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Preliminaries

Suppose f is a transcendental entire function.
I Julia set J (f ) and escaping set I(f ).

I I(f ) 6= ∅ using Wiman-Valiron theory (Eremenko 1989).
I J (f ) = ∂I(f ).
I Singular values: critical values and asymptotic values.
I Order of growth:

ρ(f ) = lim sup
r→∞

log log M(r , f )

log r
,

where M(r , f ) = max|z|=r |f (z)| is the maximal modulus.
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Eremenko-Lyubich Class B

I Bounded set of singularities.
I Logarithmic change of variables.
I Expanding property.



Bounded set of singularities

I Singular set Sing(f−1) :=
{critical values and (finite) asymptotic values of f}.

I An entire function f is in Eremenko-Lyubich Class B if
Sing(f−1) is bounded.

I I(f ) ⊂ J (f ), and hence J (f ) = I(f ).
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Logarithmic change of variables

Suppose f ∈ B, then, by definition, there exists a R ≥ 0 such
that Sing(f−1) ⊂ {z : |z| ≤ eR}. We use the following notations:

A = {z ∈ C : |z| > eR}, U = f−1(A),

V = C \ U,

W = exp−1(U), H = {z ∈ C : Re z > R}.

By logarithmic change of variables, we mean the following
commutative diagram:
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Logarithmic change of variables

U
0

V
r

I For a given r > 0 sufficiently large, define

θ(r) = meas{ t ∈ [0,2π] : reit ∈ V}.
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Expanding property

Theorem (Eremenko-Lyubich, 1992)
Suppose F is obtained from f by using logarithmic change of
variables, then

|F ′(z)| ≥ Re F (z)− R
4π

.



Lebesgue measure of Julia sets and Escaping sets

I McMullen’s result.
I Eremenko-Lyubich condition.
I An example.
I Aspenberg-Bergweiler condition.



McMullen’s result

Theorem (McMullen, 1987)

areaJ (sin(αz + β)) > 0, for any α 6= 0, β ∈ C.



Eremenko-Lyubich condition

Theorem (Eremenko-Lyubich, 1992)
Suppose f ∈ B is a transcendental entire function satisfying

lim inf
r→∞

1
log r

∫ r

1
θ(t)

dt
t
> 0, (1)

then area I(f ) = 0.
We call condition (1) the Eremenko-Lyubich condition.



Eremenko-Lyubich condition

Strip with certain width



Eremenko-Lyubich condition

Sector with certain opening



Eremenko-Lyubich condition

Wierd case of EL− condition



An explicit example

Mittag-Leffler’s function:

MLα(z) =
∞∑

n=0

zn

Γ(αn + 1)
, α ∈ (0,2).

I ρ(MLα) = 1
α .

I MLα is bounded in the sector

{reit : r > 0, |t − π| ≤ (1− 1
2
α)π}.

I MLα ∈ B (Aspenberg, Bergweiler).
I area I(MLα) = 0 (Eremenko-Lyubich condition).
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Aspenberg-Bergweiler condition

Theorem (Aspenberg-Bergweiler, 2012)
Let f ∈ B and suppose that f has N logarithmic tracts. If there
exists m ∈ N such that

log log M(r , f ) ≤
(

N
2

+
1

logm r

)
log r

for large r , then area I(f ) > 0.
Note that Denjoy-Carleman-Ahlfors Theorem implies

N asymptotic spots =⇒ ρ(f ) ≥ N
2
.



Aspenberg-Bergweiler condition

Is the Aspenberg-Bergweiler condition best possible?



Main results and ideas of proof

I Main results.
I Ideas of proof.



Main results

Theorem
Let f ∈ B with ρ(f ) < 1 and have a logarithmic tract U. Suppose
θ(r) ≥ θ0(r) for large r > 0, where θ0(r) is continuous,
decreasing and satisfies

∞∑
k=1

θ0

(
Ek (0)

)
=∞,

where E(z) = exp(z). Then area I(f ) = 0.



Idea of proof

I Model function F in logarithmic coordinates.

I Consider

T = {z : Re F n(z) > R0, for all n ∈ N} ⊃ I(F ),

where R0 > R.
I Applying Bescovitch covering lemma and Koebe’s

distortion theorem, for a large square P, we have

area T ∩ P = 0.

I area I(f ) = 0.
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Main results

Theorem (Optimality of Aspenberg-Bergweiler condition)
There exists an entire function in class B with ρ(f ) =

1
2

for
which the escaping set has measure zero.



Idea of proof

Consider a sequence {an} satisfying

1 ≤ a0 ≤ a1 ≤ · · · ≤ an ≤ . . . ,

and ε(r) which is decreasing and tends to zero slower than any
of 1/ logm for m ∈ N. Define

f (z) =
∞∏

j=0

(1− z
aj

)

such that
n(r , f ) = rρ(r) + O(1),

where ρ(r) = 1
2 + ε(r).



Idea of proof

I ρ(r) is a proximate order.
That is, ρ(r)→ ρ and ρ′(r)r log r → 0.

I f (z) is bounded on {reiθ : |θ| = ε(r)}.
I f is bounded in {reiθ : |θ| ≤ ε(r)} (Ahlfors distortion

theorem).
I f ∈ LP class implies f ∈ B. (LP class = Laguerre-Pólya

class = closure of real polynomials with real zeros).
I Applying the first theorem, area I(f ) = 0.
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Thank you !
Gracias !
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