Rotation Sets and Complex Dynamics Lecture I

November 23, 2015

For every rational number p/q there is a unique periodic orbit in \mathbb{R}/\mathbb{Z} under the doubling map $t \mapsto 2t \pmod{\mathbb{Z}}$ whose rotation number is p/q:

For every rational number p/q there is a unique periodic orbit in \mathbb{R}/\mathbb{Z} under the doubling map $t \mapsto 2t \pmod{\mathbb{Z}}$ whose rotation number is p/q:

Similarly, for every irrational number θ , there is a unique compact invariant (Cantor) set in \mathbb{R}/\mathbb{Z} whose rotation number under doubling is θ :

Similarly, for every irrational number θ , there is a unique compact invariant (Cantor) set in \mathbb{R}/\mathbb{Z} whose rotation number under doubling is θ :

 $\theta = (\sqrt{5} - 1)/2$ $\omega = 0.7098034428\cdots$

These "rotation sets" under doubling describe angles of the external rays that land on the boundary of the main cardioid of the Mandelbrot set:

Problem: Extend this theory to higher degrees.

Problem: Extend this theory to higher degrees.

• Abstract part: Classification of rotation sets under multiplication by $d \ge 2$.

Problem: Extend this theory to higher degrees.

• Abstract part: Classification of rotation sets under multiplication by $d \ge 2$.

• Concrete part: Realizing rotation sets in suitable spaces of degree *d* polynomials.

 $\bullet \ \mathbb{T} = \mathbb{R} / \mathbb{Z}$ is the unit circle

• A map $g : \mathbb{T} \to \mathbb{T}$ is *degree* 1 *monotone* if it lifts to $G : \mathbb{R} \to \mathbb{R}$ which is non-decreasing and satisfies G(x + 1) = G(x) + 1 for all x.

 $\bullet \ \mathbb{T} = \mathbb{R}/\mathbb{Z}$ is the unit circle

• A map $g : \mathbb{T} \to \mathbb{T}$ is *degree* 1 *monotone* if it lifts to $G : \mathbb{R} \to \mathbb{R}$ which is non-decreasing and satisfies G(x + 1) = G(x) + 1 for all x.

• Consider the sets

$$A^{-} = \left\{ \frac{p}{q} : G^{\circ q}(x) > x + p \text{ for all } x \right\}$$
$$A^{+} = \left\{ \frac{p}{q} : G^{\circ q}(x) < x + p \text{ for all } x \right\},$$

where p, q are integers with q > 0.

• Consider the sets

$$A^{-} = \left\{ \frac{p}{q} : G^{\circ q}(x) > x + p \text{ for all } x \right\}$$
$$A^{+} = \left\{ \frac{p}{q} : G^{\circ q}(x) < x + p \text{ for all } x \right\},$$

 A^+

......

where p, q are integers with q > 0.

• The pair (A^-, A^+) is a Dedekind cut of \mathbb{Q} :

 A^{-}

• The *translation number* of G is defined as

$$\tau(G) = \sup A^- = \inf A^+.$$

• The *translation number* of G is defined as

$$\tau(G) = \sup A^- = \inf A^+.$$

• It is easy to see that

$$\tau(G) = \lim_{n \to \infty} \frac{G^{\circ n}(x) - x}{n} \quad \text{for any } x \in \mathbb{R}.$$

Thus, $\tau(G)$ measures the average translation per iterate that each point experiences under repeated applications of *G*.

• The *translation number* of G is defined as

$$\tau(G) = \sup A^- = \inf A^+.$$

• It is easy to see that

$$\tau(G) = \lim_{n \to \infty} \frac{G^{\circ n}(x) - x}{n} \quad \text{for any } x \in \mathbb{R}.$$

Thus, $\tau(G)$ measures the average translation per iterate that each point experiences under repeated applications of *G*.

Definition

The *rotation number* $\rho(g)$ is the residue class modulo \mathbb{Z} of the translation number $\tau(G)$, often identified with its representative in [0, 1).

• Example: For $0 \le \theta < 1$, the *rigid rotation*

 $r_{\theta}(t) = t + \theta \pmod{\mathbb{Z}}$

has rotation number $\rho(r_{\theta}) = \theta$.

• Example: For $0 \le \theta < 1$, the *rigid rotation*

$$r_{\theta}(t) = t + \theta \pmod{\mathbb{Z}}$$

has rotation number $\rho(r_{\theta}) = \theta$.

• Rotation number determines cyclic order of orbit points: If $\rho(g) = \theta$, and if the triple

$$r_{\theta}^{\circ i}(0), \quad r_{\theta}^{\circ j}(0), \quad r_{\theta}^{\circ k}(0)$$

has positive cyclic order, so does

$$g^{\circ i}(t), \quad g^{\circ j}(t), \quad g^{\circ k}(t)$$

for every $t \in \mathbb{T}$.

Theorem

Suppose $\rho(g) = p/q$ in lowest terms. Then,

- (*i*) g has a periodic orbit of length q.
- (ii) All periodic orbits of g have length q.
- (iii) If the points of a periodic orbit are labeled in positive cyclic order as t_1, \ldots, t_q , then $g(t_j) = t_{j+p}$.

(iv) $\omega(t)$ is a periodic orbit for every $t \in \mathbb{T}$.

Recall that

$$\omega(t) = \bigcap_{n \ge 1} \overline{\left\{ g^{\circ n}(t), g^{\circ n+1}(t), g^{\circ n+2}(t), \dots \right\}}$$

is the set of all accumulation points of the g-orbit of t.

• Example: $\rho(g) = 2/5$

The 5-cycle $C = \{t_1, \ldots, t_5\}$ has *combinatorial rotation number* 2/5.

• Example: $\rho(g) = 2/5$

• Example: $\rho(g) = 2/5$

We call φ the *combinatorial semiconjugacy* associated with the cycle *C*:

$$\varphi \circ g = r_{p/q} \circ \varphi \qquad \text{on } C.$$

• Example: $\rho(g) = 2/5$

The cycle C is the complement of the union of the "plateaus" of φ .

• Example: $\rho(g) = 2/5$

If μ is the unique invariant measure supported on C, then

 $\varphi(t) = \mu[0, t].$

Now suppose $\rho(g) = \theta$ is irrational.

Theorem (Poincaré)

There exists a degree 1 monotone map $\varphi : \mathbb{T} \to \mathbb{T}$ such that $\varphi \circ g = r_{\theta} \circ \varphi$. Moreover, φ is unique up to postcomposition with a rigid rotation.

Now suppose $\rho(g) = \theta$ is irrational.

Theorem (Poincaré)

There exists a degree 1 monotone map $\varphi : \mathbb{T} \to \mathbb{T}$ such that $\varphi \circ g = r_{\theta} \circ \varphi$. Moreover, φ is unique up to postcomposition with a rigid rotation.

We call the map φ normalized by $\varphi(0) = 0$ the *Poincaré semiconjugacy* between g and r_{θ} .

Theorem

Suppose φ is the Poincaré semiconjugacy between g and r_{θ} :

- (i) If φ is a homeomorphism, then $\omega(t) = \mathbb{T}$ for all $t \in \mathbb{T}$.
- (ii) If φ is not a homeomorphism, there is a g-invariant Cantor set K such that $\omega(t) = K$ for every $t \in \mathbb{T}$.

Theorem

Suppose φ is the Poincaré semiconjugacy between g and r_{θ} :

- (i) If φ is a homeomorphism, then $\omega(t) = \mathbb{T}$ for all $t \in \mathbb{T}$.
- (ii) If φ is not a homeomorphism, there is a g-invariant Cantor set K such that $\omega(t) = K$ for every $t \in \mathbb{T}$.

The compact set *K* in case (ii) is called the *Cantor attractor* of *g*. It can be described as the complement of the union of the plateaus of φ .

• Example: $\rho(g) = (\sqrt{5} - 1)/2$

• Example: $\rho(g) = (\sqrt{5} - 1)/2$

There is a unique g-invariant measure μ supported on K which maps to Lebesgue measure under φ :

$$\varphi_*\mu=\lambda.$$

• Example: $\rho(g) = (\sqrt{5} - 1)/2$

There is a unique g-invariant measure μ supported on K which maps to Lebesgue measure under φ :

$$\varphi_*\mu=\lambda.$$

Similar to the rational case, we have $\varphi(t) = \mu[0, t]$.

• Fix an integer $d \ge 2$ and define $m_d : \mathbb{T} \to \mathbb{T}$ by

 $m_d(t) = d \cdot t \pmod{\mathbb{Z}}$

• Fix an integer $d \ge 2$ and define $m_d : \mathbb{T} \to \mathbb{T}$ by

$$m_d(t) = d \cdot t \pmod{\mathbb{Z}}$$

Definition

A non-empty compact set $X \subset \mathbb{T}$ is a *rotation set* for m_d if

- $m_d(X) = X$, and
- the restriction $m_d|_X$ extends to a degree 1 monotone map of the circle.

• Fix an integer $d \ge 2$ and define $m_d : \mathbb{T} \to \mathbb{T}$ by

$$m_d(t) = d \cdot t \pmod{\mathbb{Z}}$$

Definition

A non-empty compact set $X \subset \mathbb{T}$ is a *rotation set* for m_d if

- $m_d(X) = X$, and
- the restriction $m_d|_X$ extends to a degree 1 monotone map of the circle.

Thus, m_d is order-preserving on X, except that it may identify some pairs.

• Example:

$$\frac{7}{26} \xrightarrow{m_3} \frac{21}{26} \xrightarrow{m_3} \frac{11}{26}$$

• Example:

$$\frac{7}{26} \xrightarrow{m_3} \frac{21}{26} \xrightarrow{m_3} \frac{11}{26}$$

Every rotation set is nowhere dense, whereas a randomly chosen point on the circle has a dense orbit under m_d .

Every rotation set is nowhere dense, whereas a randomly chosen point on the circle has a dense orbit under m_d .

Theorem

The union of all rotation sets for m_d has Lebesgue measure zero.

Let *X* be a rotation set for m_d .

Definition

The *rotation number* $\rho(X) \in [0, 1)$ is defined as the rotation number of any degree 1 monotone extension *g* of $m_d|_X$.

Let *X* be a rotation set for m_d .

Definition

The *rotation number* $\rho(X) \in [0, 1)$ is defined as the rotation number of any degree 1 monotone extension g of $m_d|_X$.

• $\rho(X) = p/q$ in lowest terms iff X has a q-cycle under m_d .

Definition

- A connected component of $\mathbb{T} \smallsetminus X$ is called a *gap* of *X*.
- A gap of length ℓ is *minor* if $\ell < 1/d$, and *major* otherwise.
- A major gap is *taut* if $d \cdot \ell$ is an integer, and *loose* otherwise.
- The *multiplicity* of a major gap is the integer part of $d \cdot \ell$.

Suppose X is not a single (fixed) point. Define the *standard monotone map* g as follows:

On a minor gap, set $g = m_d$.

On a major gap $(a, a + \ell)$ of multiplicity *n*, set

$$g(t) = \begin{cases} m_d(a) & t \in (a, a + n/d] \\ m_d(t) & t \in (a + n/d, a + \ell). \end{cases}$$

Suppose X is not a single (fixed) point. Define the *standard monotone map* g as follows:

On a minor gap, set $g = m_d$.

On a major gap $(a, a + \ell)$ of multiplicity *n*, set

$$g(t) = \begin{cases} m_d(a) & t \in (a, a + n/d] \\ m_d(t) & t \in (a + n/d, a + \ell). \end{cases}$$

Theorem

If X is not a single point, it has d - 1 major gaps counting multiplicities.

Theorem

If X is not a single point, it has d - 1 major gaps counting multiplicities.

Theorem

Suppose X is not a single point and I is a gap of length ℓ .

- (i) If I is minor, the image g(I) is a gap of length $d \cdot \ell$.
- (ii) If I is taut, g(I) is a single point in X.
- (iii) If I is loose, g(I) is a gap of length $\{d \cdot \ell\}$.

Corollary

Suppose X is not a single point and I is a gap of X. Then either I is periodic or it eventually maps to a taut gap.

Corollary

Suppose X is not a single point and I is a gap of X. Then either I is periodic or it eventually maps to a taut gap.

Corollary

If $\rho(X)$ is irrational, every gap of X eventually maps to a taut gap. In particular, at least one major gap of X is taut.

A minimal rational rotation set is a cycle.

Theorem

Every rotation set X for m_d with $\rho(X) = p/q$ contains finitely many cycles C_1, \ldots, C_N where $1 \le N \le d - 1$. Moreover,

- (i) Each C_i is a q-cycle with combinatorial rotation number p/q.
- (ii) For $i \neq j$ the cycles C_i and C_j are "superlinked."
- (iii) $X \smallsetminus (C_1 \cup \cdots \cup C_N)$ is at most countable, with every point eventually mapping to $C_1 \cup \cdots \cup C_N$ under the iterations of m_d .

A minimal rational rotation set is a cycle.

Theorem

Every rotation set X for m_d with $\rho(X) = p/q$ contains finitely many cycles C_1, \ldots, C_N where $1 \le N \le d - 1$. Moreover,

- (i) Each C_i is a q-cycle with combinatorial rotation number p/q.
- (ii) For $i \neq j$ the cycles C_i and C_j are "superlinked."
- (iii) $X \smallsetminus (C_1 \cup \cdots \cup C_N)$ is at most countable, with every point eventually mapping to $C_1 \cup \cdots \cup C_N$ under the iterations of m_d .

• Example: Under the tripling map m_3 there are five 4-cycles of rotation number 1/4:

$$C_{1}: \frac{1}{80} \mapsto \frac{3}{80} \mapsto \frac{9}{80} \mapsto \frac{27}{80}$$

$$C_{2}: \frac{2}{80} \mapsto \frac{6}{80} \mapsto \frac{18}{80} \mapsto \frac{54}{80}$$

$$C_{3}: \frac{5}{80} \mapsto \frac{15}{80} \mapsto \frac{45}{80} \mapsto \frac{55}{80}$$

$$C_{4}: \frac{14}{80} \mapsto \frac{42}{80} \mapsto \frac{46}{80} \mapsto \frac{58}{80}$$

$$C_{5}: \frac{41}{80} \mapsto \frac{43}{80} \mapsto \frac{49}{80} \mapsto \frac{67}{80}$$

• Example: Under the tripling map m_3 there are five 4-cycles of rotation number 1/4:

 $C_{1}: \frac{1}{80} \mapsto \frac{3}{80} \mapsto \frac{9}{80} \mapsto \frac{27}{80}$ $C_{2}: \frac{2}{80} \mapsto \frac{6}{80} \mapsto \frac{18}{80} \mapsto \frac{54}{80}$ $C_{3}: \frac{5}{80} \mapsto \frac{15}{80} \mapsto \frac{45}{80} \mapsto \frac{55}{80}$ $C_{4}: \frac{14}{80} \mapsto \frac{42}{80} \mapsto \frac{46}{80} \mapsto \frac{58}{80}$ $C_{5}: \frac{41}{80} \mapsto \frac{43}{80} \mapsto \frac{49}{80} \mapsto \frac{67}{80}$

But only four unions of superlinked pairs form rotation sets:

 $C_1 \cup C_2$

But only four unions of superlinked pairs form rotation sets:

 $C_2 \cup C_3$

But only four unions of superlinked pairs form rotation sets:

 $C_3 \cup C_4$

But only four unions of superlinked pairs form rotation sets:

 $C_4 \cup C_5$

Now consider the irrational case.

Theorem

Every irrational rotation set X for m_d contains a unique minimal rotation set K. Moreover,

- (i) K is the Cantor attractor of any monotone extension of $m_d|_X$.
- (ii) Each gap of K contains at most finitely many points of X, all of which eventually map to K under the iterations of m_d .

Now consider the irrational case.

Theorem

Every irrational rotation set X for m_d contains a unique minimal rotation set K. Moreover,

- (i) K is the Cantor attractor of any monotone extension of $m_d|_X$.
- (ii) Each gap of K contains at most finitely many points of X, all of which eventually map to K under the iterations of m_d .

Corollary

Suppose X is a minimal rotation set for m_d with $\rho(X) = \theta$ irrational. Then there exists a degree 1 monotone map $\varphi : \mathbb{T} \to \mathbb{T}$, whose plateaus are precisely the gaps of X, which satisfies $\varphi \circ m_d = r_\theta \circ \varphi$ on X.