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1. Recap

o A rotation set X formg :t +— d -t (mod Z) is a compact invariant set for
which m 4|y extends to a degree 1 monotone map of the circle.

e The rotation number p(X) is defined as the rotation number of any such
extension of mg|x. It is rational iff X has a periodic orbit under m .

e X has Lebesgue measure zero (hence is nowhere dense) on the circle.
e Each component of T ~. X is called a gap. A gap of length £ is minor if

{ < 1/d and major if £ > 1/d. The multiplicity of a major gap is the integer
part of d - £. Counting multiplicities, X has precisely d — 1 major gaps.
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1. Recap
e A minimal rotation set X is a g-cycle if p(X) = p/q in lowest terms, and a
Cantor set if p(X) is irrational.

e There is a degree 1 monotone map ¢ : T — T, normalized by ¢(0) = 0,
which satisfies
pomg =rgoq on X

and is constant on every gap of X. We simply refer to ¢ as the semiconjugacy
associated with X .

e X carries a unique invariant probability measure y which is related to ¢ by

t
o(t) = /0 du = ul0.1].

W is the uniform Dirac mass on X if p(X) is rational, and the pull-back of
Lebesgue measure under ¢ if p(X) is irrational.
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2. Deployment vector

Now let X be minimal with p(X) # 0.

Definition
The deployment vector of X is the probability vector
8(X) = (61,...,04-1)

where

8 = pulzi-1.2i) 1<i<d-1l.
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2. Deployment vector

The components of §(X) can be interpreted as follows:

o If p(X) is rational of the form p/q in lowest terms, then

1
8 = 5 #(X N [Zi—l,Zi))-

o If p(X) is irrational, then

1
§i= lim —#{0<k<n-1 :mflk(t) € [zi—1.zi)}

n—oon

forevery t € X.
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2. Deployment vector

We can also describe the deployment data by the cumulative deployment
vector

o(X) = (01,....,04_1)
where
o; = 81 + .- +51 = I’L[ZO’Zi)'

Thus,01 <0y <---<o04_1 = 1.

Lemma

Suppose X is a minimal rotation set for mg with 0 (X) = (01,...,04_1).
Then
o; = ¢(z;) (mod 7Z) 1<i<d-1,

where @ is the semiconjugacy associated with X .
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3. Deployment theorem: the rational case

Theorem (Goldberg)

For every rational number p/q and every probability vector (1, ...,84_1)
with qb; € Z, there is a unique minimal rotation set X for mg such that

p(X) = p/q and §(X) = (81, ....84—1).

In particular, there is only one minimal rotation set under doubling of a given
rational rotation number.

More generally, there are (7 +Z ~?) minimal rotation sets for m4 of a given
rotation number p/q.



3. Deployment theorem: the rational case

e Example: d = 3,p =2/3:

7 8
4

12

§=(1,0) 5=(2.3) 5= (5.

§=(0,1)
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3. Deployment theorem: the rational case

e Example: Let us find the 5-cycle X = {t1,--- , 5} under m4 with p(X) = %
and §(X) = (%, %, %) or equivalently o (X) = (%, % g )

fs
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1 ts



3. Deployment theorem: the rational case

e Example: Let us find the 5-cycle X = {t1,--- .5} under m4 with p(X) = %

5
and §(X) = (%, %, %) or equivalently o (X) = (%, %g )

£

Let I be the gap (¢;,¢;+1).
L I3 is a major gap of multiplicity 2,
b I5 is a major gap of multiplicity 1,
and the remaining /;’s are minor.
Since p(X) = % each I; maps to
1 Jj41-

1 "



3. Deployment theorem: the rational case
If £; = |I}], it follows that

0y = 44,

03 = 40, = 424,

Uy =403 —2=4% -2

U5 =404 =40, —4-2

0 =40s—1 =40, —4%.2—1.



3. Deployment theorem: the rational case
If £; = |I}], it follows that

0y = 44,

03 = 40, = 424,

Uy =403 —2=4% -2

Us =40y = 4% —4.2

0 =40s—1 =40, —4%.2—1.

Hence,

PR K 8 66 264
L= 9023 *2 7 70230 37 10230 YT 10230 0T 1023

Since £1 = t, — 11 = 411 — t1 = 311, we find 71 and therefore every ¢;:

11 44 176 704 770

1= T3 2T 7m0 BT 1m0 4T3 BT 10
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3. Deployment theorem: the rational case

More generally, suppose we want to find a minimal rotation set
X ={t1,...,ty} under my with p(X) = p/q # 0 and
3(X)=(1,...,8q-1)-

Let £ denote the length of the gap I; = (¢;,¢;+1) andn; > 0 be the
multiplicity of /;. Then

bivp=d-Lj—n;j for all j.

Set
L= (ly,....0y)
n=ny,....,ng)
T(xl,xz,...,xq) = (x1+p,x2+p,...,xq+p).

Notice that T is determined by p(X) while 7 is determined by §(X).
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3. Deployment theorem: the rational case

The g relations
bivp=d-Lj—nj 1=j=¢q

can now be written as
T =dt—n.

Using T°? = id, this can be easily solved for £:

L=

qg—i—1 oi
dq — Z d T° (n).
Since n # 0, the solution £ has positive components £ ; for all j.
Once the gap lengths £ ; are known, we can find the ¢; by noting that the
counterclockwise distance from 7 to 74, = d - t; (mod Z) is the sum
Ci4++ljypt.
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3. Deployment theorem: the rational case
Alternatively,

o0

0 = Z d—(k-‘rl) T°k(n).
k=0

The vectors £ and n can be thought of as atomic measures supported on

{1/q....,q/q} C T by identifying £ ; with £{j/q} and n; with n{j/q}.
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£ =0.129

£ =0.258

£ =0.516

£ = 0.064



3. Deployment theorem: the rational case
Alternatively,

o0

0 = Z d—(k-‘rl) T°k(n).
k=0

The vectors £ and n can be thought of as atomic measures supported on
{1/q....,q/q} C T by identifying £ ; with £{j/q} and n; with n{j/q}.




3. Deployment theorem: the rational case
Under this identification, £ is just the push-forward of Lebesgue measure under
the semiconjugacy associated with X, and

d-1
n = Z 1o,

i=1

12
Z




3. Deployment theorem: the rational case

Thus, for each k > 0,

d—1
T°(n) = Z Loi—kp/q
i=1

and the alternative formula

o0

0 = Z d—(k-‘rl) T°k(n).
k=0

can be written as
d—1 oo

L= Z Z d_(k+l)]lai—kp/q-

i=1k=0
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4. Deployment theorem: the irrational case

Theorem (Goldberg-Tresser)

For every irrational number 0 and every probability vector (81, ...,845_1),
there is a unique minimal rotation set X for my such that p(X) = 0 and

§(X) = (81,....84-1).

In particular, there is only one minimal rotation set under doubling of a given
irrational rotation number.

More generally, the space of all rotation sets for m 4 of a given irrational

rotation number is isomorphic to the (d — 2)-dimensional simplex
Ad -2 - ]Rd -1
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4. Deployment theorem: the irrational case

Idea of the proof:
o Consider the gap measure

d—1 oo

= 3 S a L,

i=1k=0
t
o Integrate: ¥ (t) = / dv
0
e The semiconjugacy associated with X will be

p(1) =y (1 +a)

for suitable a.



4. Deployment theorem: the irrational case

p(X) =(/5-1)/2
Here d = 3and { §(X) = (0.39475,0.60525)
a =0.07713
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5. Some corollaries

Let us call a rotation set rigid if it is both minimal and maximal.

Let A C T x A9=2 be the set of all pairs (6, §) subject to the restriction that if
6 = p/q in lowest terms, then ¢§ € Z%~!. For each (6, §) € A, let Xp 5 be the
unique minimal rotation set for m; with p(Xg s) = 6 and 6(Xg 5) = 6.

Theorem

The assignment (6, 68) — Xg 5 from A to the space of compact subsets of the
circle is continuous at (0, 8) if and only if Xg 5 is rigid.




5. Some corollaries

Let w denote the leading angle of Xy 5.

Theorem

No
d—1

w =

i v(0, 0] +

1 ! 1
=712 2 gt

i=10<0;—k0<6

where No > 0 is the number of 0’s in o(X).

No

d —

1




