Mating the Basilica with a Siegel Disc

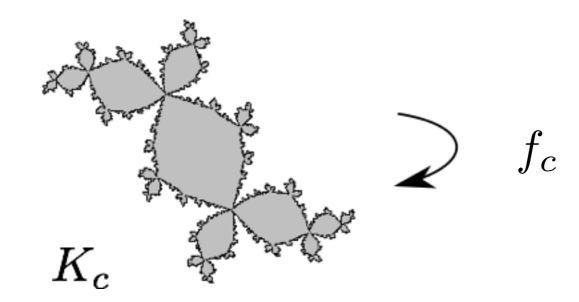
Jonguk Yang University of Toronto

Topics in Complex Dynamics, 2016 Universitat de Barcelona

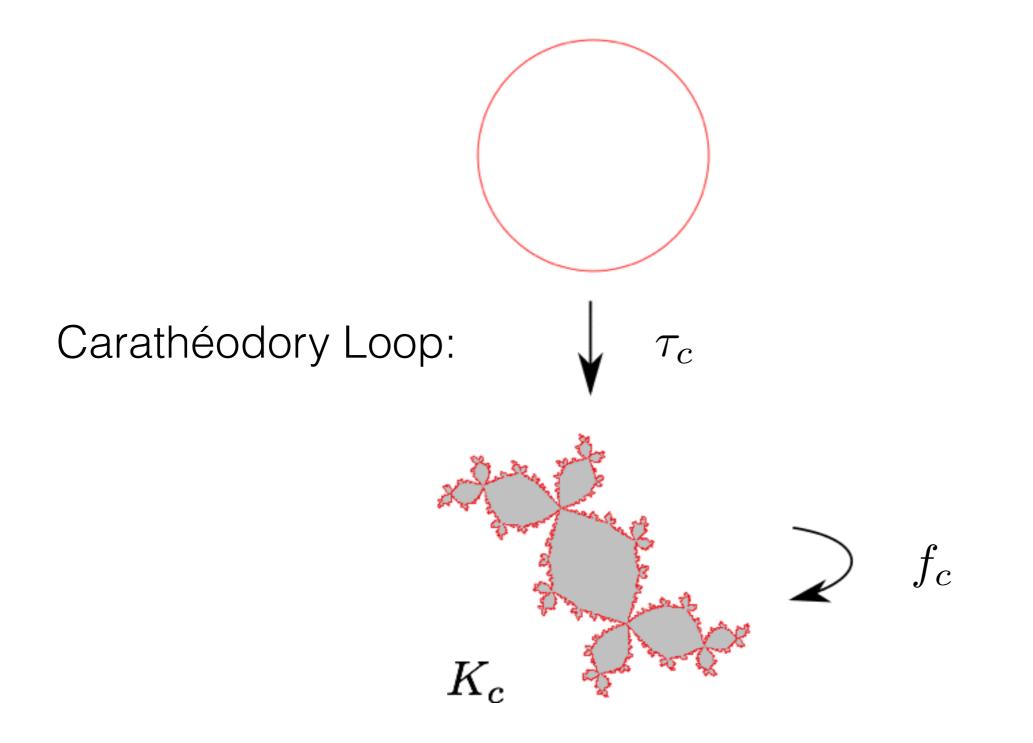
Consider $f_c(z) = z^2 + c$, $c \in \mathbb{C}$.

Consider $f_c(z) = z^2 + c$, $c \in \mathbb{C}$.

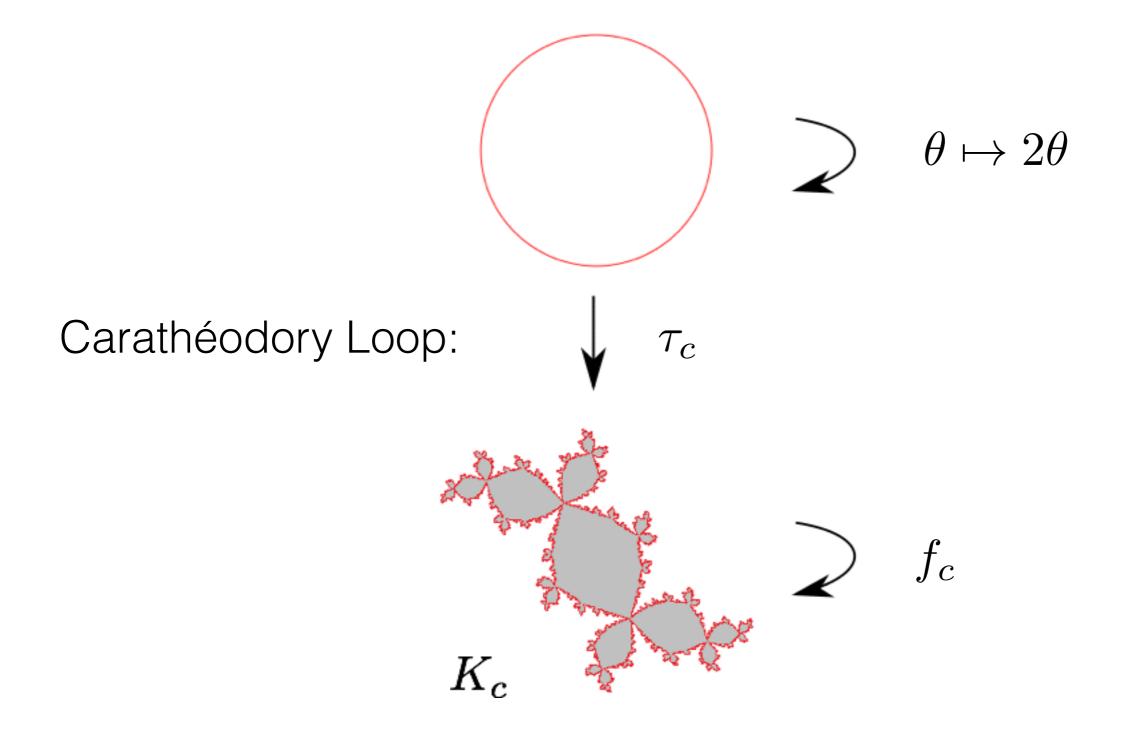
Consider $f_c(z) = z^2 + c$, $c \in \mathbb{C}$.



Consider
$$f_c(z) = z^2 + c$$
, $c \in \mathbb{C}$.



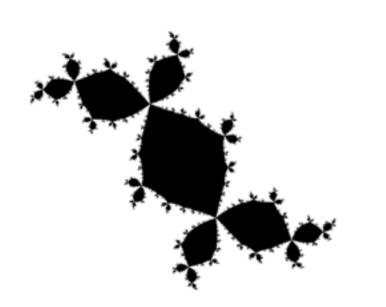
Consider
$$f_c(z) = z^2 + c$$
, $c \in \mathbb{C}$.



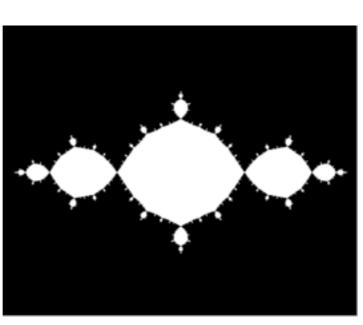
Mating Construction [Douady, Hubbard]

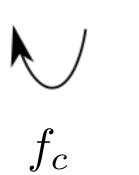
Mating Construction [Douady, Hubbard]

 K_d

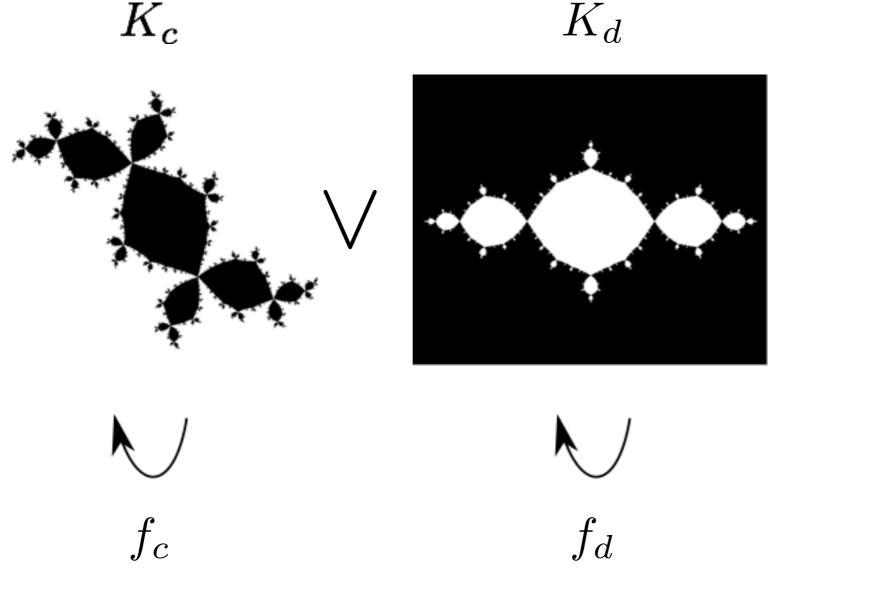


 K_c

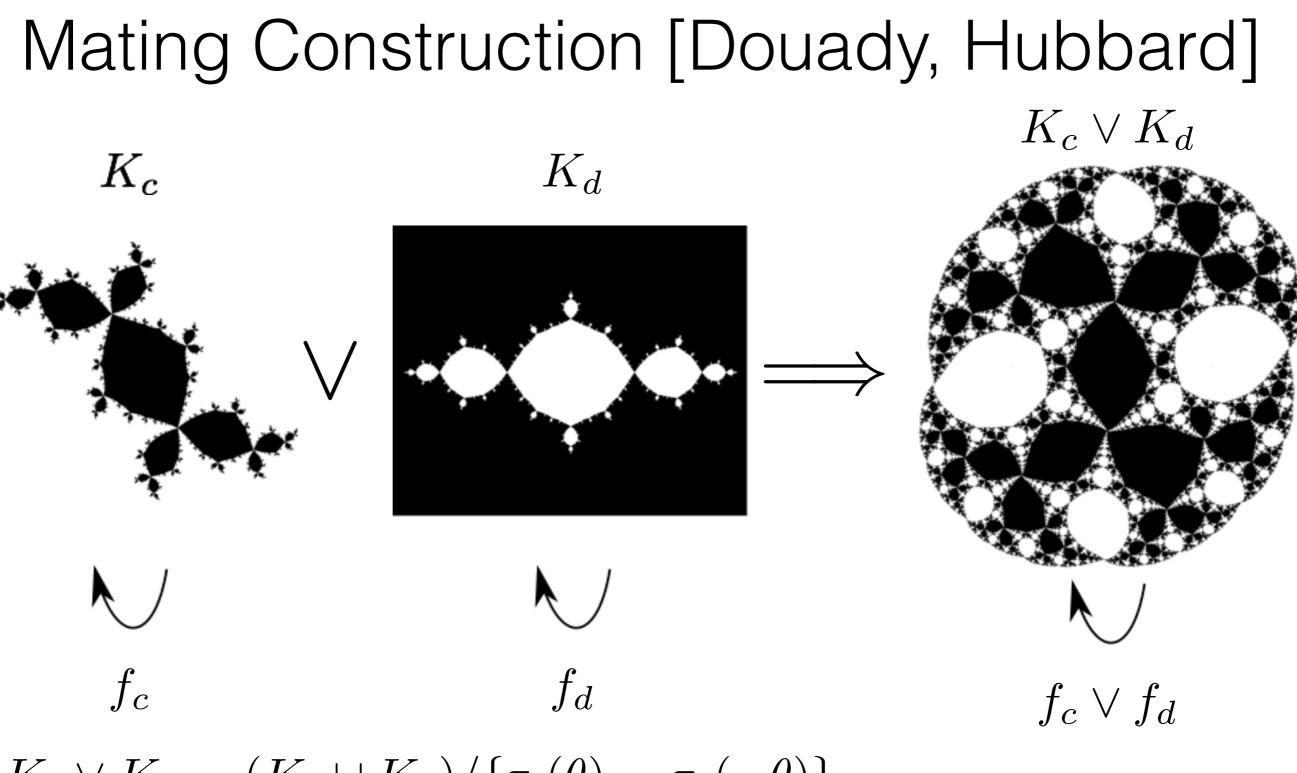




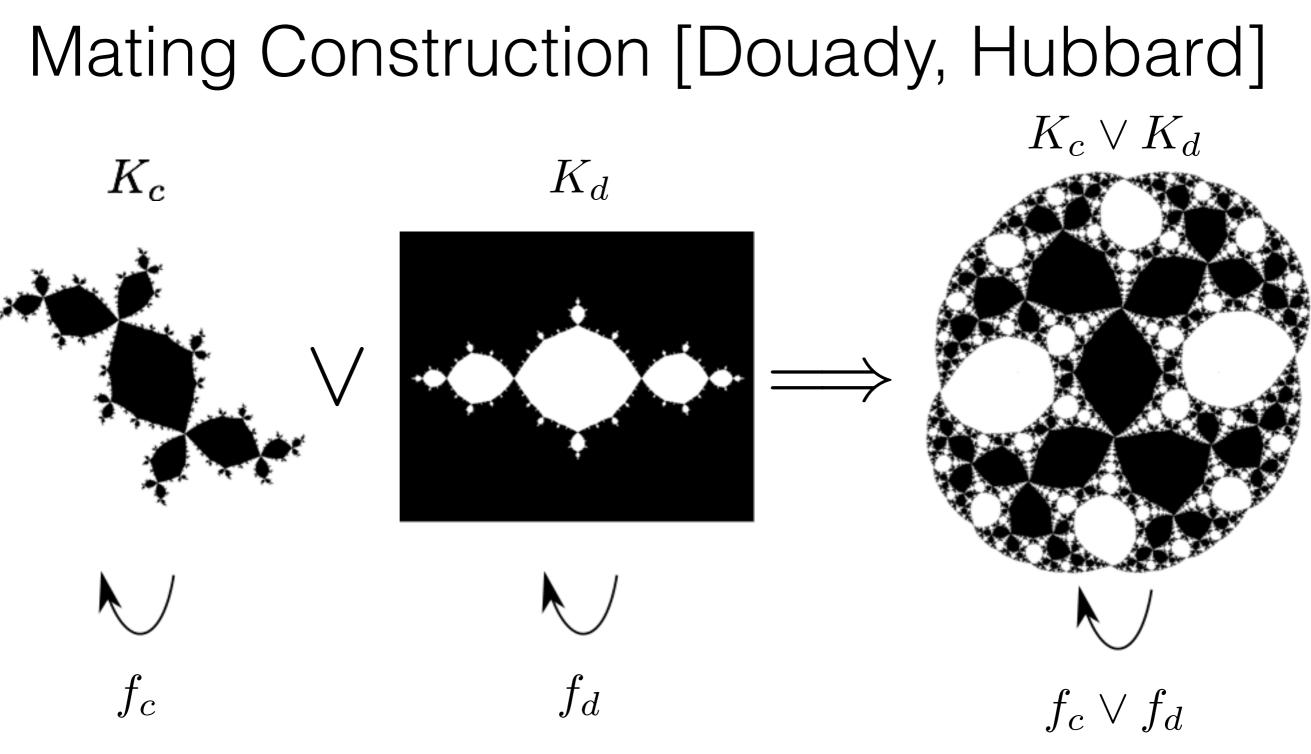
Mating Construction [Douady, Hubbard]



 $K_c \vee K_d = (K_c \sqcup K_d) / \{\tau_c(\theta) \sim \tau_d(-\theta)\}$

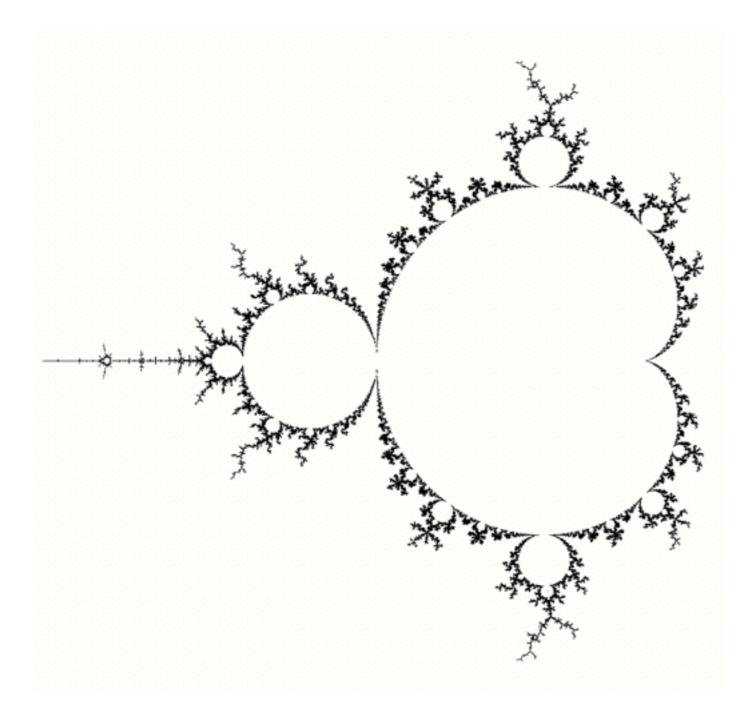


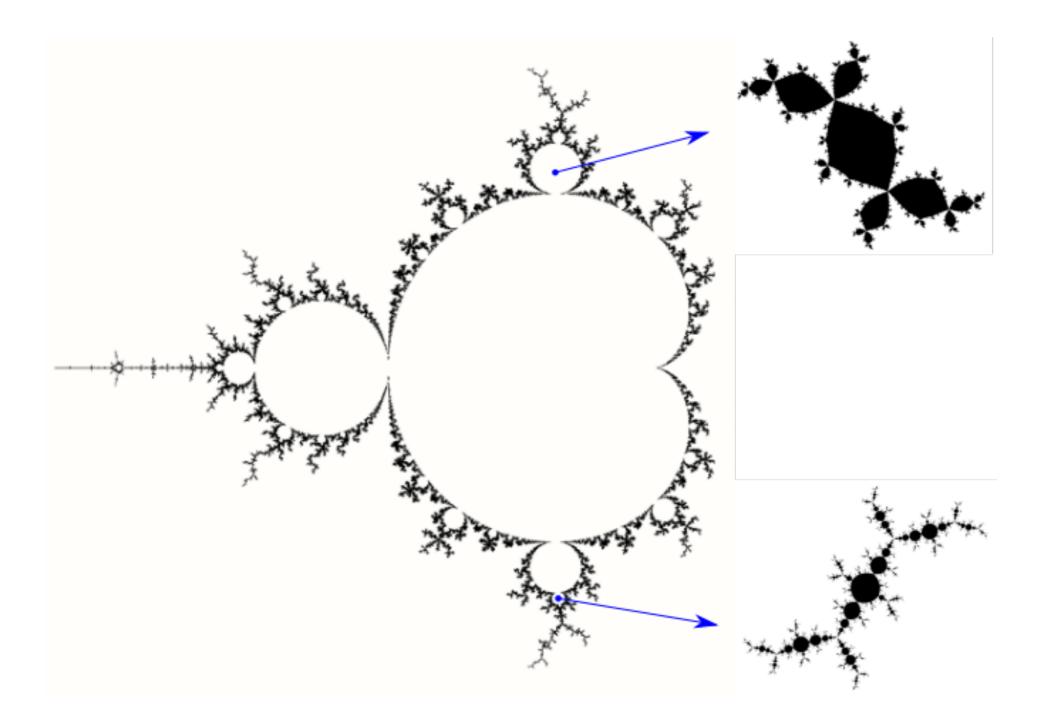
 $K_c \vee K_d = (K_c \sqcup K_d) / \{\tau_c(\theta) \sim \tau_d(-\theta)\}$

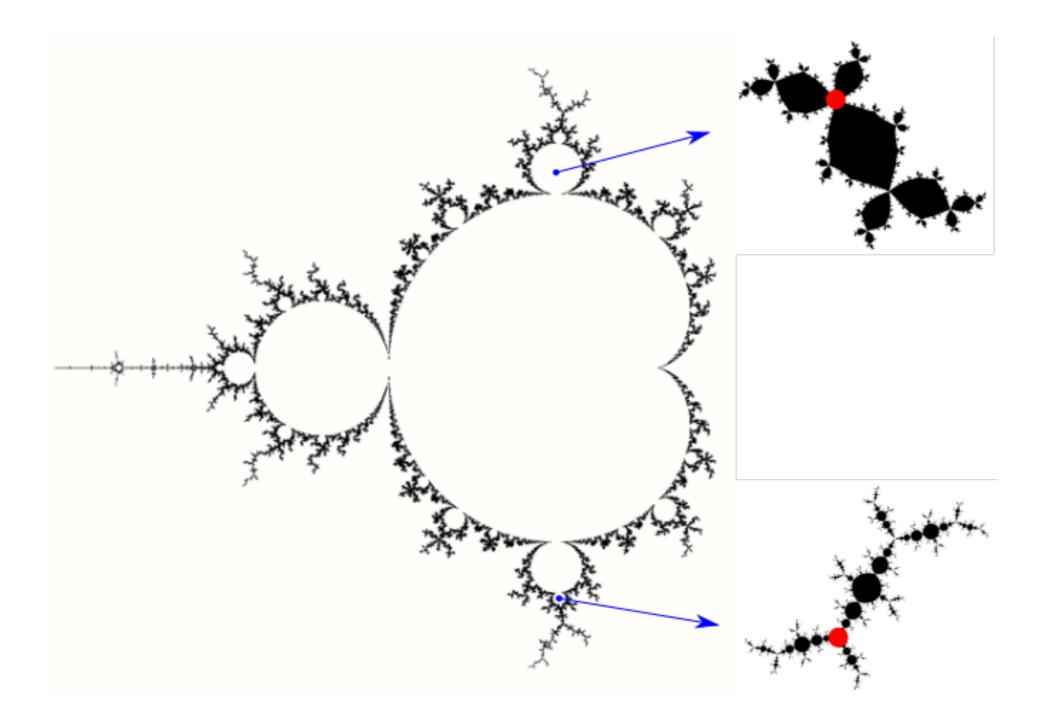


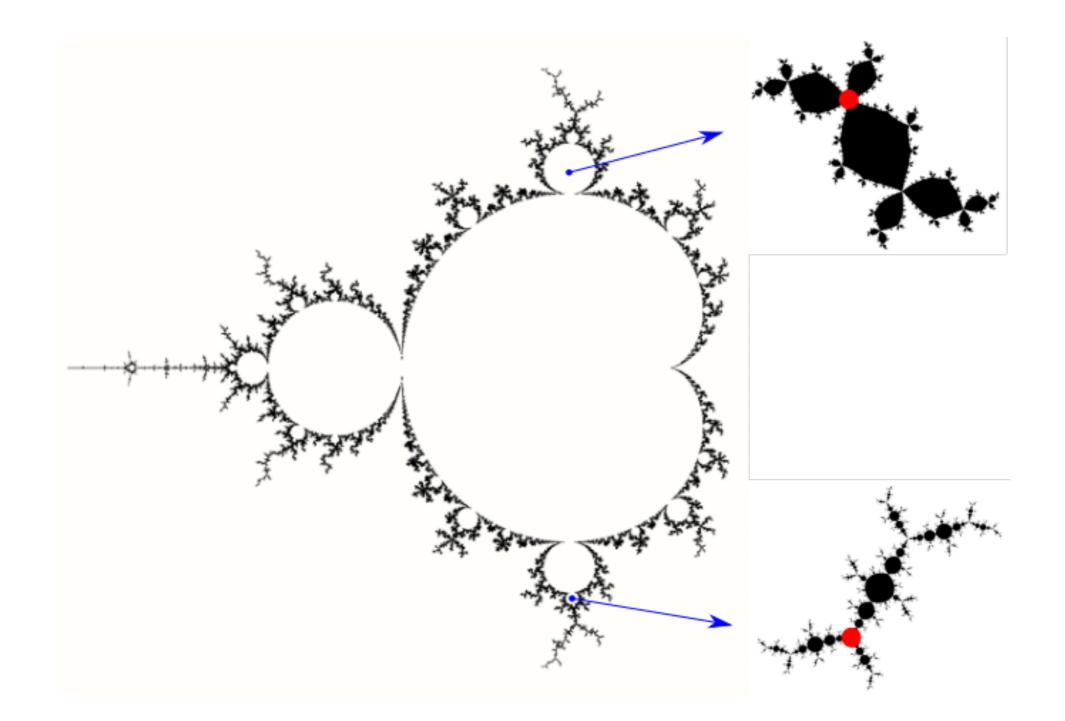
 $K_c \vee K_d = (K_c \sqcup K_d) / \{\tau_c(\theta) \sim \tau_d(-\theta)\}$

If $f_c \lor f_d$ can be realized by a rational map, we say that f_c and f_d are **mateable**.









[Rees, Tan, Shishikura] Suppose f_c and f_d are post-critically finite. Then f_c and f_d are mateable if and only if c and d do not belong in conjugate limbs.

The Basilica Family

The Basilica Family

Consider
$$R_a(z) = \frac{a}{z^2 + 2z}$$
, $a \in \mathbb{C} \setminus \{0\}$.

 $\{\infty, 0\}$ is a superattracting 2-periodic orbit.

The Basilica Family

Consider
$$R_a(z) = \frac{a}{z^2 + 2z}$$
, $a \in \mathbb{C} \setminus \{0\}$.

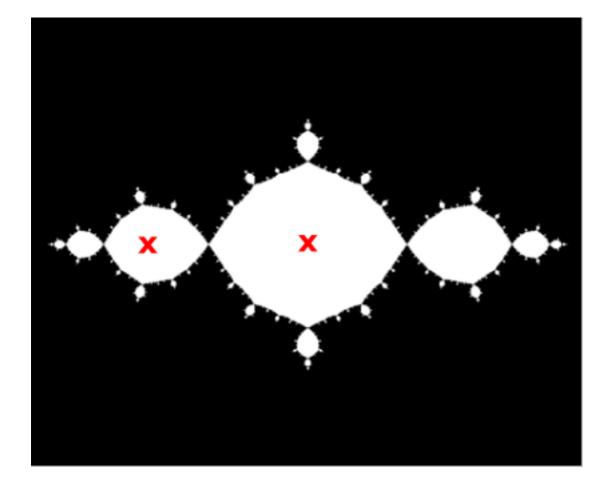
$\{\infty, 0\}$ is a superattracting 2-periodic orbit.

-1 is a free critical point, and -a is a free critical value.

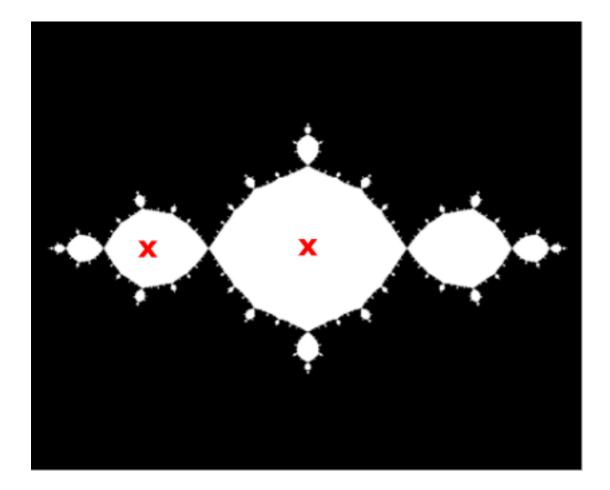
The Basilica Polynomial

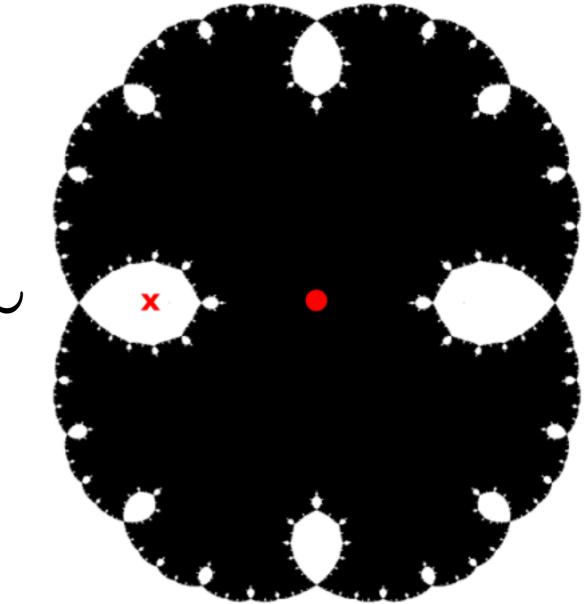
The Basilica Polynomial

$$f_B(z) := z^2 - 1$$



 $\{0, -1\}, \{\infty\}$

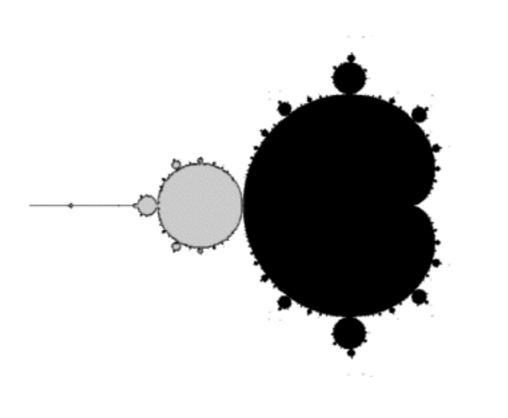




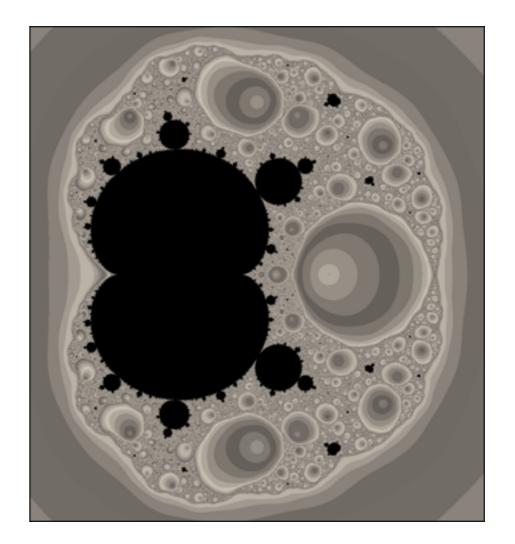
 $\{0, -1\}, \{\infty\}$

 $\{\infty,0\},\{-1\}$

c-plane



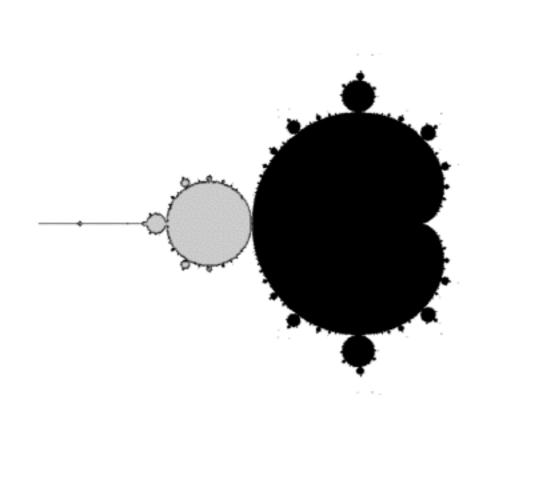
a-plane



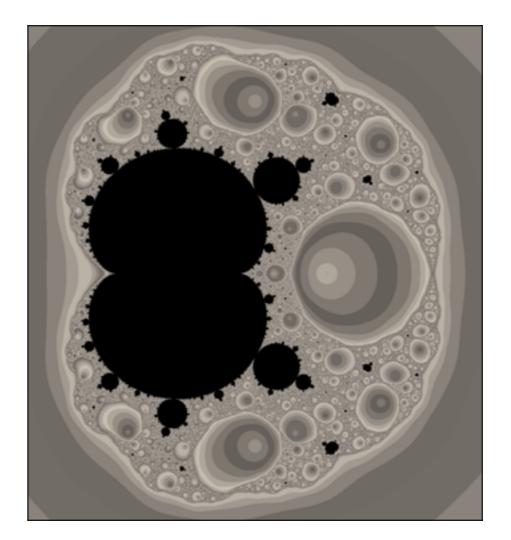
$\mathcal{M} = \{ c \mid 0 \notin \mathcal{A}_c^\infty \}$

$\mathcal{M}_B := \{ a \mid -1 \notin \mathcal{B}_a^\infty \}$

c-plane



a-plane

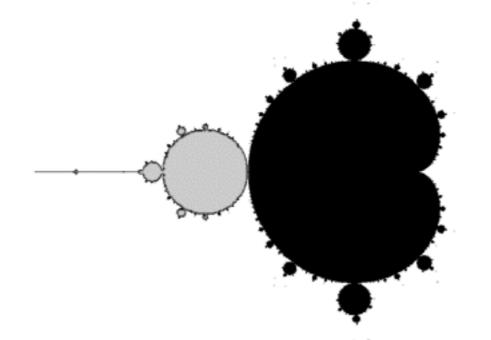


$\mathcal{M} = \{ c \mid 0 \notin \mathcal{A}_c^{\infty} \} \qquad \qquad \mathcal{M}_B := \{ a \mid -1 \notin \mathcal{B}_a^{\infty} \}$

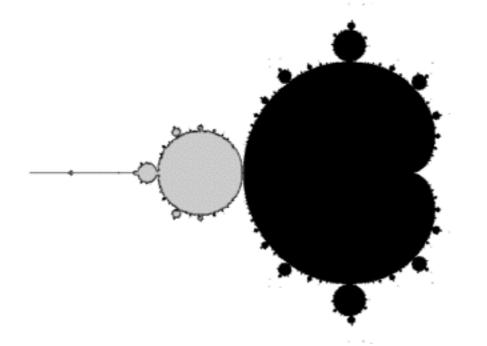
Can the basilica family be understood as the set of matings of the quadratic family with the basilica polynomial?

Suppose f_c is not trivially non-mateable with f_B .

Suppose f_c is not trivially non-mateable with f_B .

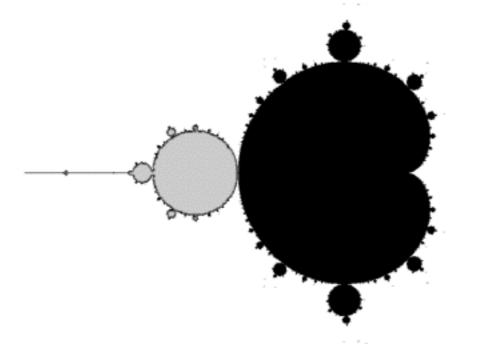


Suppose f_c is not trivially non-mateable with f_B .



If f_c is hyperbolic, then it is mateable with f_B .

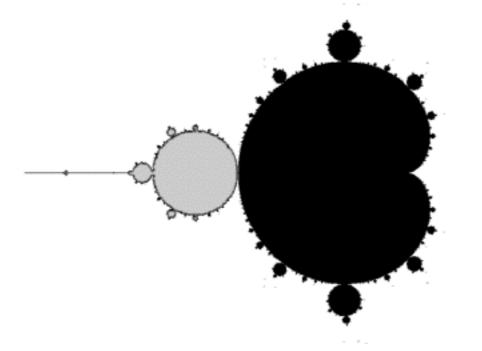
Suppose f_c is not trivially non-mateable with f_B .



If f_c is hyperbolic, then it is mateable with f_B .

[Aspenberg, Yampolsky] If f_c is finitely renormalizable, and has no non-repelling periodic orbits, then it is mateable with f_B .

Suppose f_c is not trivially non-mateable with f_B .



If f_c is hyperbolic, then it is mateable with f_B .

[Aspenberg, Yampolsky] If f_c is finitely renormalizable, and has no non-repelling periodic orbits, then it is mateable with f_B .

[D. Dudko] If f_c is at least 4 times renormalizable, then it is mateable with f_B .

If f_c lives in the boundary of a hyperbolic component, then it is either: **parabolic**, **Cremer**, or **Siegel**.

If f_c lives in the boundary of a hyperbolic component, then it is either: **parabolic**, **Cremer**, or **Siegel**.

If f_c is **parabolic**, then it is mateable with f_B . (An application of transquasiconformal surgery due to Haïssinsky.)

If f_c lives in the boundary of a hyperbolic component, then it is either: **parabolic**, **Cremer**, or **Siegel**.

If f_c is **parabolic**, then it is mateable with f_B . (An application of transquasiconformal surgery due to Haïssinsky.)

If f_c is **Cremer**, then its Julia set is non-locally connected. Hence it is non-mateable with f_B .

Siegel Parameters

Siegel Parameters

[Petersen, Zakeri] Suppose f_c has an indifferent periodic orbit \mathcal{O} with rotation number $\nu \notin \mathbb{Q}$. Then for or a.e. ν , \mathcal{O} is Siegel, and f_c has a locally connected Julia set.

Siegel Parameters

[Petersen, Zakeri] Suppose f_c has an indifferent periodic orbit \mathcal{O} with rotation number $\nu \notin \mathbb{Q}$. Then for or a.e. ν , \mathcal{O} is Siegel, and f_c has a locally connected Julia set.

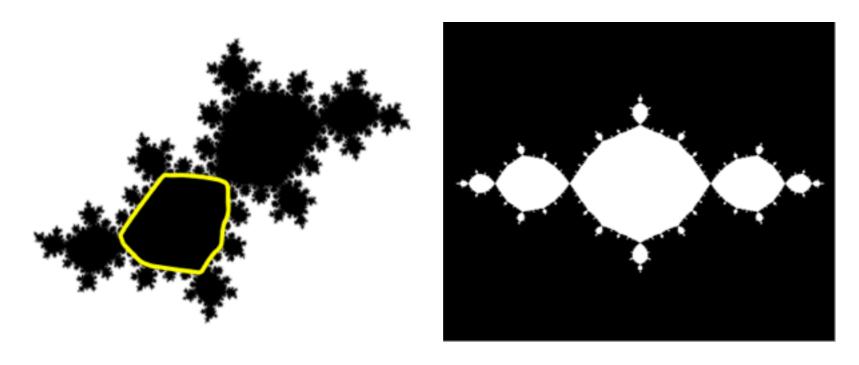
[Y.] Let f_S be a quadratic polynomial with a fixed Siegel disk with a rotation number of bounded type. Then it is mateable with f_B .

Siegel Parameters

[Petersen, Zakeri] Suppose f_c has an indifferent periodic orbit \mathcal{O} with rotation number $\nu \notin \mathbb{Q}$. Then for or a.e. ν , \mathcal{O} is Siegel, and f_c has a locally connected Julia set.

[Y.] Let f_S be a quadratic polynomial with a fixed Siegel disk with a rotation number of bounded type. Then it is mateable with f_B .

 t_B

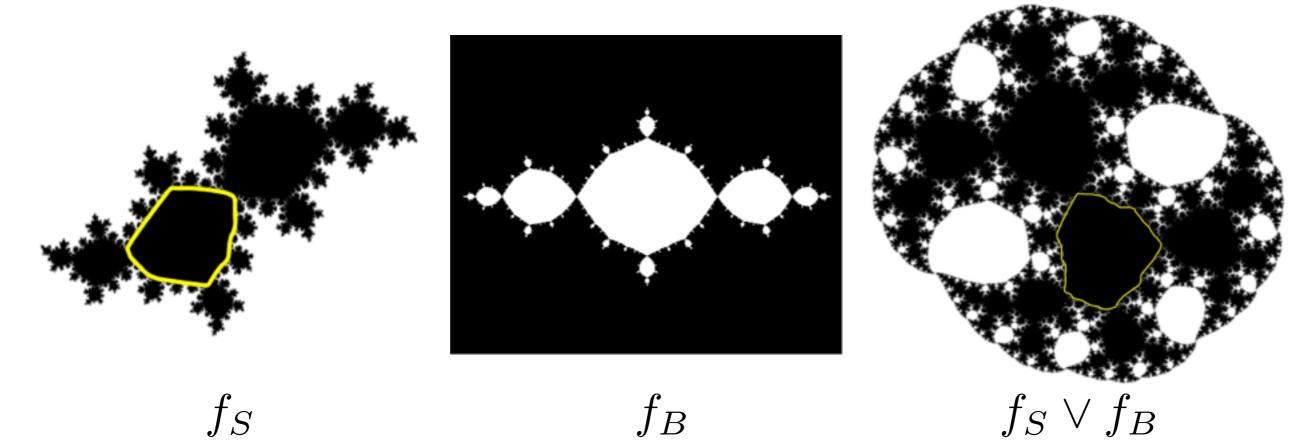


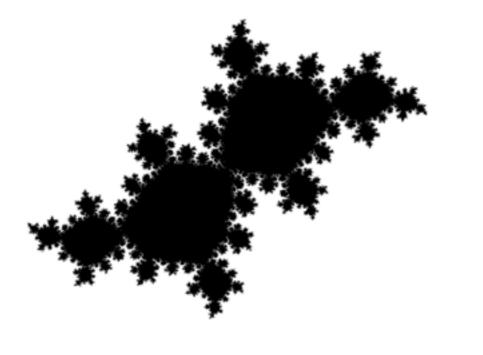
 f_S

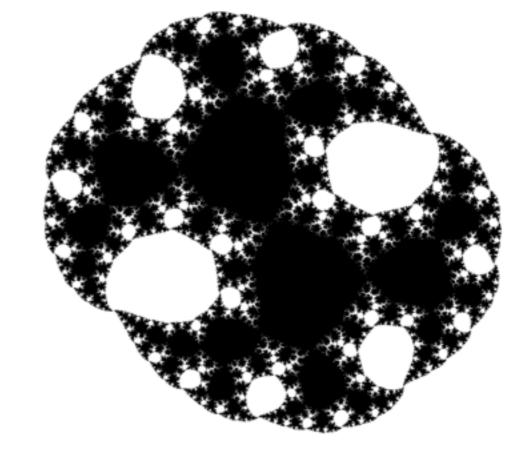
Siegel Parameters

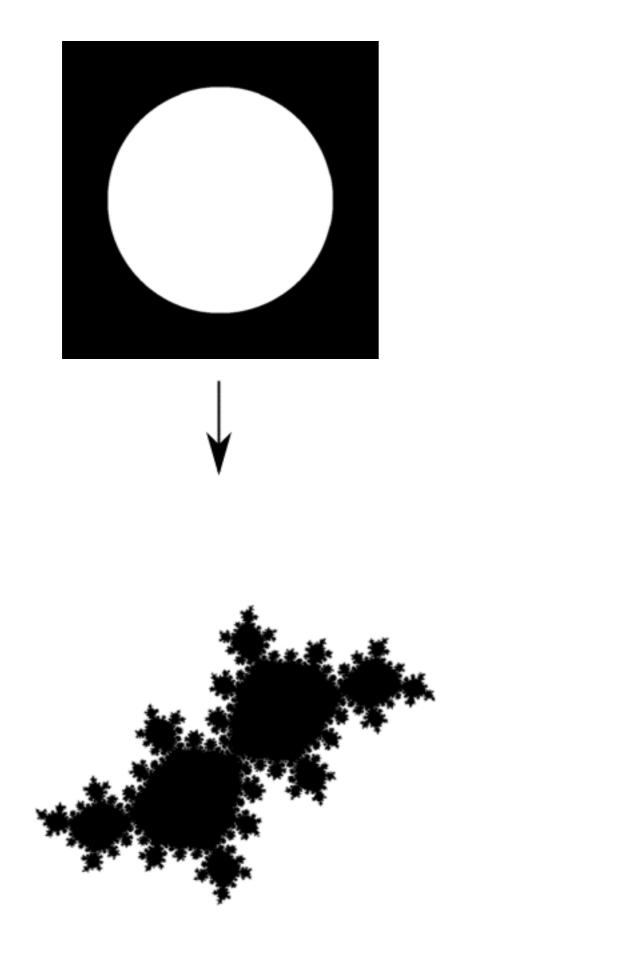
[Petersen, Zakeri] Suppose f_c has an indifferent periodic orbit \mathcal{O} with rotation number $\nu \notin \mathbb{Q}$. Then for or a.e. ν , \mathcal{O} is Siegel, and f_c has a locally connected Julia set.

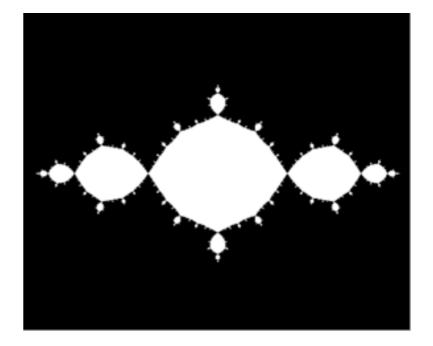
[Y.] Let f_S be a quadratic polynomial with a fixed Siegel disk with a rotation number of bounded type. Then it is mateable with f_B .

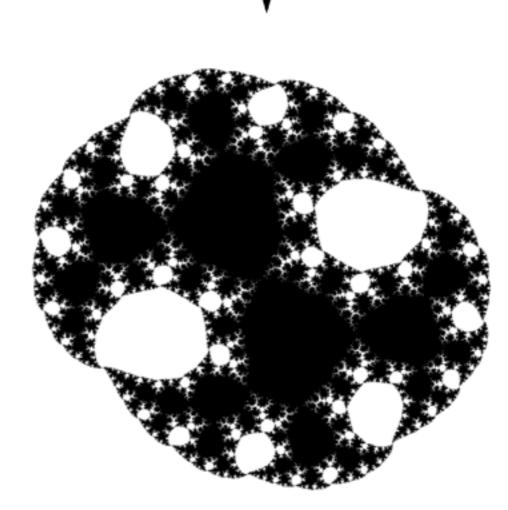


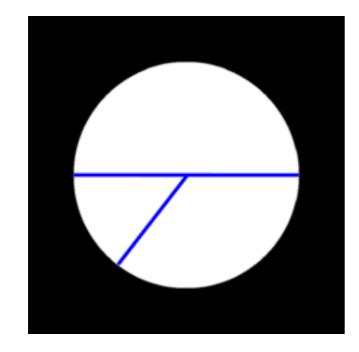


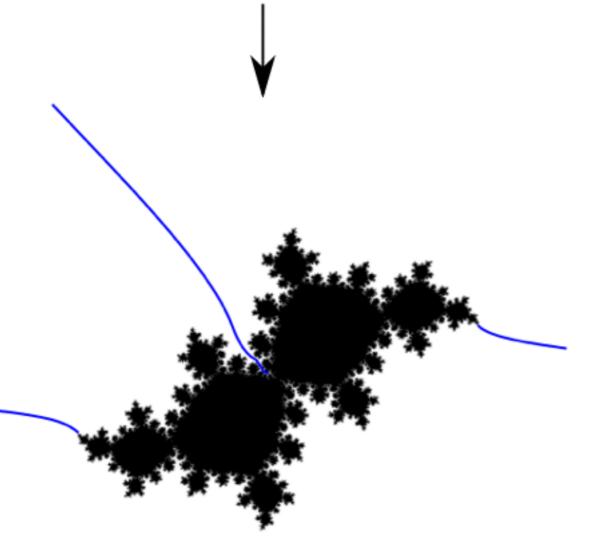


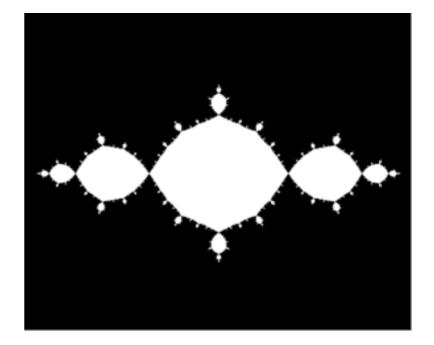


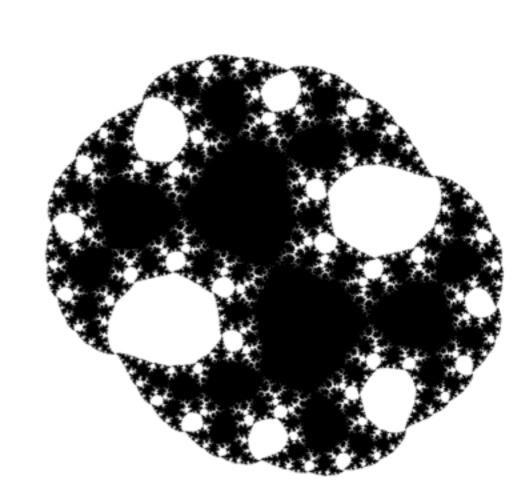


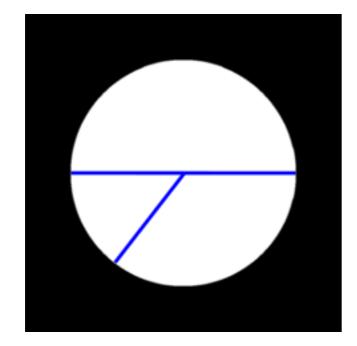


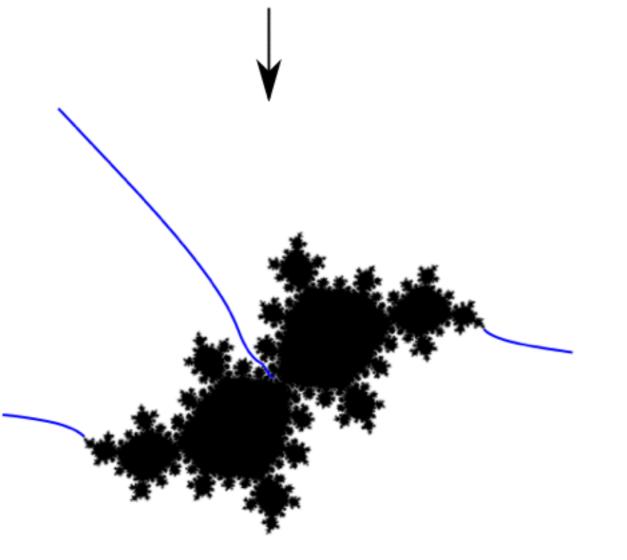


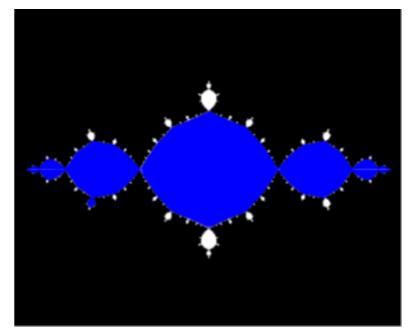


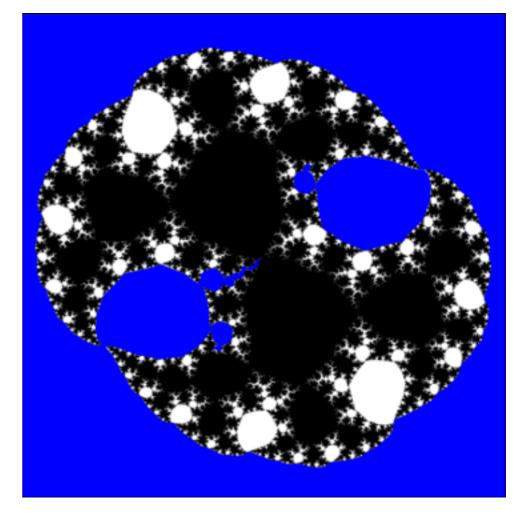


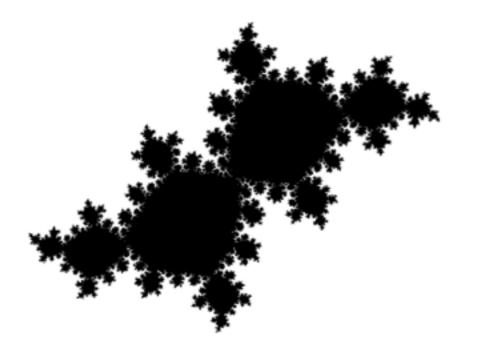


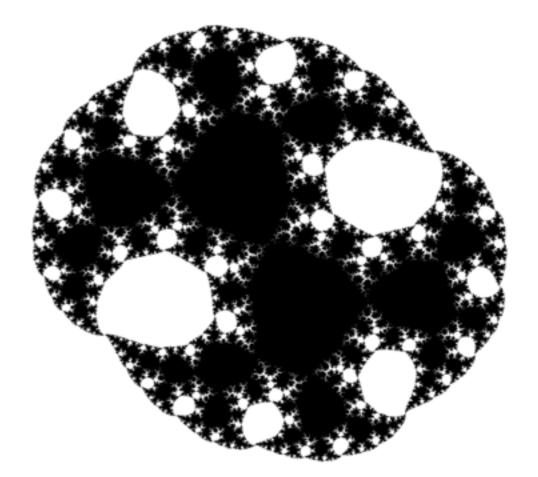


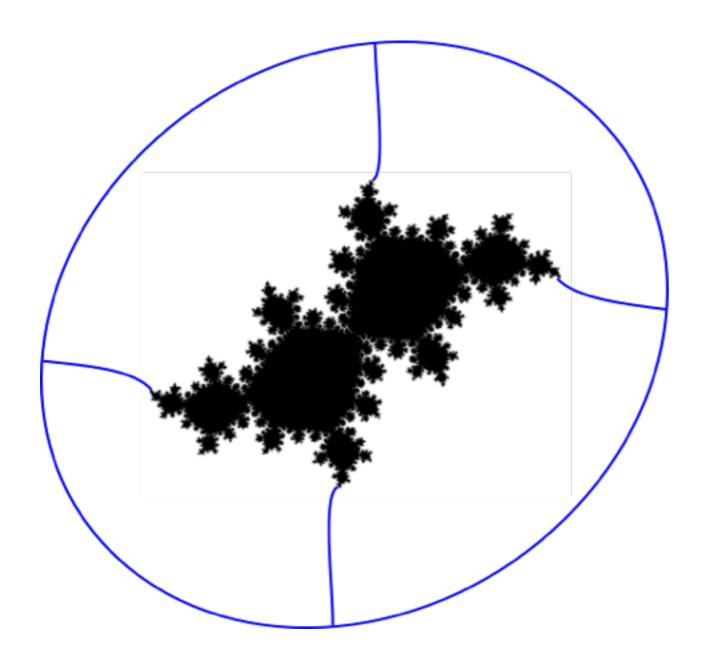


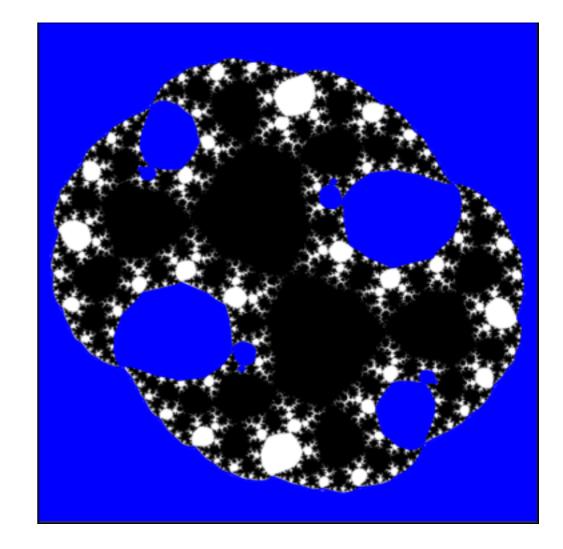


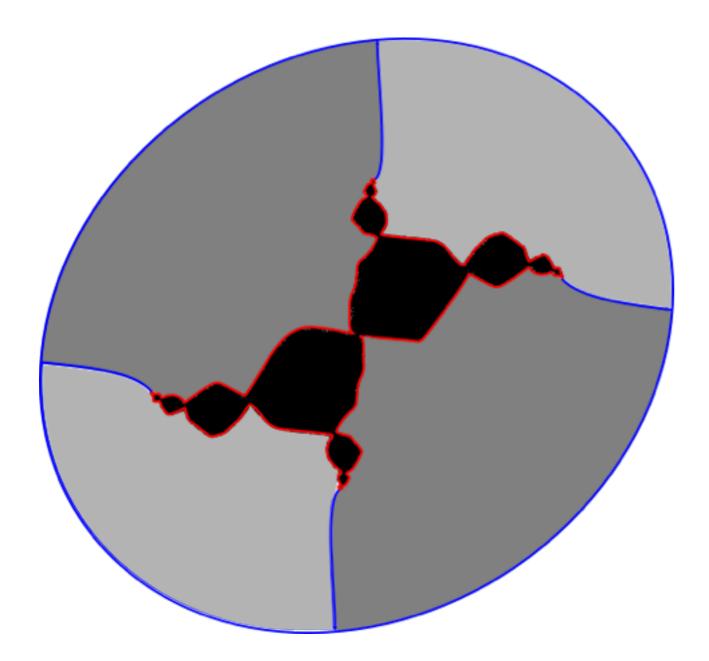


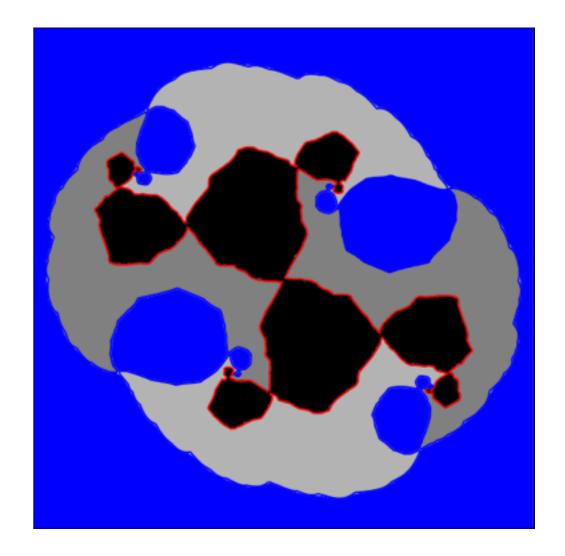


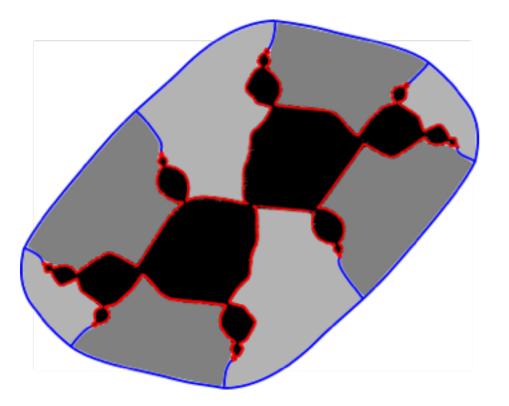


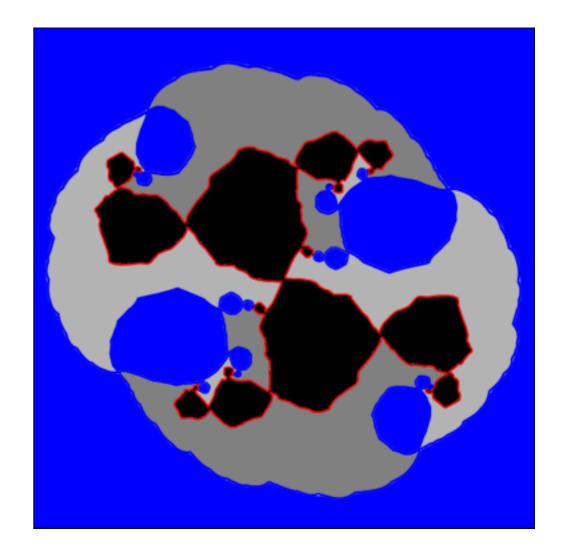


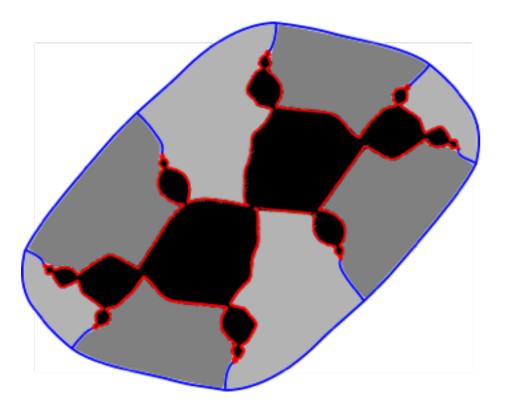


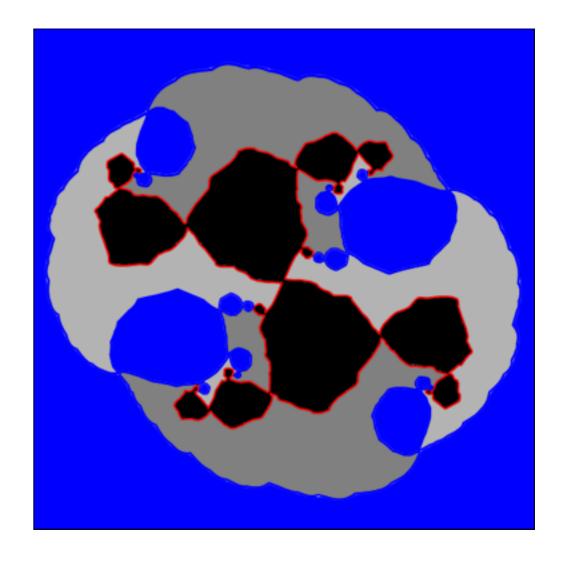


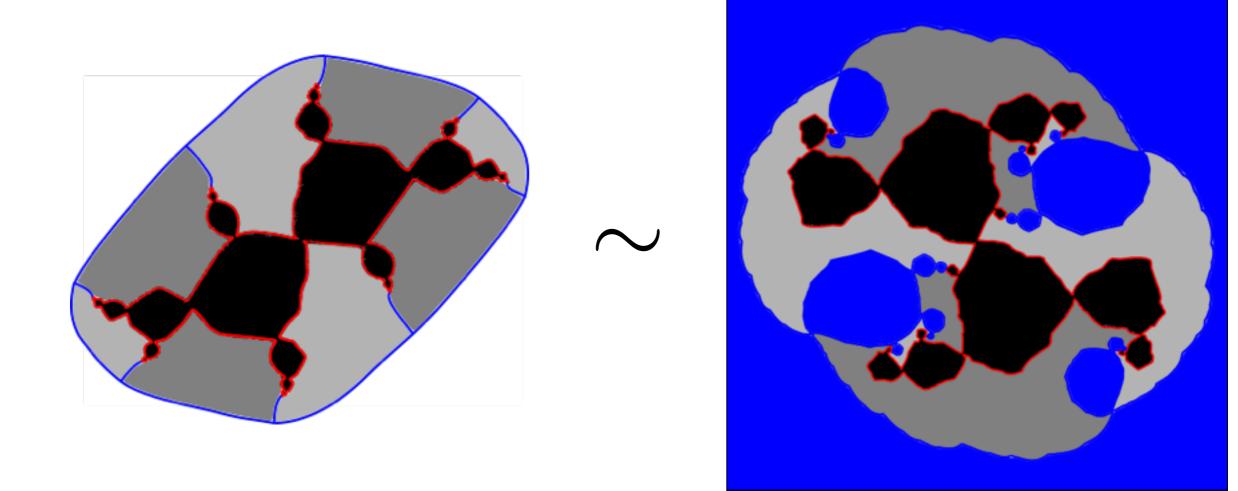






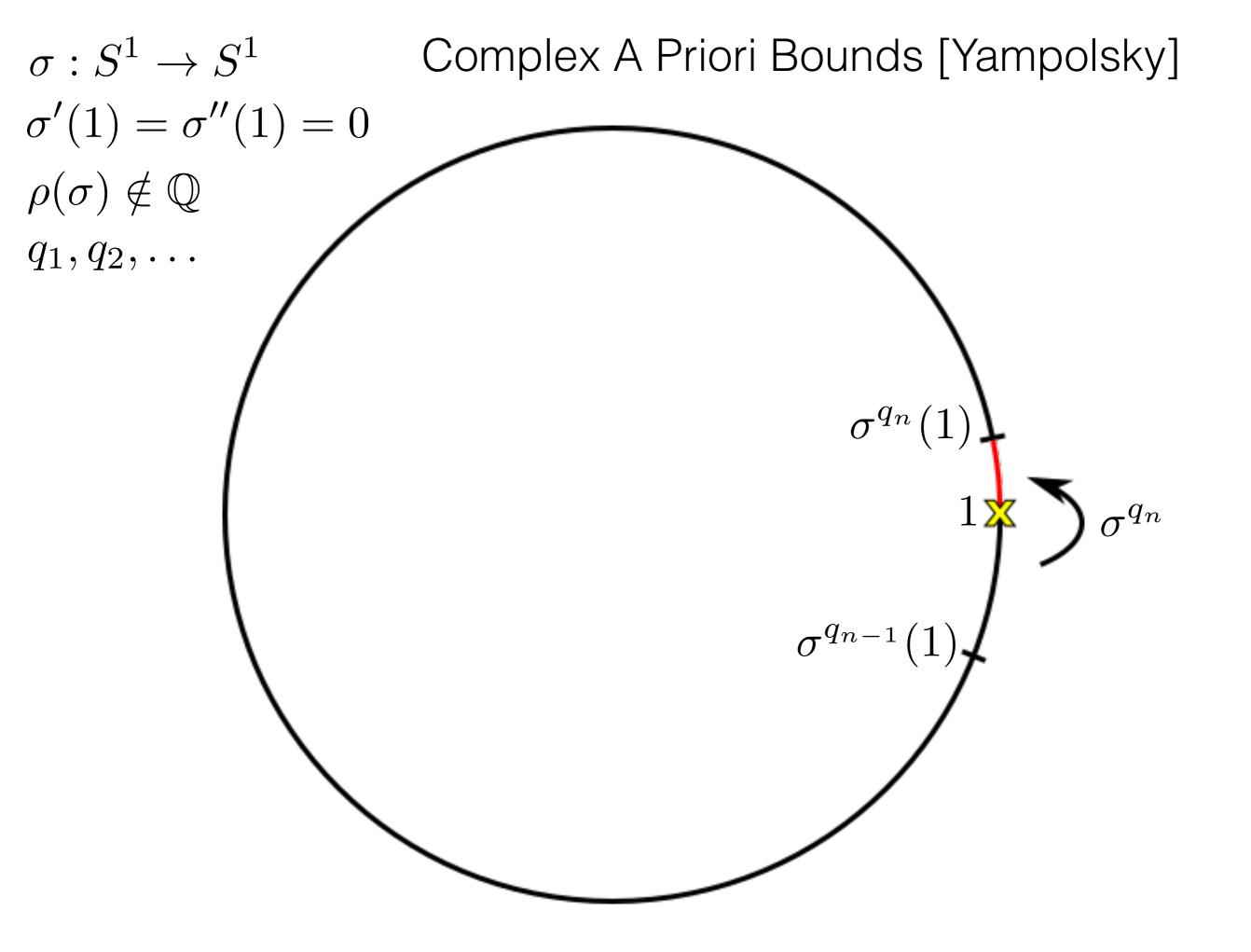


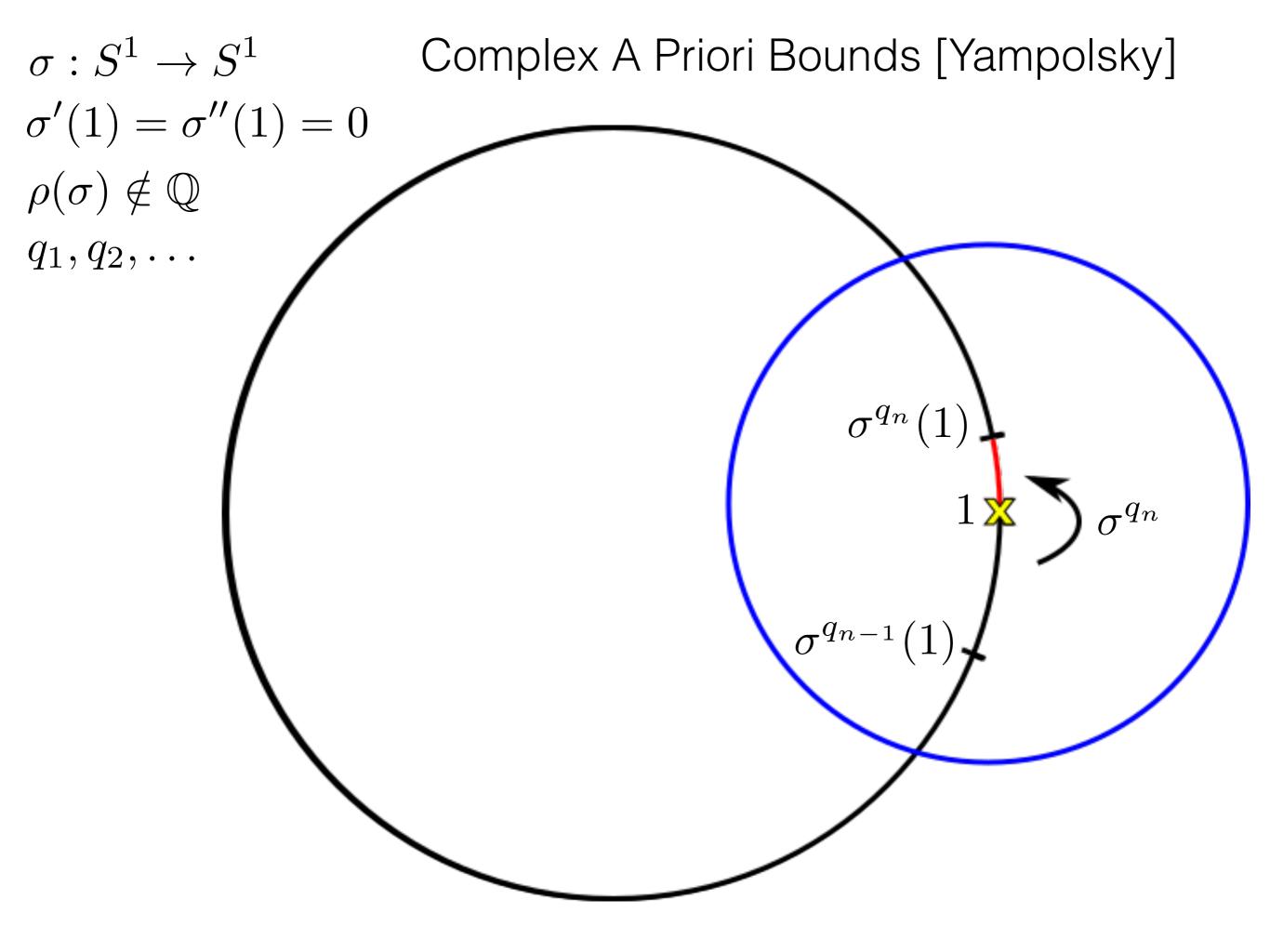


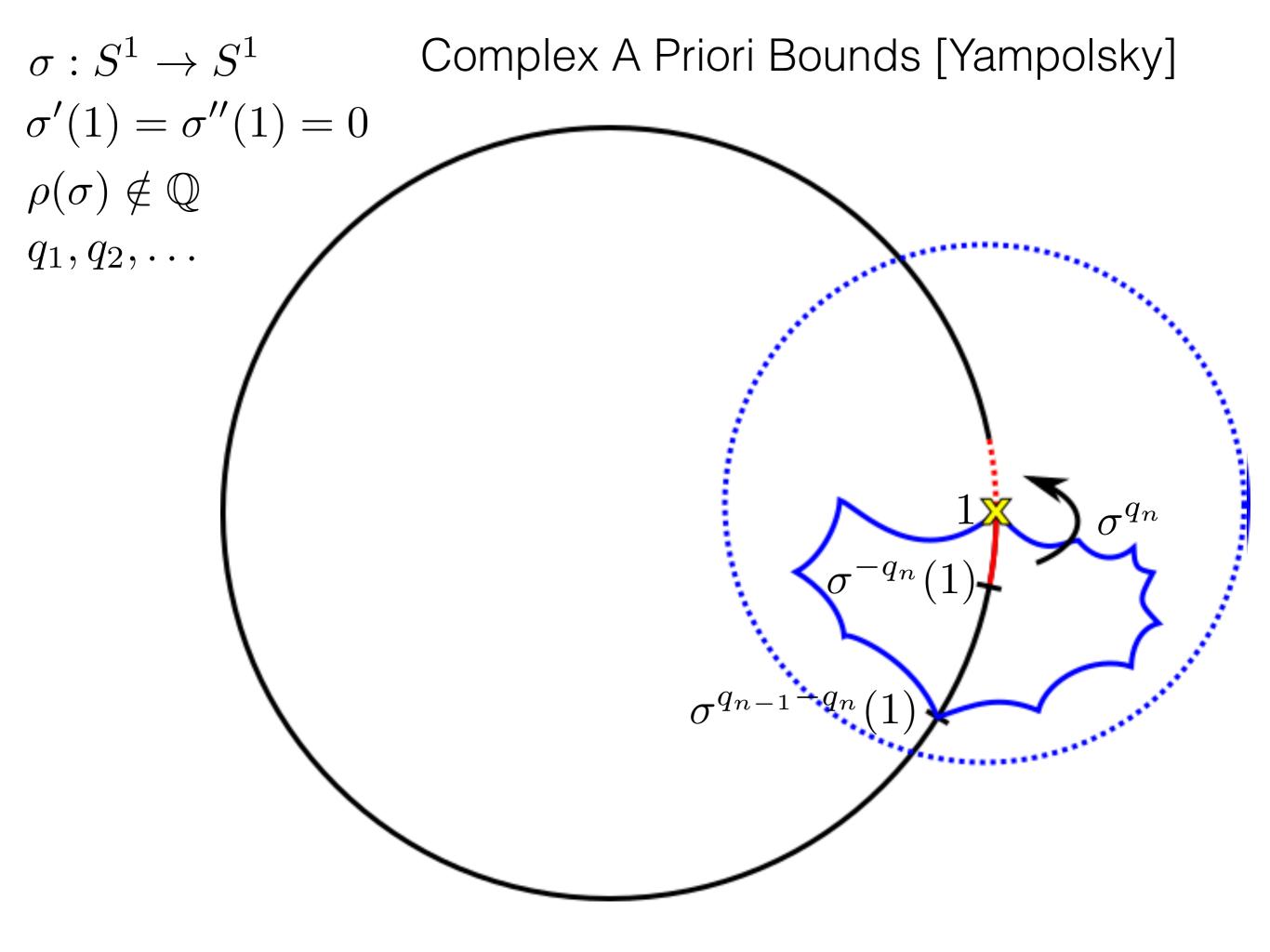


Main challenge: Prove that puzzle pieces shrink to points.

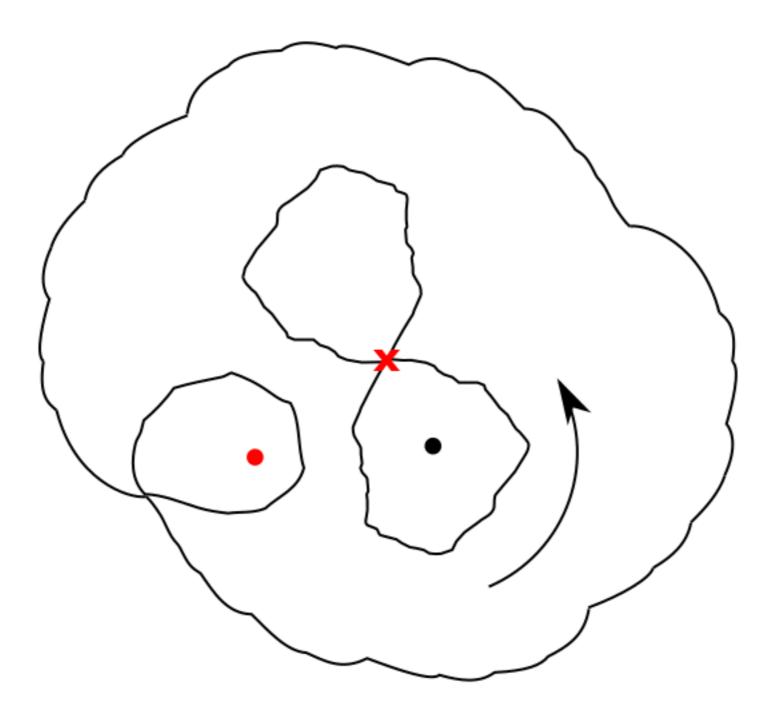
Complex A Priori Bounds [Yampolsky]



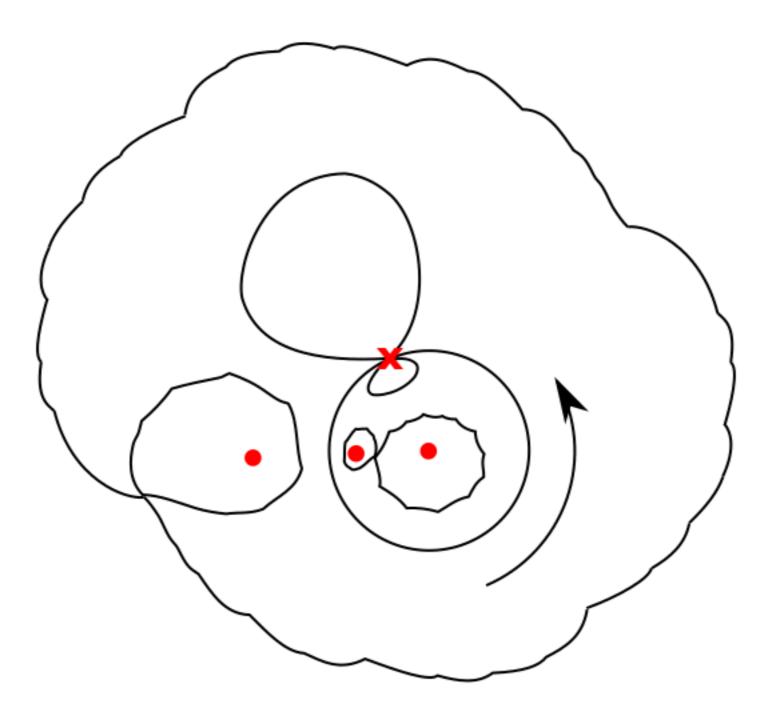




Blaschke Product Model

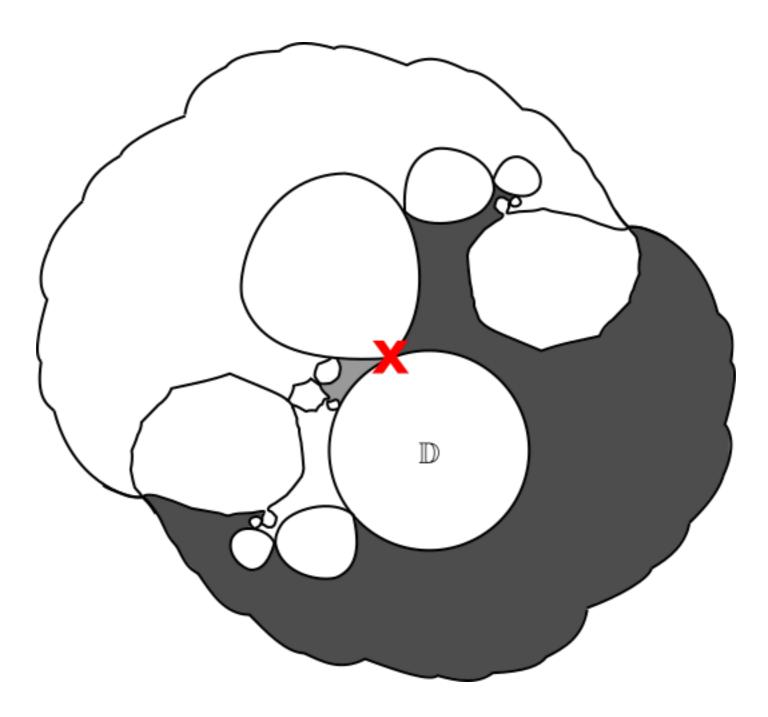


Blaschke Product Model

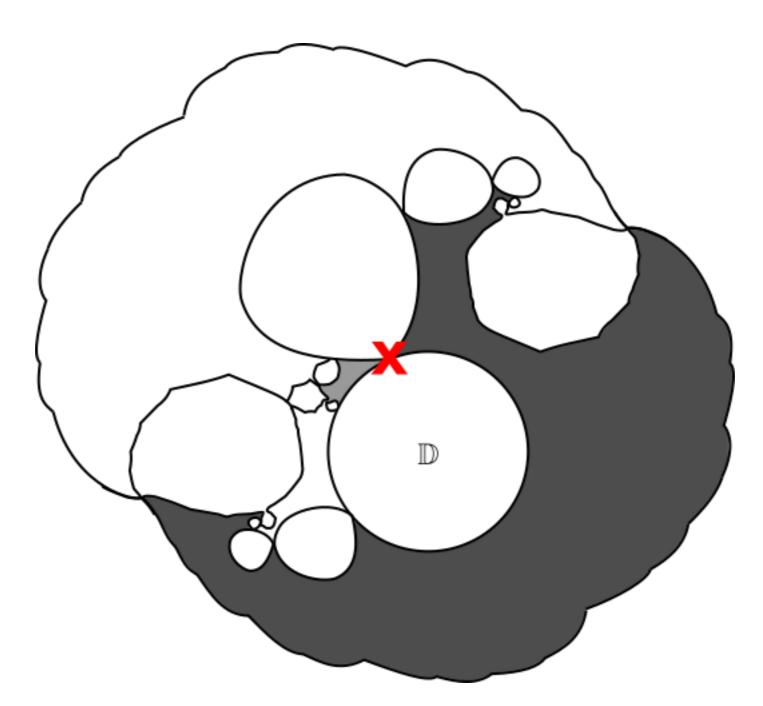


An adaptation of construction found in [Yampolsky, Zakeri].

Critical Puzzle Pieces



Critical Puzzle Pieces



Using complex a priori bounds, can show that all puzzles shrink. Therefore, f_S and f_B are mateable.

Thank you for your attention!