Rotation Sets and Complex Dynamics Lecture II

November 24, 2015

A hyperbolic shower base

• A *rotation set* X for $m_d : t \mapsto d \cdot t \pmod{\mathbb{Z}}$ is a compact invariant set for which $m_d |_X$ extends to a degree 1 monotone map of the circle.

• A *rotation set* X for $m_d : t \mapsto d \cdot t \pmod{\mathbb{Z}}$ is a compact invariant set for which $m_d |_X$ extends to a degree 1 monotone map of the circle.

• The *rotation number* $\rho(X)$ is defined as the rotation number of any such extension of $m_d|_X$. It is rational iff X has a periodic orbit under m_d .

• A *rotation set* X for $m_d : t \mapsto d \cdot t \pmod{\mathbb{Z}}$ is a compact invariant set for which $m_d |_X$ extends to a degree 1 monotone map of the circle.

• The *rotation number* $\rho(X)$ is defined as the rotation number of any such extension of $m_d|_X$. It is rational iff X has a periodic orbit under m_d .

• X has Lebesgue measure zero (hence is nowhere dense) on the circle.

• A *rotation set* X for $m_d : t \mapsto d \cdot t \pmod{\mathbb{Z}}$ is a compact invariant set for which $m_d |_X$ extends to a degree 1 monotone map of the circle.

• The *rotation number* $\rho(X)$ is defined as the rotation number of any such extension of $m_d|_X$. It is rational iff X has a periodic orbit under m_d .

• X has Lebesgue measure zero (hence is nowhere dense) on the circle.

• Each component of $\mathbb{T} \setminus X$ is called a *gap*. A gap of length ℓ is *minor* if $\ell < 1/d$ and *major* if $\ell \ge 1/d$. The multiplicity of a major gap is the integer part of $d \cdot \ell$. Counting multiplicities, X has precisely d - 1 major gaps.

• A minimal rotation set *X* is a *q*-cycle if $\rho(X) = p/q$ in lowest terms, and a Cantor set if $\rho(X)$ is irrational.

• A minimal rotation set X is a q-cycle if $\rho(X) = p/q$ in lowest terms, and a Cantor set if $\rho(X)$ is irrational.

• There is a degree 1 monotone map $\varphi : \mathbb{T} \to \mathbb{T}$, normalized by $\varphi(0) = 0$, which satisfies

$$\varphi \circ m_d = r_\theta \circ \varphi \qquad \text{on } X$$

and is constant on every gap of X. We simply refer to φ as the *semiconjugacy associated with* X.

• A minimal rotation set X is a q-cycle if $\rho(X) = p/q$ in lowest terms, and a Cantor set if $\rho(X)$ is irrational.

• There is a degree 1 monotone map $\varphi : \mathbb{T} \to \mathbb{T}$, normalized by $\varphi(0) = 0$, which satisfies

$$\varphi \circ m_d = r_\theta \circ \varphi \qquad \text{on } X$$

and is constant on every gap of X. We simply refer to φ as the *semiconjugacy* associated with X.

• X carries a unique invariant probability measure μ which is related to φ by

$$\varphi(t) = \int_0^t d\mu = \mu[0, t].$$

 μ is the uniform Dirac mass on X if $\rho(X)$ is rational, and the pull-back of Lebesgue measure under φ if $\rho(X)$ is irrational.

Consider the d - 1 fixed points of m_d :

$$z_i = \frac{i}{d-1}, \qquad 1 \le i \le d-1.$$

Consider the d-1 fixed points of m_d :

$$z_i = \frac{i}{d-1}, \qquad 1 \le i \le d-1.$$

Theorem

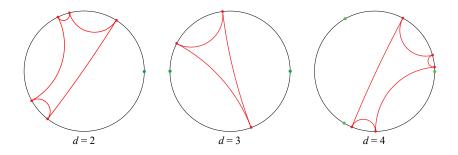
If X is a rotation set for m_d with $\rho(X) \neq 0$, each major gap of multiplicity n contains exactly n fixed points of m_d .

Consider the d-1 fixed points of m_d :

$$z_i = \frac{i}{d-1}, \qquad 1 \le i \le d-1.$$

Theorem

If X is a rotation set for m_d with $\rho(X) \neq 0$, each major gap of multiplicity n contains exactly n fixed points of m_d .



Now let X be minimal with $\rho(X) \neq 0$.

Now let *X* be minimal with $\rho(X) \neq 0$.

Definition

The *deployment vector* of X is the probability vector

$$\delta(X) = (\delta_1, \dots, \delta_{d-1})$$

where

$$\delta_i = \mu[z_{i-1}, z_i) \qquad 1 \le i \le d-1.$$

The components of $\delta(X)$ can be interpreted as follows:

• If $\rho(X)$ is rational of the form p/q in lowest terms, then

$$\delta_i = \frac{1}{q} \# \big(X \cap [z_{i-1}, z_i) \big).$$

The components of $\delta(X)$ can be interpreted as follows:

• If $\rho(X)$ is rational of the form p/q in lowest terms, then

$$\delta_i = \frac{1}{q} \# \big(X \cap [z_{i-1}, z_i) \big).$$

• If $\rho(X)$ is irrational, then

$$\delta_i = \lim_{n \to \infty} \frac{1}{n} \# \{ 0 \le k \le n - 1 : m_d^{\circ k}(t) \in [z_{i-1}, z_i) \}$$

for every $t \in X$.

We can also describe the deployment data by the *cumulative deployment vector*

$$\sigma(X) = (\sigma_1, \ldots, \sigma_{d-1})$$

where

$$\sigma_i = \delta_1 + \dots + \delta_i = \mu[z_0, z_i).$$

Thus, $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_{d-1} = 1$.

We can also describe the deployment data by the *cumulative deployment vector*

$$\sigma(X) = (\sigma_1, \ldots, \sigma_{d-1})$$

where

$$\sigma_i = \delta_1 + \dots + \delta_i = \mu[z_0, z_i).$$

Thus, $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_{d-1} = 1$.

Lemma

Suppose X is a minimal rotation set for m_d with $\sigma(X) = (\sigma_1, \ldots, \sigma_{d-1})$. Then

$$\sigma_i = \varphi(z_i) \pmod{\mathbb{Z}}$$
 $1 \le i \le d-1$,

where φ is the semiconjugacy associated with X.

Theorem (Goldberg)

For every rational number p/q and every probability vector $(\delta_1, \ldots, \delta_{d-1})$ with $q\delta_i \in \mathbb{Z}$, there is a unique minimal rotation set X for m_d such that $\rho(X) = p/q$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

Theorem (Goldberg)

For every rational number p/q and every probability vector $(\delta_1, \ldots, \delta_{d-1})$ with $q\delta_i \in \mathbb{Z}$, there is a unique minimal rotation set X for m_d such that $\rho(X) = p/q$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

In particular, there is only one minimal rotation set under doubling of a given rational rotation number.

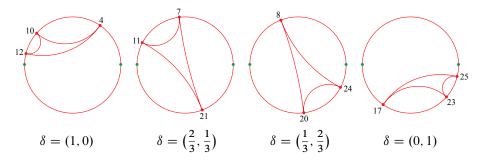
Theorem (Goldberg)

For every rational number p/q and every probability vector $(\delta_1, \ldots, \delta_{d-1})$ with $q\delta_i \in \mathbb{Z}$, there is a unique minimal rotation set X for m_d such that $\rho(X) = p/q$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

In particular, there is only one minimal rotation set under doubling of a given rational rotation number.

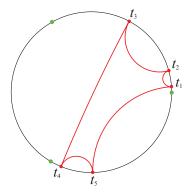
More generally, there are $\binom{q+d-2}{q}$ minimal rotation sets for m_d of a given rotation number p/q.

• Example: $d = 3, \rho = 2/3$:

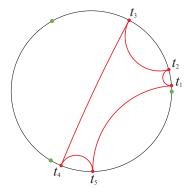


• Example: Let us find the 5-cycle $X = \{t_1, \dots, t_5\}$ under m_4 with $\rho(X) = \frac{1}{5}$ and $\delta(X) = (\frac{3}{5}, \frac{0}{5}, \frac{2}{5})$ or equivalently $\sigma(X) = (\frac{3}{5}, \frac{3}{5}, \frac{5}{5})$.

• Example: Let us find the 5-cycle $X = \{t_1, \dots, t_5\}$ under m_4 with $\rho(X) = \frac{1}{5}$ and $\delta(X) = (\frac{3}{5}, \frac{0}{5}, \frac{2}{5})$ or equivalently $\sigma(X) = (\frac{3}{5}, \frac{3}{5}, \frac{5}{5})$.



• Example: Let us find the 5-cycle $X = \{t_1, \dots, t_5\}$ under m_4 with $\rho(X) = \frac{1}{5}$ and $\delta(X) = (\frac{3}{5}, \frac{0}{5}, \frac{2}{5})$ or equivalently $\sigma(X) = (\frac{3}{5}, \frac{3}{5}, \frac{5}{5})$.



Let I_j be the gap (t_j, t_{j+1}) . I_3 is a major gap of multiplicity 2, I_5 is a major gap of multiplicity 1, and the remaining I_j 's are minor. Since $\rho(X) = \frac{1}{5}$, each I_j maps to I_{j+1} .

If $\ell_j = |I_j|$, it follows that

$$\ell_{2} = 4\ell_{1}$$

$$\ell_{3} = 4\ell_{2} = 4^{2}\ell_{1}$$

$$\ell_{4} = 4\ell_{3} - 2 = 4^{3}\ell_{1} - 2$$

$$\ell_{5} = 4\ell_{4} = 4^{4}\ell_{1} - 4 \cdot 2$$

$$\ell_{1} = 4\ell_{5} - 1 = 4^{5}\ell_{1} - 4^{2} \cdot 2 - 1.$$

If $\ell_j = |I_j|$, it follows that

$$\ell_{2} = 4\ell_{1}$$

$$\ell_{3} = 4\ell_{2} = 4^{2}\ell_{1}$$

$$\ell_{4} = 4\ell_{3} - 2 = 4^{3}\ell_{1} - 2$$

$$\ell_{5} = 4\ell_{4} = 4^{4}\ell_{1} - 4 \cdot 2$$

$$\ell_{1} = 4\ell_{5} - 1 = 4^{5}\ell_{1} - 4^{2} \cdot 2 - 1.$$

Hence,

$$\ell_1 = \frac{33}{1023}, \quad \ell_2 = \frac{132}{1023}, \quad \ell_3 = \frac{528}{1023}, \quad \ell_4 = \frac{66}{1023}, \quad \ell_5 = \frac{264}{1023}.$$

Since $\ell_1 = t_2 - t_1 = 4t_1 - t_1 = 3t_1$, we find t_1 and therefore every t_j :

$$t_1 = \frac{11}{1023}, \quad t_2 = \frac{44}{1023}, \quad t_3 = \frac{176}{1023}, \quad t_4 = \frac{704}{1023}, \quad t_5 = \frac{770}{1023}.$$

More generally, suppose we want to find a minimal rotation set $X = \{t_1, \ldots, t_q\}$ under m_d with $\rho(X) = p/q \neq 0$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

Let ℓ_j denote the length of the gap $I_j = (t_j, t_{j+1})$ and $n_j \ge 0$ be the multiplicity of I_j . Then

$$\ell_{j+p} = d \cdot \ell_j - n_j$$
 for all j .

More generally, suppose we want to find a minimal rotation set $X = \{t_1, \ldots, t_q\}$ under m_d with $\rho(X) = p/q \neq 0$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

Let ℓ_j denote the length of the gap $I_j = (t_j, t_{j+1})$ and $n_j \ge 0$ be the multiplicity of I_j . Then

$$\ell_{j+p} = d \cdot \ell_j - n_j$$
 for all j .

Set

$$\ell = (\ell_1, \dots, \ell_q)$$

$$n = (n_1, \dots, n_q)$$

$$T(x_1, x_2, \dots, x_q) = (x_{1+p}, x_{2+p}, \dots, x_{q+p}).$$

More generally, suppose we want to find a minimal rotation set $X = \{t_1, \ldots, t_q\}$ under m_d with $\rho(X) = p/q \neq 0$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

Let ℓ_j denote the length of the gap $I_j = (t_j, t_{j+1})$ and $n_j \ge 0$ be the multiplicity of I_j . Then

$$\ell_{j+p} = d \cdot \ell_j - n_j$$
 for all j .

Set

$$\ell = (\ell_1, \dots, \ell_q)$$

$$n = (n_1, \dots, n_q)$$

$$T(x_1, x_2, \dots, x_q) = (x_{1+p}, x_{2+p}, \dots, x_{q+p}).$$

Notice that T is determined by $\rho(X)$ while n is determined by $\delta(X)$.

The q relations

$$\ell_{j+p} = d \cdot \ell_j - n_j \qquad 1 \le j \le q$$

can now be written as

$$T(\ell) = d \ \ell - n.$$

The q relations

$$\ell_{j+p} = d \cdot \ell_j - n_j \qquad 1 \le j \le q$$

can now be written as

$$T(\ell) = d\,\ell - n.$$

Using $T^{\circ q} = id$, this can be easily solved for ℓ :

$$\ell = \frac{1}{d^q - 1} \sum_{i=0}^{q-1} d^{q-i-1} T^{\circ i}(n).$$

Since $n \neq 0$, the solution ℓ has positive components ℓ_j for all j.

The q relations

$$\ell_{j+p} = d \cdot \ell_j - n_j \qquad 1 \le j \le q$$

can now be written as

$$T(\ell) = d\,\ell - n.$$

Using $T^{\circ q} = id$, this can be easily solved for ℓ :

$$\ell = \frac{1}{d^q - 1} \sum_{i=0}^{q-1} d^{q-i-1} T^{\circ i}(n).$$

Since $n \neq 0$, the solution ℓ has positive components ℓ_j for all j. Once the gap lengths ℓ_j are known, we can find the t_j by noting that the counterclockwise distance from t_j to $t_{j+p} = d \cdot t_j \pmod{\mathbb{Z}}$ is the sum $\ell_j + \cdots + \ell_{j+p-1}$.

3. Deployment theorem: the rational case Alternatively,

$$\ell = \sum_{k=0}^{\infty} d^{-(k+1)} T^{\circ k}(n).$$

3. Deployment theorem: the rational case Alternatively,

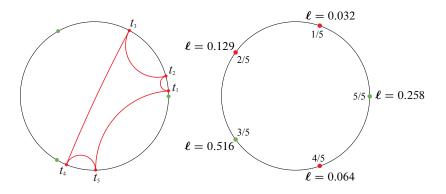
$$\ell = \sum_{k=0}^{\infty} d^{-(k+1)} T^{\circ k}(n).$$

The vectors ℓ and n can be thought of as atomic measures supported on $\{1/q, \ldots, q/q\} \subset \mathbb{T}$ by identifying ℓ_j with $\ell\{j/q\}$ and n_j with $n\{j/q\}$.

3. Deployment theorem: the rational case Alternatively,

$$\ell = \sum_{k=0}^{\infty} d^{-(k+1)} T^{\circ k}(n).$$

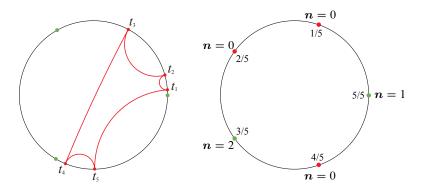
The vectors ℓ and n can be thought of as atomic measures supported on $\{1/q, \ldots, q/q\} \subset \mathbb{T}$ by identifying ℓ_j with $\ell\{j/q\}$ and n_j with $n\{j/q\}$.



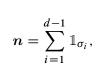
3. Deployment theorem: the rational case Alternatively,

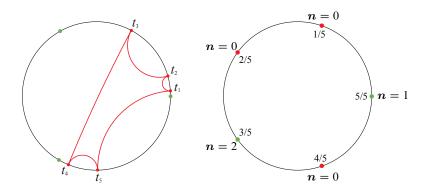
$$\ell = \sum_{k=0}^{\infty} d^{-(k+1)} T^{\circ k}(n).$$

The vectors ℓ and n can be thought of as atomic measures supported on $\{1/q, \ldots, q/q\} \subset \mathbb{T}$ by identifying ℓ_j with $\ell\{j/q\}$ and n_j with $n\{j/q\}$.



Under this identification, ℓ is just the push-forward of Lebesgue measure under the semiconjugacy associated with *X*, and





Thus, for each $k \ge 0$,

$$T^{\circ k}(n) = \sum_{i=1}^{d-1} \mathbb{1}_{\sigma_i - kp/q}$$

and the alternative formula

$$\ell = \sum_{k=0}^{\infty} d^{-(k+1)} T^{\circ k}(n).$$

can be written as

$$\ell = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - kp/q}.$$

Theorem (Goldberg-Tresser)

For every irrational number θ and every probability vector $(\delta_1, \ldots, \delta_{d-1})$, there is a unique minimal rotation set X for m_d such that $\rho(X) = \theta$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

Theorem (Goldberg-Tresser)

For every irrational number θ and every probability vector $(\delta_1, \ldots, \delta_{d-1})$, there is a unique minimal rotation set X for m_d such that $\rho(X) = \theta$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

In particular, there is only one minimal rotation set under doubling of a given irrational rotation number.

Theorem (Goldberg-Tresser)

For every irrational number θ and every probability vector $(\delta_1, \ldots, \delta_{d-1})$, there is a unique minimal rotation set X for m_d such that $\rho(X) = \theta$ and $\delta(X) = (\delta_1, \ldots, \delta_{d-1})$.

In particular, there is only one minimal rotation set under doubling of a given irrational rotation number.

More generally, the space of all rotation sets for m_d of a given irrational rotation number is isomorphic to the (d-2)-dimensional simplex $\Delta^{d-2} \subset \mathbb{R}^{d-1}$.

Idea of the proof:

• Consider the *gap measure*

$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta},$$

Idea of the proof:

• Consider the *gap measure*

$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta},$$

• Integrate:
$$\psi(t) = \int_0^t dv$$

Idea of the proof:

• Consider the *gap measure*

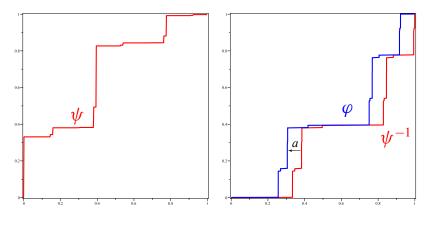
$$\nu = \sum_{i=1}^{d-1} \sum_{k=0}^{\infty} d^{-(k+1)} \mathbb{1}_{\sigma_i - k\theta},$$

• Integrate:
$$\psi(t) = \int_0^t dv$$

• The semiconjugacy associated with X will be

$$\varphi(t) = \psi^{-1}(t+a)$$

for suitable a.



Here
$$d = 3$$
 and
$$\begin{cases} \rho(X) = (\sqrt{5} - 1)/2\\ \delta(X) = (0.39475, 0.60525)\\ a = 0.07713 \end{cases}$$

5. Some corollaries

Let us call a rotation set *rigid* if it is both minimal and maximal.

5. Some corollaries

Let us call a rotation set *rigid* if it is both minimal and maximal.

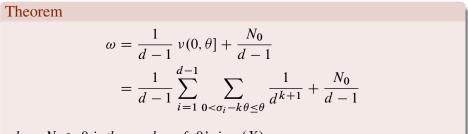
Let $A \subset \mathbb{T} \times \Delta^{d-2}$ be the set of all pairs (θ, δ) subject to the restriction that if $\theta = p/q$ in lowest terms, then $q\delta \in \mathbb{Z}^{d-1}$. For each $(\theta, \delta) \in A$, let $X_{\theta,\delta}$ be the unique minimal rotation set for m_d with $\rho(X_{\theta,\delta}) = \theta$ and $\delta(X_{\theta,\delta}) = \delta$.

Theorem

The assignment $(\theta, \delta) \mapsto X_{\theta,\delta}$ from A to the space of compact subsets of the circle is continuous at (θ, δ) if and only if $X_{\theta,\delta}$ is rigid.

5. Some corollaries

Let ω denote the *leading angle* of $X_{\theta,\delta}$.



where $N_0 \ge 0$ is the number of 0's in $\sigma(X)$.