, $\mathcal{R}(t_0^+)$ landing at the root b_0 of C_0 . They define the *limb* L_0 of $\mathscr{C}(\lambda)$ containing C_0 .

There are two parameter rays $\mathcal{R}(t_0^-)$, $\mathcal{R}(t_0^+)$ landing at the root b_0 of C_0 . They define the *limb* L_0 of $\mathscr{C}(\lambda)$ containing C_0 .

For each $n \ge 1$, there are three parameter rays $\mathcal{R}(t_n^-)$, $\mathcal{R}(t_n^+)$, $\mathcal{R}(t_n^*)$ landing at the root b_n of C_n . The pair $\mathcal{R}(t_n^{\pm})$ define the limb L_n of $\mathscr{C}(\lambda)$ containing C_n , while $\mathcal{R}(t_n^*)$ lies on the opposite side of Γ .

For each $n \ge 1$, there are three parameter rays $\mathcal{R}(t_n^-)$, $\mathcal{R}(t_n^+)$, $\mathcal{R}(t_n^*)$ landing at the root b_n of C_n . The pair $\mathcal{R}(t_n^{\pm})$ define the limb L_n of $\mathscr{C}(\lambda)$ containing C_n , while $\mathcal{R}(t_n^*)$ lies on the opposite side of Γ .

For any non-root parameter $b \in \Gamma$, there are two parameter rays $\mathcal{R}(t)$, $\mathcal{R}(t^*)$ landing on b from opposite sides of Γ ($t = t^*$ when b = 0).

For any non-root parameter $b \in \Gamma$, there are two parameter rays $\mathcal{R}(t)$, $\mathcal{R}(t^*)$ landing on b from opposite sides of Γ ($t = t^*$ when b = 0).

Now suppose $a \in \hat{\mathscr{C}}(\lambda)$ so $K(f_a)$ is connected.

Now suppose $a \in \hat{\mathscr{C}}(\lambda)$ so $K(f_a)$ is connected.

Definition

 $X'_a = \{t \in \mathbb{T} : \text{The dynamic ray } R_a(t) \text{ lands on } \partial \Delta_a \}.$

Now suppose $a \in \hat{\mathscr{C}}(\lambda)$ so $K(f_a)$ is connected.

Definition

 $X'_a = \{t \in \mathbb{T} : \text{The dynamic ray } R_a(t) \text{ lands on } \partial \Delta_a\}.$

Theorem

 X'_a contains a unique minimal rotation set X_a under tripling.

Now suppose $a \in \hat{\mathscr{C}}(\lambda)$ so $K(f_a)$ is connected.

Definition

 $X'_a = \{t \in \mathbb{T} : \text{The dynamic ray } R_a(t) \text{ lands on } \partial \Delta_a\}.$

Theorem

 X'_a contains a unique minimal rotation set X_a under tripling.

The difference $X'_a \setminus X_a$ can have at most countably many isolated points, all eventually mapping to X_a under tripling.

Let $(\delta_a, 1 - \delta_a)$ be the deployment vector of X_a .

Let $(\delta_a, 1 - \delta_a)$ be the deployment vector of X_a .

Notice that

$$X_{-a} = X_a + 1/2$$
, so $\delta_{-a} = 1 - \delta_a$.

Let $(\delta_a, 1 - \delta_a)$ be the deployment vector of X_a .

Notice that

$$X_{-a} = X_a + 1/2$$
, so $\delta_{-a} = 1 - \delta_a$.

Thus, to each $b = a^2 \in \mathscr{C}(\lambda)$ we can assign a well-defined *deployment probability* $\delta_b \in [0, 1/2]$.

12. Deployment probability and Γ

Theorem

For every parameter $b = a^2 \in \Gamma$, δ_b is the conformal angle between the two critical points of f_a .

12. Deployment probability and Γ

Theorem

For every parameter $b = a^2 \in \Gamma$, δ_b is the conformal angle between the two critical points of f_a .

12. Deployment probability and Γ

Theorem

- $\delta_b = 0 \pmod{\mathbb{Z}} \iff b \in L_0.$
- $\delta_b = \pm n\theta \pmod{\mathbb{Z}}$ for some $n \ge 1 \iff b \in L_n$.
- δ_b takes other values $\iff b \in \Gamma \setminus \{\text{roots points}\}.$

The relation

$$t_n^+ - t_n^- = \frac{2}{3^{n+1}}$$

always holds.

The relation

$$t_n^+ - t_n^- = \frac{2}{3^{n+1}}$$

always holds.

The angles t_n^{\pm} , t_n^{*} can be expressed in terms of a **base angle** ω which is related to the unique rotation set under *doubling* with rotation number θ .

The relation

$$t_n^+ - t_n^- = \frac{2}{3^{n+1}}$$

always holds.

The angles t_n^{\pm}, t_n^* can be expressed in terms of a **base angle** ω which is related to the unique rotation set under *doubling* with rotation number θ . For the golden mean $\theta = (\sqrt{5} - 1)/2$,

 $\omega = 0.128099593431\cdots$

Theorem

We have

$$t_0^+ = 2\omega + \frac{2}{3},$$

and for $n \ge 1$, $\begin{cases}
t_n^+ = \frac{(3^n + 1)\omega + p_n}{3^n} \\
t_n^* = (3^n + 1)\omega - \frac{1}{3}
\end{cases}$

where $0 \le p_n < 3^n$ is a (computable) integer depending on θ .

For example,

$$t_{1}^{+} = \frac{4 \omega}{3}$$

$$t_{2}^{+} = \frac{10 \omega + 1}{9}$$

$$t_{3}^{+} = \frac{28 \omega + 22}{27}$$

$$t_{4}^{+} = \frac{82 \omega + 4}{81}$$

$$t_{5}^{+} = \frac{244 \omega + 31}{243}$$

Bibliography

L. Goldberg, Fixed points of polynomial maps I: Rotation subsets of the circles, Ann. Sci. École Norm. Sup. 25 (1992) 679–685.

L. Goldberg and J. Milnor, *Fixed points of polynomial maps II: Fixed point portraits*, Ann. Sci. École Norm. Sup. **26** (1993) 51-98.

S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Cambridge Philos. Soc. **115** (1994) 451–481.

L. Goldberg and C. Tresser, *Rotation orbits and the Farey tree*, Ergodic Theory Dynam. Systems **16** (1996) 1011–1029.

A. Blokh, J. Malaugh, J. Mayer, L. Oversteegen, and D. Parris, *Rotational* subsets of the circle under z^d , Topology Appl. **153** (2006) 1540–1570.

A. Bonifant, X. Buff, and J. Milnor, *On antipode preserving cubic maps*, manuscript, 2015.

S. Zakeri, Rotation Sets and Complex Dynamics, to appear.