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Shabat polynomial - only has two critical values +1
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Shabat polynomial - only has two critical values +1

Proposition: For any Shabat polynomial p(z), it is true that
p~i[—1,1] is a tree.
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Proposition: For any Shabat polynomial p(z), it is true that
p~i[—1,1] is a tree, with deg(p) edges.

Theorem (Grothendieck): ALL combinatorial trees occur as
p~1[—1,1] for some Shabat polynomial p(z).
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Shabat polynomial - only has two critical values +1

Proposition: For any Shabat polynomial p(z), it is true that
p~i[—1,1] is a tree, with deg(p) edges.

Theorem (Grothendieck): ALL combinatorial trees occur as
p~1[—1,1] for some Shabat polynomial p(z).

Theorem (Bishop): Any continua can be e-approximated in the
Hausdorff metric by some p~1[-1,1].
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trees <= Shabat polynomials
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trees <= Shabat polynomials

infinite trees <= Transcendental Functions
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trees <= Shabat polynomials

infinite trees <= Subclass of Transcendental Functions
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trees <= Shabat polynomials

infinite trees <= Subclass of Transcendental Functions

S0 - transcendental functions with two critical values 1 and no
asymptotic values
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cosh(z) == &£~
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. e'te?
cosh(z) = &—
! Z_ao—2Z
cosh’(z) = &5 —
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cosh(z) == €42
cosh’(z) =" =0 = z=7in:n€eZ
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cosh(z) == €42
cosh’(z) = €=~ =0 = z = 7in: n € Z (critical points)
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e‘+e *

cosh(z) :
cosh’(z) = €52~ =0 = z =in: n € Z (critical points)

critical values: +1
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T - unbounded, locally finite tree
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.
Q; - components of C — T
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T - unbounded, locally finite tree, with a bipartite labeling of

vertices.
Q; - components of C — T
7 :UQ; — C - the map conformal on each 2; to H,
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T - unbounded, locally finite tree, with a bipartite labeling of

vertices.
Q; - components of C — T
7 : UQ; — C - the map conformal on each €2; to H,

V - the vertices of T.
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

2 - components of C — T.

7 : UQ; — C - the map conformal on each €2; to H,.

V - the vertices of T.

V; - the image of V under 7 restricted to €2;.
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

Q; - components of C — T.

7 :UQ; — C - the map conformal on each ; to H,.

V - the vertices of T.

V; - the image of V under 7 restricted to €2;.

For r > 0, define T(r) = Ueet{z : dist(z, e) < rdiam(e)}
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

Q; - components of C — T.

7 : UQ; — C - the map conformal on each €; to H,.

V' - the vertices of T.

V; - the image of V under 7 restricted to €;.

For r > 0, define T(r) = Ueet{z : dist(z, e) < rdiam(e)}

The 7-size of edge e is the minimum length of the two images 7(e)
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

€2 - components of C — T.

7 :US; — C - the map conformal on each €Q; to H,.
V - the vertices of T.

V; - the image of V' under 7 restricted to €2;.
For r > 0, define T(r) = Uee7{z : dist(z, e) < rdiam(e)}
The 7-size of edge e is the minimum length of the two images 7(e)

T has uniformly bounded geometry if:
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

2; - components of C — T.

7 : UQ; — C - the map conformal on each €2; to H,.

V' - the vertices of T.

V; - the image of V under 7 restricted to €;.

For r > 0, define T(r) = UeeT{z : dist(z, e) < rdiam(e)}

The 7-size of edge e is the minimum length of the two images 7(e)

T has uniformly bounded geometry if:
(1) The edges of T are C? with uniform bounds.
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

2 - components of C — T.

7 : UQ; — C - the map conformal on each ; to H,.

V - the vertices of T.

Vj - the image of V under 7 restricted to €2;.

For r > 0, define T(r) = Ueet{z : dist(z, e) < rdiam(e)}

The 7-size of edge e is the minimum length of the two images 7(e)

T has uniformly bounded geometry if:

(1) The edges of T are C? with uniform bounds.

(2) The angles between adjacent edges are bounded uniformly
from zero

Kirill Lazebnik



T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

Q; - components of C — T.

7 : UQ; — C - the map conformal on each €2; to H,.

V - the vertices of T.

V; - the image of V under 7 restricted to €2;.

For r > 0, define T(r) = Ueet{z : dist(z, e) < rdiam(e)}

The 7-size of edge e is the minimum length of the two images 7(e)

T has uniformly bounded geometry if:

(1) The edges of T are C? with uniform bounds.

(2) The angles between adjacent edges are bounded uniformly
from zero

(3) Adjacent edges have uniformly comparable lengths
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T - unbounded, locally finite tree, with a bipartite labeling of
vertices.

2 - components of C — T.

7 : UQ; — C - the map conformal on each €2; to H,.

V - the vertices of T.

V; - the image of V under 7 restricted to €2;.

For r > 0, define T(r) = Ueet{z : dist(z, e) < rdiam(e)}

The 7-size of edge e is the minimum length of the two images 7(e)

T has uniformly bounded geometry if:

(1) The edges of T are C? with uniform bounds.

(2) The angles between adjacent edges are bounded uniformly
from zero

(3) Adjacent edges have uniformly comparable lengths

(4) For non-adjacent edges e, f, we have diam(e)/dist(e, f)
uniformly bounded.
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.

7 1 UQ; — C - the map conformal on each Q; to H,.
V - the vertices of T.

V; - the image of V under T restricted to Q;.

For r > 0, define T(r) = UeeT{Z : dlst(z e) < rdiam(e)}

The 7-size of edge e is the minimum length of the two images T(e)

T has uniformly bounded geometry if:
(1) The edges of T are C? with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly from zero
(3) Adjacent edges have uniformly comparable lengths
(4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem:
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.

7 : UQ; — C - the map conformal on each Q; to H,.

V - the vertices of T.

V; - the image of V under T restricted to Qj.

For r > 0, define T(r) = Uge7{z : dist(z, e) < rdiam(e)}

The T-size of edge e is the minimum length of the two images 7(e)

T has uniformly bounded geometry if:
(1) The edges of T are C? with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly from zero
(3) Adjacent edges have uniformly comparable lengths
(4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.
7 : UQ; — C - the map conformal on each Q; to H,.
V - the vertices of T.
V; - the image of V under 7 restricted to Q;.
For r > 0, define T(r) = Uoe7{z : dist(z, e) < rdiam(e)}
The 7-size of edge e is the minimum length of the two images T(e)
T has uniformly bounded geometry if:
1) The edges of T are C2 with uniform bounds.
2) The angles between adjacent edges are bounded uniformly from zero

(

(

(3) Adjacent edges have uniformly comparable lengths

(4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has
T-Size > T.
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.
7 : UQ; — C - the map conformal on each Q; to H,.
V - the vertices of T.
V; - the image of V under T restricted to Q;.
For r > 0, define T(r) = Uoe7{z : dist(z, e) < rdiam(e)}
The 7-size of edge e is the minimum length of the two images T(e)
T has uniformly bounded geometry if:
(1) The edges of T are C2 with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly from zero
(
(

3) Adjacent edges have uniformly comparable lengths
4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has
T-size > m. Then there is an ro > 0, an entire f, and a
K-quasiconformal ¢
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.
7 : UQ; — C - the map conformal on each Q; to H,.
V - the vertices of T.
V; - the image of V under T restricted to Q;.
For r > 0, define T(r) = Uoe7{z : dist(z, e) < rdiam(e)}
The 7-size of edge e is the minimum length of the two images T(e)
T has uniformly bounded geometry if:
(1) The edges of T are C2 with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly from zero
(
(

3) Adjacent edges have uniformly comparable lengths
4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has

T-size > m. Then there is an ryp > 0, an entire f, and a
K -quasiconformal ¢ so that f o ¢ = cosh ot off T(rp).
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.
T UQj — C - the map conformal on each Q/ to H,.
V - the vertices of T.
V; - the image of V' under T restricted to Q;.
For r > 0, define T(r) = Uge7{z : dist(z, e) < rdiam(e)}
The 7-size of edge e is the minimum length of the two images 7(e)
T has uniformly bounded geometry if:
1) The edges of T are C? with uniform bounds.
2) The angles between adjacent edges are bounded uniformly from zero

(

(

(3) Adjacent edges have uniformly comparable lengths

(4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has
T-size > w. Then there is an ry > 0, an entire f, and a
K-quasiconformal ¢ so that f o ¢ = cosh ot off T(ry). K depends
only on the bounded geometry constants of T.
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T - unbounded, locally finite tree, with a bipartite labeling of vertices.
Q; - components of C — T.
7 : UQ; — C - the map conformal on each Q; to H,.
V - the vertices of T.
V; - the image of V under T restricted to Q;.
For r > 0, define T(r) = Uoe7{z : dist(z, e) < rdiam(e)}
The 7-size of edge e is the minimum length of the two images T(e)
T has uniformly bounded geometry if:
1) The edges of T are C? with uniform bounds.
2) The angles between adjacent edges are bounded uniformly from zero

(

(

(3) Adjacent edges have uniformly comparable lengths

(4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has
T-size > . Then there is an ryp > 0, an entire f, and a
K-quasiconformal ¢ so that f o ¢ = cosh ot off T(ry). K depends
only on the bounded geometry constants of T. The only critical
values of f are £1 and f has no asymptotic values.
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f : C — C entire function
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f : C — C entire function

f°" is normal in an open set U
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f : C — C entire function

f°n is normal in an open set U if every sequence of f°¥ contains a
further subsequence converging locally uniformly to a holomorphic
function g : U —» C
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f : C — C entire function

f°" is normal in an open set U if every sequence of f°% contains a
further subsequence converging locally uniformly to a holomorphic
function g : U —» C

The Fatou set of f is the set of points z € C for which f is normal
in some neighborhood of z.
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f : C — C entire function

f°n is normal in an open set U if every sequence of f°X contains a
further subsequence converging locally uniformly to a holomorphic
function g : U — C

The Fatou set of f is the set of points z € C for which f is normal
in some neighborhood of z. The components of the Fatou set are
called Fatou components.
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f : C — C entire function

f°n is normal in an open set U if every sequence of f°X contains a
further subsequence converging locally uniformly to a holomorphic
function g : U — C

The Fatou set of f is the set of points z € C for which f is normal
in some neighborhood of z. The components of the Fatou set are
called Fatou components.

A Fatou component U is called wandering if f"(U)Nf™(U) =0
forall n,meN,n#m
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Theorem: (Sullivan) Rational maps don’t have wandering
domains.
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Theorem: (Sullivan) Rational maps don’t have wandering
domains.

For f : C — C, the singular set S(f) consists of the critical values
and asymptotic values of f.
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Theorem: (Sullivan) Rational maps don’t have wandering
domains.

For f : C — C, the singular set S(f) consists of the critical values
and asymptotic values of f.

The Speiser class S consists of those transcendental functions for
which S(f) is finite.
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Theorem: (Sullivan) Rational maps don’t have wandering
domains.

For f : C — C, the singular set S(f) consists of the critical values
and asymptotic values of f.

The Speiser class S consists of those transcendental functions for
which S(f) is finite.

Theorem: (Golberg and Keen, Eremenko and Lyubich) Functions
in the Speiser Class don’t have wandering domains.
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Theorem: (Sullivan) Rational maps don’t have wandering
domains.

For f : C — C, the singular set S(f) consists of the critical values
and asymptotic values of f.

The Speiser class S consists of those transcendental functions for
which S(f) is finite.

Theorem: (Golberg and Keen, Eremenko and Lyubich) Functions
in the Speiser Class don’t have wandering domains.

The Eremenko-Lyubich class 5 consists of those transcendental
functions with bounded singular set.
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StT={x+iy: x>0yl <n/2}
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ST ={x+1iy:x>0,|y| <7m/2} is mapped conformally to H, by
A - sinh.
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St={x+iy:x>0,|y] <n/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.
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ST ={x+1iy:x>0,|y| <nm/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh ™ (§ | cosh(nm) )
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ST ={x+1iy:x>0,|y| <n/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh™* (5 |2 cosh(nm)))

Zn = ap+im
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ST ={x+1iy:x>0,|y| <n/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh™* (5 | 2 cosh(nr)])

zp=apn+im,Dp={z€C:|z—-z]| <1}
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ST ={x+1iy:x>0,|y| <nm/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

a, = cosh™! (% L% cosh(n)|)

zp=ap+in,Dp={z€ C:|z— z,| <1} is mapped
holomorphically to |z| < 1 by z — (z — z,)%.
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ST ={x+1iy:x>0,|y| <n/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh™* (5 | 2 cosh(nr)])

zn=ap+in,D,={z€C:|z— z,] <1} is mapped
holomorphically to |z| < 1 by z — (z — z,)%. Then by a
quasiconformal map p of the disc so that:
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ST ={x+1iy:x>0,l|y| < m/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh™* (5 | 2 cosh(nm)])

zp=apn+in,Dp={z€ C:|z—z,] <1} is mapped
holomorphically to |z| < 1 by z — (z — z,)%. Then by a
quasiconformal map p, of the disc so that:

(1) pn(z) = z for z € OD
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St={x+iy:x>0,|y] <n/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh™* (5 |2 cosh(nm)))

zp=ap+in,Dp={z€ C:|z— 2z <1} is mapped
holomorphically to |z| < 1 by z — (z — z,)%. Then by a
quasiconformal map p,, of the disc so that:

(1) pn(z) = z for z € OD

(2) pn(0) = w, where w, is a point near 1/2.
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ST ={x+1iy:x>0,|y| <nm/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh™" (¥ | 2 cosh(nm)])

zp=apn+in,Dp={z€ C:|z—z,] <1} is mapped
holomorphically to |z| < 1 by z — (z — z,)%. Then by a
quasiconformal map p, of the disc so that:

(1) pn(z) = z for z € OD

(2) pn(0) = w, where w, is a point near 1/2.

(3) pn is conformal on %ID)
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ST ={x+1iy:x>0,|y| <n/2} is mapped conformally to H, by
A - sinh. Then holomorphically to C — [—1, 1] by cosh.

an = cosh ™ (§ | cosh(nm) )

zp=ap+in,Dp={z€ C:|z— z,| <1} is mapped
holomorphically to |z| < 1 by z — (z — z,)%. Then by a
quasiconformal map p, of the disc so that:

(1) pn(z) = z for z € OD

(2) pn(0) = w, where w, is a point near 1/2.

(3) pn is conformal on 3D

(4) pn is quasiconformal on D.
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St ={x+iy:x>0,|y| < m/2} is mapped conformally to H, by A - sinh. Then holomorphically to
C — [-1, 1] by cosh.

a, = cosh™ 1! (% L% cosh(m-r)J)

zp = ap +im, Dy = {z € C: |z — z,| < 1} is mapped holomorphically to |z| < 1 by z — (z — z,)%. Then
by a quasiconformal map pj, of the disc so that:

(1) pn(z) = z for z € OD

(2) pn(0) = wp where wj, is a point near 1/2.

(3) pn is conformal on %]D)

(4) pn is quasiconformal on D.

Theorem:
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St ={x+iy:x>0,|y| < m/2} is mapped conformally to H, by X - sinh. Then holomorphically to
C — [—1, 1] by cosh.

ap = cosh™! (% L% cosh(m-r)J)
zp =ap+ im,Dp = {z € C: |z — z,| < 1} is mapped holomorphically to |z| < 1 by z — (z — zn)d"4 Then
by a quasiconformal map pj, of the disc so that:
(1) pn(z) = z for z € OD
(2) pn(0) = wp where wj, is a point near 1/2.
(3) pn is conformal on %]D?
(4) pn is quasiconformal on D.

Theorem: For every choice of parameters \, (dy), (w,) with
A e N, d, € 2N
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St ={x+iy:x>0,|y| < m/2} is mapped conformally to H, by A - sinh. Then holomorphically to
C — [—1, 1] by cosh.

ap = cosh™! (} LA cosh(mr)J)

£
Zn = ap+im, Dy = {z € C: |z — z,| < 1} is mapped holomorphically to |z| < 1 by z — (z — z,)%. Then
by a quasiconformal map p, of the disc so that:
(1) pn(z) = z for z € OD
(2) pn(0) = wp where w;, is a point near 1/2.
(3) pn is conformal on %]D)
(4) pn is quasiconformal on D.

Theorem: For every choice of parameters X, (dy), (w,) with

A € 7N, d, € 2N, there exists a transcendental f and a
quasiconformal ¢ : C — C so that:
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St ={x+iy:x>0,|y| < m/2} is mapped conformally to H, by A - sinh. Then holomorphically to
C — [—1, 1] by cosh.

ap = cosh™! ({ L% cosh(nTr)J)

zp = ag +im, Dy = {z € C: |z — 25| < 1} is mapped holomorphically to |z| < 1 by z — (z — z,)%. Then
by a quasiconformal map pj, of the disc so that:

(1) pn(z) = z for z € OD

(2) pn(0) = wp where wj, is a point near 1/2.

(3) pn is conformal on %]D

(4) pn is quasiconformal on D.

Theorem: For every choice of parameters X, (dy), (w,) with
A € N, d, € 2N, there exists a transcendental f and a
quasiconformal ¢ : C — C so that:

(1) £(z) = f(2), f(=2) = f(2)
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St ={x+iy:x>0,|y| < m/2} is mapped conformally to H, by X - sinh. Then holomorphically to
C — [—1, 1] by cosh.

ap = cosh™! (§ \-% cosh(mr)J)
zp =ap+im,Dp = {z € C: |z — z,| < 1} is mapped holomorphically to |z|] < 1 by z — (z — zn)d”. Then
by a quasiconformal map pj, of the disc so that:

(1) pn(z) = z for z € OD

2) pn(0) = w, where wp, is a point near 1/2.

(
(3) pn is conformal on %]D
(

4) pp is quasiconformal on D.

Theorem: For every choice of parameters \, (d,), (wy,) with
A € wN, d, € 2N, there exists a transcendental f and a
quasiconformal ¢ : C — C so that:

(1) £(z) = f(2), f(=2) = f(2)
(2)

cosh(Asinh(¢(2))) if ¢(z) € ST

&) = o(6(2) = 2)™)  if 6(2) € D,
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St = {x+iy:x>0,|y| < m/2} is mapped conformally to H, by A - sinh. Then holomorphically to
C — [—1, 1] by cosh.

a, = cosh™ 1! (% L% cosh(m‘r)J)
Zn=ap+im, Dy = {z € C: |z — z,| < 1} is mapped holomorphically to |z| < 1 by z — (z — z,)%. Then
by a quasiconformal map p, of the disc so that:

(1) pn(z) = z for z € D

(2) pn(0) = wp where w, is a point near 1/2.
(3) pn is conformal on %]D)
(4) pn is quasiconformal on D.

Theorem: For every choice of parameters X, (dy), (w,) with
A € 7N, d, € 2N, there exists a transcendental f and a
quasiconformal ¢ : C — C so that:

(1) £(z) = f(2), f(=2) = f(2)
(2)

) cosh(Asinh(¢(2))) if ¢(z) € ST
f(Z) - dn .
pn((¢(2) = z))  if ¢(2) € Dy

(3) f has no asymptotic values and its set of critical values is
+1 and {w,:n>1}

Kirill Lazebnik



ST ={x+iy:x>0,|y| < m/2} is mapped conformally to H, by X - sinh. Then holomorphically to
C — [-1, 1] by cosh.

ap = cosh™! (§ \-% cosh(mr)J)
zp =ap+im,Dp = {z € C: |z — z,| < 1} is mapped holomorphically to |z| < 1 by z — (z — zn)d”. Then
by a quasiconformal map pj, of the disc so that:

(1) pn(z) = z for z € OD

(2) pn(0) = wp where wj, is a point near 1/2.

(3) pn is conformal on %]D

(4) pn is quasiconformal on D.

Theorem: For every choice of parameters \, (dp), (wy) with
A € wN, d, € 2N, there exists a transcendental f and a
quasiconformal ¢ : C — C so that:

(1) £(z) = f(2), f(=2) = f(2)
(2)

cosh(Asinh(¢(2))) if ¢(z) € ST

&) = o(6(2) = 2)™)  if 6(2) € D,

(3) f has no asymptotic values and its set of critical values is
+1 and {w,:n>1}
(4) ¢(0) = 0,4(R) =R and ¢ is conformal in ST.
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