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Shabat polynomial - only has two critical values ±1

Proposition: For any Shabat polynomial p(z), it is true that
p−1[−1, 1] is a tree, with deg(p) edges.

Theorem (Grothendieck): ALL combinatorial trees occur as
p−1[−1, 1] for some Shabat polynomial p(z).

Theorem (Bishop): Any continua can be ε-approximated in the
Hausdorff metric by some p−1[−1, 1].
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trees ⇐⇒ Shabat polynomials

infinite trees ⇐⇒ Subclass of Transcendental Functions

S2,0 - transcendental functions with two critical values ±1 and no
asymptotic values
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2

cosh′(z) = ez−e−z

2 = 0 =⇒ z = πin : n ∈ Z (critical points)

critical values: ±1
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Ωj - components of C− T .
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(1) The edges of T are C2 with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly from zero
(3) Adjacent edges have uniformly comparable lengths
(4) For non-adjacent edges e, f , we have diam(e)/dist(e, f ) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has
τ -size ≥ π. Then there is an r0 > 0, an entire f , and a
K -quasiconformal φ so that f ◦ φ = cosh ◦τ off T (r0). K depends
only on the bounded geometry constants of T . The only critical
values of f are ±1 and f has no asymptotic values.
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f : C→ C entire function

f ◦n is normal in an open set U if every sequence of f ◦k contains a
further subsequence converging locally uniformly to a holomorphic
function g : U → C

The Fatou set of f is the set of points z ∈ C for which f is normal
in some neighborhood of z . The components of the Fatou set are
called Fatou components.

A Fatou component U is called wandering if f n(U) ∩ f m(U) = ∅
for all n,m ∈ N, n 6= m
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Theorem: (Sullivan) Rational maps don’t have wandering
domains.

For f : C→ C, the singular set S(f ) consists of the critical values
and asymptotic values of f .

The Speiser class S consists of those transcendental functions for
which S(f ) is finite.

Theorem: (Golberg and Keen, Eremenko and Lyubich) Functions
in the Speiser Class don’t have wandering domains.

The Eremenko-Lyubich class B consists of those transcendental
functions with bounded singular set.
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by a quasiconformal map ρn of the disc so that:

(1) ρn(z) = z for z ∈ ∂D
(2) ρn(0) = wn where wn is a point near 1/2.

(3) ρn is conformal on 3
4
D

(4) ρn is quasiconformal on D.

Theorem: For every choice of parameters λ, (dn), (wn) with
λ ∈ πN, dn ∈ 2N, there exists a transcendental f and a
quasiconformal φ : C→ C so that:

(1) f (z) = f (z), f (−z) = f (z)
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(2)

f (z) =

{
cosh(λ sinh(φ(z))) if φ(z) ∈ S+

ρn((φ(z)− zn)dn) if φ(z) ∈ Dn
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(3) f has no asymptotic values and its set of critical values is
±1 and {wn : n ≥ 1}
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(4) φ(0) = 0, φ(R) = R and φ is conformal in S+.
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