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1. Recap
� To each minimal rotation set X for md W t 7! d � t .mod Z/ we associate a
rotation number �.X/ 2 R=Z and deployment vector

ı.X/ D .ı1; : : : ; ıd�1/ 2 �
d�2
� Rd�1;

where ıi D �Œzi�1; zi /.
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1. Recap

� Deployment Theorem: For any “admissible” pair .�; ı/ 2 .R=Z/ ��d�2
there exists a unique minimal rotation set X for md such that �.X/ D � and
ı.X/ D ı.

� The key tool is the gap measure

� D

d�1X
iD1

1X
kD0

d�.kC1/1�i�k� ;

which can be used to effectively construct X .
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1. Recap

� Let ! denote the leading angle of X .

Theorem

! D
1
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�.0; ��C
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D
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X
0<�i�k���
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dkC1
C

N0

d � 1

where N0 � 0 is the number of 0’s in �.X/.

This gives an explicit algorithm for computing the base d expansion of the
angle .d � 1/!.
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2. Rotation sets under doubling
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3. Rotation sets under tripling

Theorem
For every irrational number � and every ı 2 Œ0; 1� there is a unique minimal
rotation set X under the tripling map t 7! 3t .mod Z/ with �.X/ D � and
ı.X/ D .ı; 1 � ı/.

major gap

major gap

01/2

Notice that X C 1=2 is also a rotation set under tripling, with the same rotation
number � but deployment vector .1 � ı; ı/.
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3. Rotation sets under tripling

Theorem
There are countably many possibilities for the lengths of major gaps of X :

(i) If ı D 0 .mod Z/, then X has a major gap of length
2

3
.

(ii) If ı D ˙n� .mod Z/ for some n � 1, then X has a pair of major gaps
of lengths

1

3
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3
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(iii) For all other values of ı, X has a pair of major gaps of length
1

3
.

(i) (ii) (iii)
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4. A cubic family

Fix an irrational number � of bounded type and let � D e2�i� .

Definition
P.�/ is the space of conjugacy classes of cubic polynomials C! C with a
fixed point of multiplier � at the origin.

Each element of P.�/ is represented by a monic polynomial of the form

fa W z 7! �z C az2 C z3 a 2 C;

where a is uniquely determined up to the sign. Thus, the parameter

b D a2 2 C

is a complete invariant for the space P.�/.
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5. Cubic Siegel disks
Since � is bounded type, each fa has a Siegel disk �a centered at 0.

Theorem
For every a 2 C, the boundary @�a is a quasicircle containing at least one
critical point of fa.
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6. The connectedness locus

Definition
The connectedness locus is defined as

OC .�/ D fa 2 C W K.fa/ is connectedg:

OC .�/ is compact, connected and full. The quotient OC .�/=˙ defines the
connectedness locus C .�/ �P.�/.
Every interior component of C .�/ is of one of the following types:

� capture, where the orbit of one critical point eventually hits the Siegel
disk; or

� hyperbolic-like, where the orbit of one critical point converges to an
attracting cycle; or

� queer, where the Julia set has positive measure and admits an invariant
line field.
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7. The arc �
Theorem
There is an embedded arc � � C .�/ connecting b D 0 to b D 3� with the
property that b D a2 2 � if and only if @�a contains both critical points of fa.
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� � is parametrized by the conformal angle between the two critical points.

� � is the locus where the Siegel disk boundary fails to move
holomorphically.
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8. Capture components along �
For each n � 0 there is a unique parameter bn D a2n 2 � where the n-th iterate
of one critical point of fan

hits the other critical point.

This parameter bn is the root point of a capture component Cn.
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9. Dynamic and parameter rays
When a 2 OC .�/, the Böttcher coordinate 'a.z/ D z CO.1/ of fa defines the
dynamic ray of fa at angle t :

Ra.t/ D f'
�1
a .re2�it / W r > 1g:

When a … OC .�/, the Böttcher coordinate 'a is defined and holomorphic in
some neighborhood of the escaping co-critical point c0a.
The map

ˆ W Cr OC .�/! Cr D ˆ.a/ D 'a.c
0
a/

is a conformal isomorphism. Since ˆ.�a/ D �ˆ.a/, the map

‰ W Cr C .�/! Cr D ‰.b/ D .ˆ.
p
b//2

is a well-defined conformal isomorphism.
We define the parameter ray of P.�/ at angle t by

R.t/ D f‰�1.re2�it / W r > 1g:
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10. Limbs attached to �
There are two parameter rays R.t�0 /;R.t

C
0 / landing at the root b0 of C0. They

define the limb L0 of C .�/ containing C0.
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10. Limbs attached to �
For each n � 1, there are three parameter rays R.t�n /;R.tCn /;R.t�n / landing at
the root bn of Cn. The pair R.t˙n / define the limb Ln of C .�/ containing Cn,
while R.t�n / lies on the opposite side of � .
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10. Limbs attached to �
For any non-root parameter b 2 � , there are two parameter rays R.t/;R.t�/
landing on b from opposite sides of � (t D t� when b D 0).

t

t *
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11. The Cantor set associated with fa

Now suppose a 2 OC .�/ so K.fa/ is connected.

Definition

X 0a D ft 2 T W The dynamic ray Ra.t/ lands on @�ag:

Theorem
X 0a contains a unique minimal rotation set Xa under tripling.

The difference X 0a rXa can have at most countably many isolated points, all
eventually mapping to Xa under tripling.
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11. The Cantor set associated with fa

Let .ıa; 1 � ıa/ be the deployment vector of Xa.

Notice that
X�a D Xa C 1=2; so ı�a D 1 � ıa:

Thus, to each b D a2 2 C .�/ we can assign a well-defined deployment
probability ıb 2 Œ0; 1=2�.
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12. Deployment probability and �

Theorem
For every parameter b D a2 2 � , ıb is the conformal angle between the two
critical points of fa.
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δ  = 1/2

increasingδ
b
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12. Deployment probability and �

Theorem
� ıb D 0 .mod Z/ ” b 2 L0.

� ıb D ˙n� .mod Z/ for some n � 1 ” b 2 Ln.

� ıb takes other values ” b 2 � r froots pointsg.



13. Computing angles

The relation
tCn � t

�
n D

2

3nC1

always holds.

The angles t˙n ; t
�
n can be expressed in terms of a base angle ! which is related

to the unique rotation set under doubling with rotation number � .
For the golden mean � D .

p
5 � 1/=2,

! D 0:128099593431 � � �
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11. Computing angles

Theorem
We have

tC0 D 2! C
2

3
;

and for n � 1, 8̂<̂
:t
C
n D

.3n C 1/ ! C pn

3n

t�n D .3n C 1/ ! �
1

3

where 0 � pn < 3n is a (computable) integer depending on � .



11. Computing angles

For example,

tC1 D
4 !

3

tC2 D
10 ! C 1

9

tC3 D
28 ! C 22

27

tC4 D
82 ! C 4

81

tC5 D
244 ! C 31

243
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