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Suppose f is a transcendental entire function.
Julia set J(f) and escaping set Z(f).
Z(f) # 0 using Wiman-Valiron theory (Eremenko 1989).

v

v

» J(f) = 0Z(f).
» Singular values: critical values and asymptotic values.
» Order of growth:
, loglog M(r, f)
f) =limsup ————,
p(f) M Sup log 7

where M(r, f) = max,—.|f(z)| is the maximal modulus.



Eremenko-Lyubich Class B

» Bounded set of singularities.
» Logarithmic change of variables.
» Expanding property.
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Bounded set of singularities

» Singular set Sing(f~1) :=
{critical values and (finite) asymptotic values of f}.

» An entire function f is in Eremenko-Lyubich Class B if
Sing(f~") is bounded.

» Z(f) c J(f), and hence J(f) = Z(f).



Logarithmic change of variables

Suppose f € B, then, by definition, there exists a R > 0 such
that Sing(f~') c {z : |z| < ef}. We use the following notations:

A={zeC: |z|> €}, U=FT1(A),
V=C\U,
W=exp '(U), H={zeC:Rez > R}.

By logarithmic change of variables, we mean the following
commutative diagram:
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Logarithmic change of variables

» For a given r > 0 sufficiently large, define

0(r) = meas{ t € [0,27] : re" € V}.



Expanding property

Theorem (Eremenko-Lyubich, 1992)

Suppose F is obtained from f by using logarithmic change of
variables, then

F(2)] > Re F(z) — R‘
47



Lebesgue measure of Julia sets and Escaping sets

» McMullen’s result.

» Eremenko-Lyubich condition.

» An example.

» Aspenberg-Bergweiler condition.



McMullen’s result

Theorem (McMullen, 1987)

area J(sin(az + B)) > 0, forany o # 0,8 € C.



Eremenko-Lyubich condition

Theorem (Eremenko-Lyubich, 1992)
Suppose f € B is a transcendental entire function satisfying

P roo.at
IlrrELgfbw/1 9(1‘)7 >0, (1)

then areaZ(f) = 0.
We call condition (1) the Eremenko-Lyubich condition.
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Sector with certain opening



Eremenko-Lyubich condition
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An explicit example

Mittag-Leffler’s function:

Z: an—|—1 , a€(0,2).

v

p(MLy) = 3
ML,, is bounded in the sector

v

{re" r>0,|t—n|<(1- %a)ﬂ}.

v

ML, € B (Aspenberg, Bergweiler).
areaZ(ML,) = 0 (Eremenko-Lyubich condition).

v



Aspenberg-Bergweiler condition

Theorem (Aspenberg-Bergweiler, 2012)

Let f € B and suppose that f has N logarithmic tracts. If there
exists m € N such that

N 1
loglog M(r, f) < (2 + Iog’"r) log r

for large r, then areaZ(f) > 0.
Note that Denjoy-Carleman-Ahlfors Theorem implies

N asymptotic spots = p(f) > g



Aspenberg-Bergweiler condition

Is the Aspenberg-Bergweiler condition best possible?



Main results and ideas of proof

» Main results.
» ldeas of proof.



Main results

Theorem

Let f € B with p(f) < 1 and have a logarithmic tract U. Suppose
0(r) > 6o(r) for large r > 0, where 0y(r) is continuous,
decreasing and satisfies

300 (E4(0)) = o,
k=1

where E(z) = exp(z). Then areaZ(f) = 0.
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» Model function F in logarithmic coordinates.
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v

T ={z:ReF"(z) > Ry, forall ne N} > Z(F),

where Ry > R.

Applying Bescovitch covering lemma and Koebe’s
distortion theorem, for a large square P, we have

v

areaTNP=0.

» areaZ(f) =0.



Main results

Theorem (Optimality of Aspenberg-Bergweiler condition)

. . . . 1
There exists an entire function in class B with p(f) = > for
which the escaping set has measure zero.



|dea of proof

Consider a sequence {a,} satisfying

1<g<a<---<ap<...

)

and ¢(r) which is decreasing and tends to zero slower than any
of 1/log” for m € N. Define

such that
n(r,f) = r') + 0(1),

where p(r) = % +&(r).
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v

p(r) is a proximate order.

That is, p(r) — pand p/(r)rlogr — 0.

f(z) is bounded on {re’ : |0] = (r)}.

f is bounded in {re : |6 < £(r)} (Ahlfors distortion
theorem).

f € LP class implies f € B. (LP class = Laguerre-Pdlya
class = closure of real polynomials with real zeros).

Applying the first theorem, area Z(f) = 0.

v

v

v

v



Thank you !
Gracias !
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