On the escaping set of exponential maps

Patrick Comdühr

Christian-Albrechts-Universität zu Kiel

Barcelona, 24 November 2015

2 Connectivity for real parameters

Consider the family

$$f_{a}\colon \mathbb{C} o \mathbb{C}, \,\, f_{a}(z)=e^{z}+a, \,\, a\in \mathbb{C}.$$

Consider the family

$$f_a \colon \mathbb{C} \to \mathbb{C}, \ f_a(z) = e^z + a, \ a \in \mathbb{C}.$$

Question: What can we say about the connectivity of its escaping sets

$$\mathcal{I}(f_{\mathsf{a}}) := \{z \in \mathbb{C} : f_{\mathsf{a}}^n(z) o \infty \text{ as } n o \infty\}$$
?

Consider the family

$$f_a \colon \mathbb{C} \to \mathbb{C}, \ f_a(z) = e^z + a, \ a \in \mathbb{C}.$$

Question: What can we say about the connectivity of its escaping sets

$$\mathcal{I}(f_a) := \{ z \in \mathbb{C} : f_a^n(z) \to \infty \text{ as } n \to \infty \} ?$$

1.1 The case a = -1

Consider the family

$$f_a\colon \mathbb{C} o \mathbb{C}, \ f_a(z) = e^z + a, \ a \in \mathbb{C}.$$

Question: What can we say about the connectivity of its escaping sets

$$\mathcal{I}(f_a) := \{ z \in \mathbb{C} : f_a^n(z) \to \infty \text{ as } n \to \infty \} ?$$

Remark.

Remark. For $a \in (-1, \infty)$ we have • $\mathbb{R} \subset \mathcal{I}(f_a)$.

• $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)

• $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1 + a)$ for all $x \in \mathbb{R}$)

• (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

• For all $a \in \mathbb{C}$ we have $f_a \in \mathcal{B}$.

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

- For all $a \in \mathbb{C}$ we have $f_a \in \mathcal{B}$.
- (Eremenko-Lyubich 1992) If $f \in \mathcal{B}$, then $\mathcal{I}(f) \subset \mathcal{J}(f)$.

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

- For all $a \in \mathbb{C}$ we have $f_a \in \mathcal{B}$.
- (Eremenko-Lyubich 1992) If $f \in \mathcal{B}$, then $\mathcal{I}(f) \subset \mathcal{J}(f)$.
- In fact $\overline{\mathcal{I}(f)} = \mathcal{J}(f)$, because $\mathcal{J}(f) = \partial \mathcal{I}(f)$.

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

- For all $a \in \mathbb{C}$ we have $f_a \in \mathcal{B}$.
- (Eremenko-Lyubich 1992) If $f \in \mathcal{B}$, then $\mathcal{I}(f) \subset \mathcal{J}(f)$.
- In fact $\overline{\mathcal{I}(f)} = \mathcal{J}(f)$, because $\mathcal{J}(f) = \partial \mathcal{I}(f)$.

If $a \in \mathbb{C}$ and $a \notin \mathcal{J}(f_a)$, then $\mathcal{J}(f_a)$ and hence $\mathcal{I}(f_a)$ is disconnected.

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

- For all $a \in \mathbb{C}$ we have $f_a \in \mathcal{B}$.
- (Eremenko-Lyubich 1992) If $f \in \mathcal{B}$, then $\mathcal{I}(f) \subset \mathcal{J}(f)$.
- In fact $\overline{\mathcal{I}(f)} = \mathcal{J}(f)$, because $\mathcal{J}(f) = \partial \mathcal{I}(f)$.

If $a \in \mathbb{C}$ and $a \notin \mathcal{J}(f_a)$, then $\mathcal{J}(f_a)$ and hence $\mathcal{I}(f_a)$ is disconnected. In which way does the connectivity of $\mathcal{I}(f_a)$ depend on the parameter a?

- $\mathbb{R} \subset \mathcal{I}(f_a)$. (Because $f_a(x) \ge x + (1+a)$ for all $x \in \mathbb{R}$)
- (Devaney, Krych 1984) $\mathcal{J}(f_a) = \mathbb{C}$.

Let us look at the Eremenko-Lyubich class

 $\mathcal{B} := \{f : \mathbb{C} \to \mathbb{C} \text{ entire and transcendental} : \operatorname{sing}(f_a^{-1}) \text{ is bounded}\}.$

- For all $a \in \mathbb{C}$ we have $f_a \in \mathcal{B}$.
- (Eremenko-Lyubich 1992) If $f \in \mathcal{B}$, then $\mathcal{I}(f) \subset \mathcal{J}(f)$.
- In fact $\overline{\mathcal{I}(f)} = \mathcal{J}(f)$, because $\mathcal{J}(f) = \partial \mathcal{I}(f)$.

If $a \in \mathbb{C}$ and $a \notin \mathcal{J}(f_a)$, then $\mathcal{J}(f_a)$ and hence $\mathcal{I}(f_a)$ is disconnected. In which way does the connectivity of $\mathcal{I}(f_a)$ depend on the parameter a? Lasse Rempe-Gillen has given an answer to this question:

Theorem (Rempe-Gillen 2008)

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

P. Comdühr (CAU Kiel)

Escaping set of exponential maps

Theorem (Rempe-Gillen 2008)

For $a \in (-1, \infty)$ the set $\mathcal{I}(f_a)$ is connected.

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

P. Comdühr (CAU Kiel)

Escaping set of exponential maps

Theorem (Rempe-Gillen 2008)

For $a \in (-1, \infty)$ the set $\mathcal{I}(f_a)$ is connected.

To prove the theorem, we construct a connected and dense subset of $\mathcal{I}(f_a)$.

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

Theorem (Rempe-Gillen 2008)

For $a \in (-1, \infty)$ the set $\mathcal{I}(f_a)$ is connected.

To prove the theorem, we construct a connected and dense subset of $\mathcal{I}(f_a)$. The idea of this continuum is due to Devaney¹:

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

P. Comdühr (CAU Kiel)

Escaping set of exponential maps

Theorem (Rempe-Gillen 2008)

For $a \in (-1, \infty)$ the set $\mathcal{I}(f_a)$ is connected.

To prove the theorem, we construct a connected and dense subset of $\mathcal{I}(f_a)$. The idea of this continuum is due to Devaney¹:

Denote

•
$$S_+ := \{ z \in \mathbb{C} : 0 < \operatorname{Im}(z) < \pi \}$$

•
$$S_{-} := \{z \in \mathbb{C} : -\pi < \operatorname{Im}(z) < 0\}$$

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

Theorem (Rempe-Gillen 2008)

For $a \in (-1, \infty)$ the set $\mathcal{I}(f_a)$ is connected.

To prove the theorem, we construct a connected and dense subset of $\mathcal{I}(f_a)$. The idea of this continuum is due to Devaney¹:

Denote

•
$$S_+ := \{z \in \mathbb{C} : 0 < \operatorname{Im}(z) < \pi\}$$

• $S_- := \{z \in \mathbb{C} : -\pi < \operatorname{Im}(z) < 0\}$
• $\mathbb{H}_+ := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$
• $\mathbb{H}_- := \{z \in \mathbb{C} : \operatorname{Im}(z) < 0\}$

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

Theorem (Rempe-Gillen 2008)

For $a \in (-1, \infty)$ the set $\mathcal{I}(f_a)$ is connected.

To prove the theorem, we construct a connected and dense subset of $\mathcal{I}(f_a)$. The idea of this continuum is due to Devaney¹:

Denote

•
$$S_{+} := \{z \in \mathbb{C} : 0 < \operatorname{Im}(z) < \pi\}$$

• $S_{-} := \{z \in \mathbb{C} : -\pi < \operatorname{Im}(z) < 0\}$
• $\mathbb{H}_{+} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$
• $\mathbb{H}_{-} := \{z \in \mathbb{C} : \operatorname{Im}(z) < 0\}$
• $L_{a,\sigma} : \mathbb{H}_{\sigma} \to S_{\sigma}$ the branch of f_{a}^{-1} in S_{σ} , where $\sigma \in \{+, -\}$

¹Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634.

We can extend $L_{a,\sigma}$ to a homeomorphism $\tilde{L}_{a,\sigma} \colon \overline{\mathbb{H}_{\sigma}} \setminus \{a\} \to \overline{S_{\sigma}}$, which we denote again by $L_{a,\sigma}$ for simplicity.

We can extend $L_{a,\sigma}$ to a homeomorphism $\tilde{L}_{a,\sigma} \colon \overline{\mathbb{H}_{\sigma}} \setminus \{a\} \to \overline{S_{\sigma}}$, which we denote again by $L_{a,\sigma}$ for simplicity.

•
$$\gamma^{\sigma}_{a,0} := (-\infty, a)$$
 and $\gamma^{\sigma}_{a,k+1} := L_{a,\sigma}(\gamma^{\sigma}_{a,k})$ for all $k \in \mathbb{N}_0$

•
$$\gamma_{a,0}^{\sigma} := (-\infty, a)$$
 and $\gamma_{a,k+1}^{\sigma} := L_{a,\sigma}(\gamma_{a,k}^{\sigma})$ for all $k \in \mathbb{N}_0$
• $\Gamma_a^{\sigma} := \bigcup_{k \ge 0} \gamma_{a,k}^{\sigma}$

•
$$\gamma_{a,0}^{\sigma} := (-\infty, a)$$
 and $\gamma_{a,k+1}^{\sigma} := L_{a,\sigma}(\gamma_{a,k}^{\sigma})$ for all $k \in \mathbb{N}_0$
• $\Gamma_a^{\sigma} := \bigcup_{k \ge 0} \gamma_{a,k}^{\sigma}$

For simplicity we just write γ_k^{σ} and Γ^{σ} .

7 / 16

•
$$\gamma_{a,0}^{\sigma} := (-\infty, a)$$
 and $\gamma_{a,k+1}^{\sigma} := L_{a,\sigma}(\gamma_{a,k}^{\sigma})$ for all $k \in \mathbb{N}_0$
• $\Gamma_a^{\sigma} := \bigcup_{k \ge 0} \gamma_{a,k}^{\sigma}$

For simplicity we just write γ_k^{σ} and Γ^{σ} .

By continuing this procedure, we obtain:

The set $\overline{\Gamma^+}$. (Borrowed from Lasse Rempe-Gillen²)

²L. Rempe, The escaping set of the exponential., Ergodic Theory & Dynam. Systems 30 (2010), 595-599

By continuing this procedure, we obtain:

The set $\overline{\Gamma^+}$. (Borrowed from Lasse Rempe-Gillen²)

It seems that γ_k^{σ} is "close" to $\overline{\Gamma^{\sigma}}$ for large k.

²L. Rempe, The escaping set of the exponential., Ergodic Theory & Dynam. Systems 30 (2010), 595-599

Definition (Hausdorff distance/limit)

Let (X, d) be a metric space and A, B nonempty subsets of X.
Let (X, d) be a metric space and A, B nonempty subsets of X. Then we define

$$d_H(A,B) := \max\left\{\sup_{a\in A}\inf_{b\in B}d(a,b), \sup_{b\in B}\inf_{a\in A}d(a,b)
ight\}$$

as the Hausdorff distance between A and B.

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we define

$$d_{H}(A,B) := \max\left\{\sup_{a\in A}\inf_{b\in B}d(a,b), \sup_{b\in B}\inf_{a\in A}d(a,b)
ight\}$$

as the Hausdorff distance between A and B.

Moreover, we call a closed set $C \subset X$ the **Hausdorff limit** of the sequence $(C_n)_{n \in \mathbb{N}} \subset X^{\mathbb{N}}$ of closed sets with respect to the Hausdorff distance, if

$$\lim_{n\to\infty}d_H(C_n,C)=0.$$

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we define

$$d_{H}(A,B) := \max\left\{\sup_{a\in A}\inf_{b\in B}d(a,b), \sup_{b\in B}\inf_{a\in A}d(a,b)
ight\}$$

as the Hausdorff distance between A and B.

Moreover, we call a closed set $C \subset X$ the **Hausdorff limit** of the sequence $(C_n)_{n \in \mathbb{N}} \subset X^{\mathbb{N}}$ of closed sets with respect to the Hausdorff distance, if

$$\lim_{n\to\infty}d_H(C_n,C)=0.$$

Lemma (Hausdorff limit for γ_k^{σ})

The set $\overline{\Gamma^{\sigma}} \cup \{\infty\}$ is the Hausdorff limit of the sequence $(\gamma_k^{\sigma} \cup \{\infty\})_{k \in \mathbb{N}_0}$ with respect to the chordal metric χ .

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we define

$$d_{H}(A,B) := \max\left\{\sup_{a\in A}\inf_{b\in B}d(a,b), \sup_{b\in B}\inf_{a\in A}d(a,b)
ight\}$$

as the Hausdorff distance between A and B.

Moreover, we call a closed set $C \subset X$ the **Hausdorff limit** of the sequence $(C_n)_{n \in \mathbb{N}} \subset X^{\mathbb{N}}$ of closed sets with respect to the Hausdorff distance, if

$$\lim_{n\to\infty}d_H(C_n,C)=0.$$

Lemma (Hausdorff limit for γ_k^{σ})

The set $\overline{\Gamma^{\sigma}} \cup \{\infty\}$ is the Hausdorff limit of the sequence $(\gamma_k^{\sigma} \cup \{\infty\})_{k \in \mathbb{N}_0}$ with respect to the chordal metric χ . In particular, $\bigcup_{k \ge k_0} \gamma_k^{\sigma}$ is a dense subset of $\overline{\Gamma^{\sigma}}$ for all $k_0 \in \mathbb{N}_0$.

Lemma Let $X \subset \hat{\mathbb{C}}$.

Let $X \subset \hat{\mathbb{C}}$. Suppose for all $U \subset \mathbb{C}$ open we have $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$

Let $X \subset \hat{\mathbb{C}}$. Suppose for all $U \subset \mathbb{C}$ open we have $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$ Then X is connected

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \quad \land \quad X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected

Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets $\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$ and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$.

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

• Take $z_0 \in \Gamma^{\sigma} \cap U$.

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

• Take
$$z_0 \in \Gamma^{\sigma} \cap U$$
. $\implies \exists k_0 \in \mathbb{N}_0 \ \forall k \ge k_0 : \gamma_k^{\sigma} \cap U \neq \emptyset$

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

- Take $z_0 \in \Gamma^{\sigma} \cap U$. $\implies \exists k_0 \in \mathbb{N}_0 \ \forall k \ge k_0 : \gamma_k^{\sigma} \cap U \neq \emptyset$
- γ_k^σ connected

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

• Take
$$z_0 \in \Gamma^{\sigma} \cap U$$
. $\implies \exists k_0 \in \mathbb{N}_0 \ \forall k \ge k_0 : \gamma_k^{\sigma} \cap U \neq \emptyset$

•
$$\gamma_k^{\sigma}$$
 connected $\implies \gamma_k^{\sigma} \subset U$ for $k \ge k_0$

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

• Take
$$z_0 \in \Gamma^{\sigma} \cap U$$
. $\implies \exists k_0 \in \mathbb{N}_0 \ \forall k \ge k_0 : \gamma_k^{\sigma} \cap U \neq \emptyset$
• γ_k^{σ} connected $\implies \gamma_k^{\sigma} \subset U$ for $k \ge k_0$

Thus

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

• Take
$$z_0 \in \Gamma^{\sigma} \cap U$$
. $\implies \exists k_0 \in \mathbb{N}_0 \ \forall k \ge k_0 : \gamma_k^{\sigma} \cap U \neq \emptyset$
• γ_k^{σ} connected $\implies \gamma_k^{\sigma} \subset U$ for $k \ge k_0$

Thus

$$\Gamma^{\sigma} \subset \overline{\Gamma^{\sigma}} = \overline{\bigcup_{k \ge k_0} \gamma_k^{\sigma}}$$

Let
$$X \subset \hat{\mathbb{C}}$$
. Suppose for all $U \subset \mathbb{C}$ open we have
 $(X \cap U \neq \emptyset \land X \cap \partial U = \emptyset) \implies X \subset U.$
Then X is connected.

Lemma (Connectivity of Γ^{σ})

The sets
$$\Gamma^+ = \bigcup_{k \ge 0} \gamma_k^+$$
 and $\Gamma^- = \bigcup_{k \ge 0} \gamma_k^-$ are connected.

Proof. Let $U \subset \mathbb{C}$ be open such that $\Gamma^{\sigma} \cap U \neq \emptyset$ and $\Gamma^{\sigma} \cap \partial U = \emptyset$. We need to show: $\Gamma^{\sigma} \subset U$

• Take
$$z_0 \in \Gamma^{\sigma} \cap U$$
. $\implies \exists k_0 \in \mathbb{N}_0 \ \forall k \ge k_0 : \gamma_k^{\sigma} \cap U \neq \emptyset$
• γ_k^{σ} connected $\implies \gamma_k^{\sigma} \subset U$ for $k \ge k_0$

Thus

$$\Gamma^{\sigma} \subset \overline{\Gamma^{\sigma}} = \overline{\bigcup_{k \ge k_0} \gamma_k^{\sigma}} \subset \overline{U}.$$

Now we got an idea of the contruction in $\overline{S_+} \cup \overline{S_-}$.

We "glue" our sets together with there $2\pi i$ -translates.

We "glue" our sets together with there $2\pi i$ -translates. Therefore define

$$Y:=\bigcup_{\substack{\sigma\in\{+,-\}\\k\in\mathbb{Z}}}(\Gamma^{\sigma}+2\pi ik).$$

We "glue" our sets together with there $2\pi i$ -translates. Therefore define

$$Y:=igcup_{\sigma\in\{+,-\}\atop k\in\mathbb{Z}}(\Gamma^{\sigma}+2\pi ik).$$

Because $\Gamma^+ \cup \Gamma^-$ is connected, Y is connected as well.

We "glue" our sets together with there $2\pi i$ -translates. Therefore define

$$Y:=\bigcup_{\substack{\sigma\in\{+,-\}\\k\in\mathbb{Z}}}(\Gamma^{\sigma}+2\pi ik).$$

Because $\Gamma^+ \cup \Gamma^-$ is connected, Y is connected as well. Put $Y_0 := Y$ and $Y_{i+1} := f^{-1}(Y_i) \cup Y_i$ for all $j \in \mathbb{N}_0$.

We "glue" our sets together with there $2\pi i$ -translates. Therefore define

$$Y:=igcup_{\sigma\in\{+,-\}}{(\Gamma^{\sigma}+2\pi ik)}.$$

Because $\Gamma^+ \cup \Gamma^-$ is connected, Y is connected as well. Put $Y_0 := Y$ and $Y_{j+1} := f^{-1}(Y_j) \cup Y_j$ for all $j \in \mathbb{N}_0$. Then Y_j is connected and

$$Z:=\bigcup_{j\geq 0}f^{-j}(-1)$$

We "glue" our sets together with there $2\pi i$ -translates. Therefore define

$$Y:=igcup_{\sigma\in\{+,-\}}{(\Gamma^{\sigma}+2\pi ik)}.$$

Because $\Gamma^+ \cup \Gamma^-$ is connected, Y is connected as well. Put $Y_0 := Y$ and $Y_{j+1} := f^{-1}(Y_j) \cup Y_j$ for all $j \in \mathbb{N}_0$. Then Y_j is connected and

$$Z:=igcup_{j\geq 0}f^{-j}(-1)\subsetigcup_{j\geq 0}Y_j$$

We "glue" our sets together with there $2\pi i$ -translates. Therefore define

$$Y:=igcup_{\sigma\in\{+,-\}}{(\Gamma^{\sigma}+2\pi ik)}.$$

Because $\Gamma^+ \cup \Gamma^-$ is connected, Y is connected as well. Put $Y_0 := Y$ and $Y_{j+1} := f^{-1}(Y_j) \cup Y_j$ for all $j \in \mathbb{N}_0$. Then Y_j is connected and

$$Z:=igcup_{j\geq 0}f^{-j}(-1)\subsetigcup_{j\geq 0}Y_j\subset \mathcal{I}(f).$$

Because $-1 \in \mathcal{J}(f) = \mathbb{C}$

Because $-1 \in \mathcal{J}(f) = \mathbb{C}$, we know from complex dynamics that Z is dense in \mathbb{C} and in $\mathcal{I}(f)$.

Because $-1 \in \mathcal{J}(f) = \mathbb{C}$, we know from complex dynamics that Z is dense in \mathbb{C} and in $\mathcal{I}(f)$.

So $\bigcup_{j\geq 0} Y_j$ is the dense and connected subset of $\mathcal{I}(f)$ we were looking for.

Because $-1 \in \mathcal{J}(f) = \mathbb{C}$, we know from complex dynamics that Z is dense in \mathbb{C} and in $\mathcal{I}(f)$.

So $\bigcup_{j\geq 0} Y_j$ is the dense and connected subset of $\mathcal{I}(f)$ we were looking for. Thus $\mathcal{I}(f)$ is connected for all $a \in (-1, \infty)$, which is our Theorem 1.

To formulate the theorem for the general case, we need some preparation:

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a) We say that the asymptotic value a of f_a is accessible

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a)

We say that the asymptotic value *a* of f_a is accessible if $a \in \mathcal{J}(f_a)$

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a)

We say that the asymptotic value *a* of f_a is **accessible** if $a \in \mathcal{J}(f_a)$ and there is an injective curve $\gamma \colon [0, \infty) \to \mathcal{J}(f_a)$ such that

•
$$\gamma(0) = a$$

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a)

We say that the asymptotic value *a* of f_a is accessible if $a \in \mathcal{J}(f_a)$ and there is an injective curve $\gamma \colon [0, \infty) \to \mathcal{J}(f_a)$ such that

•
$$\gamma(0) = a$$

• $\gamma(t) \in \mathcal{I}(f_a)$ for all $t > 0$

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a)

We say that the asymptotic value *a* of f_a is **accessible** if $a \in \mathcal{J}(f_a)$ and there is an injective curve $\gamma \colon [0, \infty) \to \mathcal{J}(f_a)$ such that

•
$$\gamma(0)=a$$

•
$$\gamma(t) \in \mathcal{I}(f_{\mathsf{a}})$$
 for all $t > 0$

•
$$\mathsf{Re}(\gamma(t)) o \infty$$
 as $t \to \infty$.
The general case

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a)

We say that the asymptotic value *a* of f_a is **accessible** if $a \in \mathcal{J}(f_a)$ and there is an injective curve $\gamma \colon [0, \infty) \to \mathcal{J}(f_a)$ such that

•
$$\gamma(0)=a$$

•
$$\gamma(t) \in \mathcal{I}(f_{\mathsf{a}})$$
 for all $t > 0$

•
$$\mathsf{Re}(\gamma(t)) \to \infty$$
 as $t \to \infty$.

We call such a curve a **dynamic ray**.

The general case

To formulate the theorem for the general case, we need some preparation:

Definition (Accessibility of a)

We say that the asymptotic value *a* of f_a is **accessible** if $a \in \mathcal{J}(f_a)$ and there is an injective curve $\gamma \colon [0, \infty) \to \mathcal{J}(f_a)$ such that

•
$$\gamma(0)=a$$

•
$$\gamma(t) \in \mathcal{I}(f_a)$$
 for all $t > 0$

•
$$\mathsf{Re}(\gamma(t)) o \infty$$
 as $t \to \infty$.

We call such a curve a **dynamic ray**.

Until now it is not known whether every $a \in \mathcal{J}(f_a)$ is accessible or not.

Taking preimages of γ under f,

Taking preimages of γ under f, we get a partition of $\mathbb{C} \setminus f_a^{-1}(\gamma)$ into strips S_k ,

Taking preimages of γ under f, we get a partition of $\mathbb{C} \setminus f_a^{-1}(\gamma)$ into strips S_k , where S_0 is the strip containing $r + i\pi$ for r large and $S_k = S_0 + 2\pi i k$ for all $k \in \mathbb{Z}$.

The general case

Taking preimages of γ under f, we get a partition of $\mathbb{C} \setminus f_a^{-1}(\gamma)$ into strips S_k , where S_0 is the strip containing $r + i\pi$ for r large and $S_k = S_0 + 2\pi i k$ for all $k \in \mathbb{Z}$.

14 / 16

For γ and S_k as before we call for $z \in \mathbb{C}$ the sequence $\underline{u} = u_0 u_1 u_2 \cdots \in \mathbb{Z}^{\mathbb{N}_0}$ such that $f^j(z) \in \overline{S_{u_j}}$ for all $j \in \mathbb{N}_0$ the external address of z.

15 / 16

For γ and S_k as before we call for $z \in \mathbb{C}$ the sequence $\underline{u} = u_0 u_1 u_2 \cdots \in \mathbb{Z}^{\mathbb{N}_0}$ such that $f^j(z) \in \overline{S_{u_j}}$ for all $j \in \mathbb{N}_0$ the external address of z. The external address of a is called the kneading sequence of f_a .

15 / 16

For γ and S_k as before we call for $z \in \mathbb{C}$ the sequence $\underline{u} = u_0 u_1 u_2 \cdots \in \mathbb{Z}^{\mathbb{N}_0}$ such that $f^j(z) \in \overline{S_{u_j}}$ for all $j \in \mathbb{N}_0$ the external address of z. The external address of a is called the kneading sequence of f_a .

Theorem (Rempe-Gillen 2011)

Let $a \in \mathbb{C}$.

For γ and S_k as before we call for $z \in \mathbb{C}$ the sequence $\underline{u} = u_0 u_1 u_2 \cdots \in \mathbb{Z}^{\mathbb{N}_0}$ such that $f^j(z) \in \overline{S_{u_j}}$ for all $j \in \mathbb{N}_0$ the external address of z. The external address of a is called the kneading sequence of f_a .

Theorem (Rempe-Gillen 2011)

Let $a \in \mathbb{C}$. If • $a \in \mathcal{I}(f_a)$

For γ and S_k as before we call for $z \in \mathbb{C}$ the sequence $\underline{u} = u_0 u_1 u_2 \cdots \in \mathbb{Z}^{\mathbb{N}_0}$ such that $f^j(z) \in \overline{S_{u_j}}$ for all $j \in \mathbb{N}_0$ the external address of z. The external address of a is called the kneading sequence of f_a .

Theorem (Rempe-Gillen 2011)

Let $a \in \mathbb{C}$. If

- $a \in \mathcal{I}(f_a)$ or
- a ∈ J(f_a) \ I(f_a) and is accessible with non periodic kneading sequence,

For γ and S_k as before we call for $z \in \mathbb{C}$ the sequence $\underline{u} = u_0 u_1 u_2 \cdots \in \mathbb{Z}^{\mathbb{N}_0}$ such that $f^j(z) \in \overline{S_{u_j}}$ for all $j \in \mathbb{N}_0$ the external address of z. The external address of a is called the kneading sequence of f_a .

Theorem (Rempe-Gillen 2011)

Let $a \in \mathbb{C}$. If

- $a \in \mathcal{I}(f_a)$ or
- a ∈ J(f_a) \ I(f_a) and is accessible with non periodic kneading sequence,

then $\mathcal{I}(f_a)$ is connected.

Thank you for your attention!

