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Consider the family
f:C—C, fh(z) =€ +a, acC.

Question: What can we say about the connectivity of its escaping sets

Z(fy) ={z€C:f](z) > c0asn—oc0}?

1.1 Thecase a = —1 1.2 The case a = —0.99 + 0.0001/
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Remark. For a € (—1,00) we have
o RCZ(f,). (Because f3(x) > x+ (1+ a) for all x € R)
o (Devaney, Krych 1984) J(f;) = C.

Let us look at the Eremenko-Lyubich class
B := {f: C — C entire and transcendental: sing(f, !) is bounded}.

o For all a € C we have f; € B.
o (Eremenko-Lyubich 1992) If f € B, then Z(f) C J(f).
o In fact Z(f) = J(f), because J(f) = OZ(f).

If ac Cand a¢ J(f:), then J(f;) and hence Z(f,) is disconnected.
In which way does the connectivity of Z(f;) depend on the parameter a?

Lasse Rempe-Gillen has given an answer to this question:
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Restriction to real parameters

For a € (—1,00) the set Z(f,) is connected.

To prove the theorem, we construct a connected and dense subset of Z(f3).
The idea of this continuum is due to Devaney!:
Denote

05, :={zeC:0<Im(z) <7}

oS ={zeC: —7m<Im(z) <0}

o Hy :={z€C: Im(z) > 0}

o H.:={zeC: Im(z) < 0}
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Restriction to real parameters

For a € (—1,00) the set Z(f,) is connected.

To prove the theorem, we construct a connected and dense subset of Z(f3).
The idea of this continuum is due to Devaney!:
Denote
05, :={zeC:0<Im(z) <7}
S ={zeC: —7<Im(z) <0}
Hy :={z e C: Im(z) > 0}
H_:={zeC: Im(z) <0}
L,,: Hy — S, the branch of £;71 in S,, where o € {+, —}

© 6 o o

1Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory
Dynam. Systems 13 (1993), no. 4, 627-634.
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denote again by L, , for simplicity.
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We can extend L, , to a homeomorphism Za,g: H, \ {a} — S,, which we
denote again by L, , for simplicity.

Lot
St - H
a
Lo
S_ H_
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Construction of the continuum

Now we are ready to construct our continuum. Define
0 130 :=(-00,a) and 7, ;= Lis(73,) forall keNg

o ._ o
e ra T U Va,k
k>0

For simplicity we just write v and 7.

vy
vy
Yo

Construction of T+.
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Construction of the continuum

By continuing this procedure, we obtain:

The set T+, (Borrowed from Lasse Rempe-Gillen?)

2L. Rempe, The escaping set of the exponential., Ergodic Theory & Dynam. Systems
30 (2010), 595-599
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Construction of the continuum

By continuing this procedure, we obtain:

— I/
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The set T+, (Borrowed from Lasse Rempe-Gillen?)

It seems that 77 is "close" to 7 for large k.

2L. Rempe, The escaping set of the exponential., Ergodic Theory & Dynam. Systems
30 (2010), 595-599



Construction of the continuum

Let (X, d) be a metric space and A, B nonempty subsets of X.

24 November 2015 9/ 16



Construction of the continuum

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we
define
dy(A, B) = max{sup inf d(a, b), sup inf d(a, b)}
acA beB Bae

as the Hausdorff distance between A and B.

24 November 2015 9/ 16



Construction of the continuum

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we
define

dy(A, B) = max{sup inf d(a, b), sup inf d(a, b)}
acA beB Bae
as the Hausdorff distance between A and B.
Moreover, we call a closed set C C X the Hausdorff limit of the sequence
(Ca)nen C XN of closed sets with respect to the Hausdorff distance, if

nll>n3>o dH(Cn, C) =0.

24 November 2015 9/ 16



Construction of the continuum

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we
define
dy(A, B) = max{sup inf d(a, b), sup inf d(a, b)}
acAbeB beB a€A
as the Hausdorff distance between A and B.
Moreover, we call a closed set C C X the Hausdorff limit of the sequence
(Ca)nen C XN of closed sets with respect to the Hausdorff distance, if

nll>n3>o dH(Cn, C) =0.

The set T2 U {oo} is the Hausdorff limit of the sequence (v U {oo})

keNg
with respect to the chordal metric x.

24 November 2015 9/ 16



Construction of the continuum

Let (X, d) be a metric space and A, B nonempty subsets of X. Then we
define
dy(A, B) = max{sup inf d(a, b), sup inf d(a, b)}
acAbeB beB a€A
as the Hausdorff distance between A and B.
Moreover, we call a closed set C C X the Hausdorff limit of the sequence
(Ca)nen C XN of closed sets with respect to the Hausdorff distance, if

nll>n3>o dH(Cn, C) =0.

The set T2 U {oo} is the Hausdorff limit of the sequence (v U {oo}) keNo
with respect to the chordal metric x. In particular, |, V7 is a dense
subset of T for all ky € Np.
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Construction of the continuum

Let X c C. Suppose for all U C C open we have
(XNU#£D A XnoU=0) = XcU.
Then X is connected.

The sets T = Uo7 and T~ = U0 v% are connected.

Proof. Let U C C be open such that T N U # () and T N U = 0.

We need to show: ' C U
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Connectivity for real parameters @I AT ICY I 4 TR LT T4

Now we got an idea of the contruction in S; US_. So how should we
proceed?

We "glue" our sets together with there 2mi-translates. Therefore define

yi= |J (" +2rik).
oe{+,—}
keZ

Because T U T~ is connected, Y is connected as well.

Put Yo:= Y and Y11 :=f}(Y;)UY; for all j € No.
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Now we got an idea of the contruction in S; US_. So how should we
proceed?

We "glue" our sets together with there 2mi-translates. Therefore define

yi= |J (" +2rik).
oce{+,—}
keZ
Because T U T~ is connected, Y is connected as well.
Put Yo:= Y and Y11 :=f}(Y;)UY; for all j € No.
Then Y] is connected and

Z:=Jr(-1

Jj=0
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Now we got an idea of the contruction in S; US_. So how should we
proceed?

We "glue" our sets together with there 2mi-translates. Therefore define

yi= |J (" +2rik).
oce{+,—}
keZ
Because T U T~ is connected, Y is connected as well.
Put Yo:= Y and Y11 :=f}(Y;)UY; for all j € No.
Then Y] is connected and

z=Jfr-nclyY

j20 Jj20
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Connectivity for real parameters @I AT ICY I 4 TR LT T4

Now we got an idea of the contruction in S; US_. So how should we
proceed?

We "glue" our sets together with there 2mi-translates. Therefore define

yi= |J (" +2rik).
oce{+,—}
keZ
Because T U T~ is connected, Y is connected as well.
Put Yo:= Y and Y11 :=f}(Y;)UY; for all j € No.
Then Y] is connected and

z:=Jfr-clyYc(f).

j20 Jj20
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Construction of the continuum

Because —1 € J(f) = C , we know from complex dynamics that Z is
dense in C and in Z(f).

So ;>0 Yj is the dense and connected subset of Z(f) we were looking for.

Thus Z(f) is connected for all a € (—1, 00), which is our Theorem 1.
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The general case

To formulate the theorem for the general case, we need some preparation:

We say that the asymptotic value a of f, is accessible if a € J(f,) and
there is an injective curve v: [0,00) — J(f3) such that

o y(0)=a
o y(t) € Z(f;) forall t > 0
o Re(y(t)) — oo as t — oc.

We call such a curve a dynamic ray.

Until now it is not known whether every a € J(f,) is accessible or not.
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Taking preimages of v under f, we get a partition of C\ £,"1(7) into strips
Sk, where Sy is the strip containing r + iw for r large and Sk = So + 27ik
for all k € Z.

-1
Ss /—\ a
51 ~
So 7
S
S
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For ~v and Sy as before we call for z € C the sequence
u = upuiup--- € ZN0 such that fi(z) € Sy for all j € Np the external
address of z.
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For ~v and Sy as before we call for z € C the sequence
u = upuiup--- € ZN0 such that fi(z) € Su; for all j € Np the external
address of z. The external address of a is called the kneading sequence
of f,.

Letac C. If
e acI(fy) or

o a€ J(f,) \ Z(f:) and is accessible with non periodic kneading
sequence,

then Z(f,) is connected.
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Thank you for your attention!

24 November 2015 16 / 16



	Motivation
	Connectivity for real parameters
	The general case

