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1. Recap

� A rotation set X for md W t 7! d � t .mod Z/ is a compact invariant set for
which md jX extends to a degree 1 monotone map of the circle.

� The rotation number �.X/ is defined as the rotation number of any such
extension of md jX . It is rational iff X has a periodic orbit under md .

� X has Lebesgue measure zero (hence is nowhere dense) on the circle.

� Each component of T rX is called a gap. A gap of length ` is minor if
` < 1=d and major if ` � 1=d . The multiplicity of a major gap is the integer
part of d � `. Counting multiplicities, X has precisely d � 1 major gaps.
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1. Recap

� A minimal rotation set X is a q-cycle if �.X/ D p=q in lowest terms, and a
Cantor set if �.X/ is irrational.

� There is a degree 1 monotone map ' W T! T, normalized by '.0/ D 0,
which satisfies

' ımd D r� ı ' on X

and is constant on every gap of X . We simply refer to ' as the semiconjugacy
associated with X .

� X carries a unique invariant probability measure � which is related to ' by

'.t/ D

Z t

0

d� D �Œ0; t �:

� is the uniform Dirac mass on X if �.X/ is rational, and the pull-back of
Lebesgue measure under ' if �.X/ is irrational.
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2. Deployment vector
Consider the d � 1 fixed points of md :

zi D
i

d � 1
; 1 � i � d � 1:

Theorem
If X is a rotation set for md with �.X/ ¤ 0, each major gap of multiplicity n
contains exactly n fixed points of md .

d = 2 d = 3 d = 4
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2. Deployment vector

Now let X be minimal with �.X/ ¤ 0.

Definition
The deployment vector of X is the probability vector

ı.X/ D .ı1; : : : ; ıd�1/

where
ıi D �Œzi�1; zi / 1 � i � d � 1:
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2. Deployment vector

The components of ı.X/ can be interpreted as follows:

� If �.X/ is rational of the form p=q in lowest terms, then

ıi D
1

q
#
�
X \ Œzi�1; zi /

�
:

� If �.X/ is irrational, then

ıi D lim
n!1

1

n
#
˚
0 � k � n � 1 W mıkd .t/ 2 Œzi�1; zi /

	
for every t 2 X .
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2. Deployment vector

We can also describe the deployment data by the cumulative deployment
vector

�.X/ D .�1; : : : ; �d�1/

where
�i D ı1 C � � � C ıi D �Œz0; zi /:

Thus, �1 � �2 � � � � � �d�1 D 1.

Lemma
Suppose X is a minimal rotation set for md with �.X/ D .�1; : : : ; �d�1/.
Then

�i D '.zi / .mod Z/ 1 � i � d � 1;

where ' is the semiconjugacy associated with X .
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3. Deployment theorem: the rational case

Theorem (Goldberg)
For every rational number p=q and every probability vector .ı1; : : : ; ıd�1/
with qıi 2 Z, there is a unique minimal rotation set X for md such that
�.X/ D p=q and ı.X/ D .ı1; : : : ; ıd�1/.

In particular, there is only one minimal rotation set under doubling of a given
rational rotation number.

More generally, there are
�
qCd�2
q

�
minimal rotation sets for md of a given

rotation number p=q.
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3. Deployment theorem: the rational case

� Example: d D 3; � D 2=3:

4
10

12

7

11

21

24

20

8

23

25

17

ı D .1; 0/ ı D
�2
3
;
1

3

�
ı D

�1
3
;
2

3

�
ı D .0; 1/



3. Deployment theorem: the rational case

� Example: Let us find the 5-cycle X D ft1; � � � ; t5g under m4 with �.X/ D 1
5

and ı.X/ D .3
5
; 0
5
; 2
5
/ or equivalently �.X/ D .3

5
; 3
5
; 5
5
/.

t1

t5
t4

t3

t2

Let Ij be the gap .tj ; tjC1/.
I3 is a major gap of multiplicity 2,
I5 is a major gap of multiplicity 1,
and the remaining Ij ’s are minor.
Since �.X/ D 1

5
, each Ij maps to

IjC1.
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3. Deployment theorem: the rational case
If `j D jIj j, it follows that

`2 D 4`1

`3 D 4`2 D 4
2`1

`4 D 4`3 � 2 D 4
3`1 � 2

`5 D 4`4 D 4
4`1 � 4 � 2

`1 D 4`5 � 1 D 4
5`1 � 4

2
� 2 � 1:

Hence,

`1 D
33

1023
; `2 D

132

1023
; `3 D

528

1023
; `4 D

66

1023
; `5 D

264

1023
:

Since `1 D t2 � t1 D 4t1 � t1 D 3t1, we find t1 and therefore every tj :

t1 D
11

1023
; t2 D

44

1023
; t3 D

176

1023
; t4 D

704

1023
; t5 D

770

1023
:
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3. Deployment theorem: the rational case

More generally, suppose we want to find a minimal rotation set
X D ft1; : : : ; tqg under md with �.X/ D p=q ¤ 0 and
ı.X/ D .ı1; : : : ; ıd�1/.
Let `j denote the length of the gap Ij D .tj ; tjC1/ and nj � 0 be the
multiplicity of Ij . Then

`jCp D d � `j � nj for all j:

Set

` D .`1; : : : ; `q/

n D .n1; : : : ; nq/

T .x1; x2; : : : ; xq/ D .x1Cp; x2Cp; : : : ; xqCp/:

Notice that T is determined by �.X/ while n is determined by ı.X/.
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3. Deployment theorem: the rational case

The q relations
`jCp D d � `j � nj 1 � j � q

can now be written as
T .`/ D d ` � n:

Using T ıq D id, this can be easily solved for `:

` D
1

dq � 1

q�1X
iD0

dq�i�1 T ıi .n/:

Since n ¤ 0, the solution ` has positive components `j for all j .
Once the gap lengths `j are known, we can find the tj by noting that the
counterclockwise distance from tj to tjCp D d � tj .mod Z/ is the sum
`j C � � � C `jCp�1.
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3. Deployment theorem: the rational case
Alternatively,

` D

1X
kD0

d�.kC1/ T ık.n/:

The vectors ` and n can be thought of as atomic measures supported on
f1=q; : : : ; q=qg � T by identifying `j with `fj=qg and nj with nfj=qg.

t1

t5
t4

t3

t2

5/5

4/5

3/5

2/5

1/5
` D 0:129

` D 0:516

` D 0:032

` D 0:258

` D 0:064
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3. Deployment theorem: the rational case
Under this identification, ` is just the push-forward of Lebesgue measure under
the semiconjugacy associated with X , and

n D

d�1X
iD1

1�i
;

t1

t5
t4

t3

t2

5/5

4/5

3/5

2/5

1/5
n D 0

n D 2

n D 0

n D 1

n D 0



3. Deployment theorem: the rational case

Thus, for each k � 0,

T ık.n/ D

d�1X
iD1

1�i�kp=q

and the alternative formula

` D

1X
kD0

d�.kC1/ T ık.n/:

can be written as

` D

d�1X
iD1

1X
kD0

d�.kC1/1�i�kp=q:



4. Deployment theorem: the irrational case

Theorem (Goldberg-Tresser)
For every irrational number � and every probability vector .ı1; : : : ; ıd�1/,
there is a unique minimal rotation set X for md such that �.X/ D � and
ı.X/ D .ı1; : : : ; ıd�1/.

In particular, there is only one minimal rotation set under doubling of a given
irrational rotation number.

More generally, the space of all rotation sets for md of a given irrational
rotation number is isomorphic to the .d � 2/-dimensional simplex
�d�2 � Rd�1.
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4. Deployment theorem: the irrational case

Idea of the proof:

� Consider the gap measure

� D

d�1X
iD1

1X
kD0

d�.kC1/1�i�k� ;

� Integrate:  .t/ D
Z t

0

d�

� The semiconjugacy associated with X will be

'.t/ D  �1.t C a/

for suitable a.
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4. Deployment theorem: the irrational case

a

 

 �1

'

Here d D 3 and

8̂<̂
:
�.X/ D .

p
5 � 1/=2

ı.X/ D .0:39475; 0:60525/

a D 0:07713



5. Some corollaries

Let us call a rotation set rigid if it is both minimal and maximal.

Let A � T ��d�2 be the set of all pairs .�; ı/ subject to the restriction that if
� D p=q in lowest terms, then qı 2 Zd�1. For each .�; ı/ 2 A, let X�;ı be the
unique minimal rotation set for md with �.X�;ı/ D � and ı.X�;ı/ D ı.

Theorem
The assignment .�; ı/ 7! X�;ı from A to the space of compact subsets of the
circle is continuous at .�; ı/ if and only if X�;ı is rigid.
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5. Some corollaries

Let ! denote the leading angle of X�;ı .

Theorem

! D
1

d � 1
�.0; ��C

N0

d � 1

D
1

d � 1

d�1X
iD1

X
0<�i�k���

1

dkC1
C

N0

d � 1

where N0 � 0 is the number of 0’s in �.X/.


