Our setting

Preliminaries

Calculation of Hausdorff dimension

An overlapping generalization of a family of self-affine carpets

Leticia Pardo Simón

Topics in Complex Dynamics IMUB. Barcelona

November 24, 2015

Our setting

Preliminaries

Cantor set

If $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ are given by

$$f_1(x) = \frac{1}{3}x;$$
 $f_2(x) = \frac{1}{3}x + \frac{2}{3},$

then $f_1(F)$ are $f_2(F)$ the left and right halves of F, so

 $F = f_1(F) \cup f_2(F).$

Iterated function Systems

Definition A family $\{S_1, S_2, \ldots, S_m\}$ of contractions on \mathbb{R}^N , i.e.

$$|S_i(x) - S_i(y)| \le c_i |x - y| \qquad x, y \in \mathbb{R}^N, \ c_i < 1$$

is called an iterated function system (IFS).

Theorem

Given an IFS there exists a unique, non-empty compact set F satisfying

$$F = \bigcup_{i=1}^{m} S_i(F),$$

called the attractor of the IFS.

Iterated function Systems

Moreover, for every non-empty compact set $E \in S$ such that $S_i(E) \subseteq E$ for all i,

$$F = \bigcap_{k=0}^{\infty} S^k(E).$$

Figure: Construction of the attractor F. The sets $S^k(E)$ give increasingly good approximations of F.

Self-similar vs self-affine sets

If the $S_i(x) = T_i(x) + b_i$ are affine contractions, where the T_i are non-singular contracting linear mappings on \mathbb{R}^n and $b_i \in \mathbb{R}^n$ are translation vectors, F is a **self-affine set**.

Figure: Images from wikipedia.

Our setting

Preliminaries

Calculation of Hausdorff dimension

Overlapping constructions

$$D \subseteq D_0 = \{0, \dots, n-1\} \times \{0, \dots, m-1\}.$$

Bedford-McMullen

Fraser-Shmerkin

Rows overlap

$$S_{(i,j)}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\frac{1}{n} & 0\\0 & \frac{1}{m}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}\frac{i-1}{m}\\\frac{t_j}{n}\end{pmatrix}$$

Barański overlapping carpets

$$D \subseteq D_0 = \{0, \dots, n-1\} \times \{0, \dots, m-1\}.$$

$$S_{\underline{t},(i,j)}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} a_i & 0\\ 0 & b_j \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} t_i\\ t_j \end{pmatrix},$$

Symbolic coding

$$\begin{array}{ccc} (D^{\mathbb{N}}, \mu) & \xrightarrow{\Pi_{\underline{t}}} & (F_{\underline{t}}, \mu \circ \Pi_{\underline{t}}^{-1}) \\ & \downarrow^{\pi_{\mathrm{X}}} & \downarrow^{\pi_{\mathrm{X}}} \\ (\overline{D}_{X}^{\mathbb{N}}, \overline{\mu}) & \xrightarrow{\overline{\Pi}_{\underline{t}}} & (\pi_{\mathrm{X}}(F_{\underline{t}}), \overline{\mu} \circ \overline{\Pi}_{\underline{t}}^{-1}) \end{array}$$

Definition

A cylinder of level **k** in $D^{\mathbb{N}}$ is a set of the form

 $[\omega_0, \ldots, \omega_k] = \{ \underline{\tau} = (\tau_i)_{i=0}^{\infty} \in D^{\mathbb{N}} \text{ such that } \tau_i = \omega_i \text{ for all } 0 \le i \le k \}.$

To each cylinder we can assign the **Bernoulli measure**:

$$\mu_{\underline{p}}([\omega_0,\ldots,\omega_k]) = p_{\omega_0} p_{\omega_1} \cdots p_{\omega_k}.$$

Hochman's results

Suppose the IFS $\mathcal{I} = \{S_i(x) = ax + t_i\}_{i \in A}$ does not have super-exponential concentration of cylinders. Let $p = (p_i)_{i \in A}$ be a probability vector, and let ν be the self-similar measure associated to the IFS \mathcal{I} and the vector p,

$$\dim_H F = \min\left(\frac{\log|A|}{\log(1/a)}, 1\right).$$

Let A be a finite index set and fix $a \in (0, 1/2)$.

• The family of $(t_i)_{i \in A}$ such that the IFS $\mathcal{I} = \{ax + t_i\}_{i \in A}$ has super-exponential concentration of cylinders has Hausdorff and packing dimension |A| - 1.

Our setting

Preliminaries

Calculation of Hausdorff dimension

Preliminaries

Billingsley's Lemma

If μ is a finite measure on \mathbb{R}^d , $A \subseteq \mathbb{R}^d$ with $\mu(A) > 0$, and suppose that for some integer base $b \ge 2$,

$$\alpha_1 \le \liminf_{n \to \infty} \frac{\log \mu(\mathcal{D}_{b^n}^d(x))}{-n \log b} \le \alpha_2$$

for every $x \in A$, then $\alpha_1 \leq \dim_H(A) \leq \alpha_2$.

Preliminaries

Result

Theorem

There exists a set $E \subseteq A$ of Hausdorff dimension $|\overline{D}_Y| + |\overline{D}_X| - 1$ (in particular of zero $|\overline{D}_X| + |\overline{D}_Y|$ -dimensional Lebesgue measure) such that

$$\dim_{H}(F_{\underline{t}}) = \max_{\boldsymbol{p} \in \mathbb{P}^{|D|}} g(\boldsymbol{p}) \qquad \text{if } \underline{t} \in A \setminus E$$

where

$$g(\mathbf{p}) = \begin{cases} \frac{\sum_{i=1}^{n} R_i(\mathbf{q}) \log R_i(\mathbf{p})}{\sum_{i=1}^{n} R_i(\mathbf{p}) \log a_i} + \frac{\sum_{ij} p_{ij} \log\left(\frac{p_{ij}}{R_i(\mathbf{p})}\right)}{\sum_{j=1}^{m} S_j(\mathbf{p}) \log b_j} & \text{if } \mathbf{p} \in \mathcal{S}_{\mathcal{A}} \\ \frac{\sum_{j=1}^{m} S_j(\mathbf{p}) \log S_j(\mathbf{p})}{\sum_{j=1}^{m} S_j(\mathbf{p}) \log b_j} + \frac{\sum_{ij} p_{ij} \log\left(\frac{p_{ij}}{S_j(\mathbf{p})}\right)}{\sum_{i=1}^{n} R_i(\mathbf{p}) \log a_i} & \text{if } \mathbf{p} \in \mathcal{S}_{\mathcal{A}}^c \end{cases}$$

Our setting

Preliminaries

Calculation of Hausdorff dimension

Idea of the proof

- <u>Step 1</u>: **approximation** by a system Bedford-McMullen with **uniform fibers** (UF).
- Step 2: **projection** onto the coordinate axes.
- <u>Step 3</u>: approximation by a **system without overlapping**, with "enough maps". -Using Hotchman + Vitali covering lemma.
- Step 4: New approx with UF and induction of a **measure**.
- Step 5: Use of approx. squares + **Billingsley**'s Lemma.

.

Our setting

Preliminaries

Calculation of Hausdorff dimension

Valid parameters

Fractal dimensions

A δ -cover of F is a collection $\{U_i\}_{i=1}^{\infty}$ such that $F \subset \bigcup_{i=1}^{\infty} U_i$ and $diam(U_i) \leq \delta$ for each i.

Box-counting dimension

$$\dim_B F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}, \qquad N_{\delta}(F) = \min \# \text{ sets in } \delta - \text{cover.}$$

Hausdorff dimension

 $dim_H(F) = \inf\{s \ge 0 : \mathcal{H}^s(F) = 0\} = \sup\{s : \mathcal{H}^s(F) = \infty\},\$ where

$$\mathcal{H}^{s}(F) = \lim_{\delta \to 0} \left(\inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\} \text{ is a } \delta \text{-cover of } F \right\} \right)$$

Packing dimension

-Analogous def to Hausdorff measure but with disjoint balls of radii δ . For self-affine sets, dim_B $F = \dim_P F$.