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The Rational Map

Consider the function

Fλ(z) = zn +
λ

zd
, z , λ ∈ C (1)

Fλ most likely behaves differently for different λ. How can we
visualize that information?

Let’s take a look, for n = 2, d = 3.
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The parameter plane for n = 2, d = 3

Some program drew this parameter plane arranged into differently
colored regions. What do they correspond to?

The parameter plane has Re(λ) and Im(λ) for axes, and different
values of λ probably result in different behavior for Fλ.

Let’s see what the dynamical plane looks like as we fix λ at different
values:
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λ outside the spaceship thing

That’s kind of neat
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λ in an orange region

Pretty cool.
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λ in the same orange region

That looks more or less the same.

We could say something about topological conjugacy

but we won’t.
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λ in a black spot

What is happening here?
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Where to begin?

If only we had a way to classify the regions in the parameter plane.

Such a way exists, based on the Julia set and orbits of the critical
values of Fλ.

Apologies if the following is boring to you:
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Terminology

For Fλ(z) = z2 +
λ

z3
, z , λ ∈ C

There are 5 critical points given by cλ =

(
3λ

2

)1/5

.

Each has a corresponding critical value vλ =
5λ2/5

33/522/5
.

There are also 5 prepoles given by pλ = (−λ)1/5.

When |z | is large, |Fλ(z)| > |z | and so the point at ∞ is an attracting
fixed point in the Riemann sphere. We denote the immediate basin of
attraction of ∞ by Bλ.

There is a pole at the origin, so there is a neighborhood of the origin
that is mapped into Bλ. If the preimage of Bλ surrounding the origin
is disjoint from Bλ, we call this region the trap door and denote it by
Tλ.
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More Terminology

The Julia set of Fλ, denoted J (Fλ), has several equivalent
definitions. J (Fλ) is the set of all points at which the family of
iterates of Fλ fails to be a normal family in the sense of Montel.
Equivalently, J (Fλ) is the closure of the set of repelling periodic
points of Fλ, and it is also the boundary of the set of points whose
orbits tend to ∞ under iteration of Fλ.

J (Fλ) is where the dynamical behavior is interesting.

The Fatou Set, or F(Fλ), is the complement of J (Fλ) in the
Riemann sphere.

For us, it’s not that interesting.

So we want to look at the behavior of the critical values of Fλ for
different λ. The dynamical plane is symmetric under rotation, so it is
enough to look at any one critical value to see the behavior of all of
them.
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Cantor set locus

vλ lies in Bλ. In this case it is known that J (Fλ) is a Cantor set.

The corresponding set of λ-values in the parameter plane is called the
Cantor set locus.
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Sierpinski holes

vλ enters Tλ at iteration 2 or higher. In this case it is known that
J (Fλ) is a Sierpinski curve, i.e. a set that is homeomorphic to the
Sierpinski carpet fractal.

The corresponding set of λ-values in the parameter plane are regions
that we call Sierpinski holes.
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The connectedness locus

vλ does not escape to ∞.

The corresponding set of λ-values in the parameter plane includes the
Mandelbrot sets. Together with the Sierpinski holes, this region is
called the connectedness locus, as J (Fλ) is a connected set for all λ
in the locus.
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Sierpinski hole of higher escape time

For a λ in the next Sierpinski hole to the left:

vλ enters Tλ at iteration 3.

The next Sierpinski hole along the negative real axis probably has
escape time 4.

This idea of increasingly higher escape time Sierpinski holes might be
interesting... let’s look around some more.
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More Mandelbrot sets

There is the clearly visible principal Mandelbrot set.

Also two baby Mandelbrot sets.

Six more baby Mandelbrot sets. Are there others?
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Zooming In

There is one between the two Sierpinski holes.

E. Chang (Boston University) Mandelbrot and Sierpinski arcs and spirals TCD2015 20 / 59



Zooming In

There is one between the two Sierpinski holes.

E. Chang (Boston University) Mandelbrot and Sierpinski arcs and spirals TCD2015 20 / 59



Zooming In

There is one between the two Sierpinski holes.

E. Chang (Boston University) Mandelbrot and Sierpinski arcs and spirals TCD2015 20 / 59



Further along the negative real axis

Looks like another one between the next pair of Sierpinski holes. Is
there a pattern?
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Conjecture

There are infinitely many Sierpinski holes along the negative real axis
of the parameter plane.
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Conjecture

Between each pair of Sierpinski holes is a Mandelbrot set, though it
might be hard to see.
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If it works the first 3 times, it works all the time

We can’t keep zooming in for each of the (infinite number of)
Mandelbrot sets.
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If it works the first 3 times, it works all the time

Is there a way to prove the existence of this alternating arc of infinite
Sierpinski holes and Mandelbrot sets using the dynamical plane?
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The dynamical plane for n = 2, d = 3

This is the dynamical plane for n = 2, d = 3.

To construct the objects in the Sierpinski Mandelbrot arc we will need
to consider some closed sets in the dynamical plane.

We will also restrict attention to an annular region in the parameter
plane. The details aren’t that important for this talk.
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The left wedge

Let Lλ be the closed portion of the wedge with inner boundary in the
trapdoor, outer boundary in the basin, and straight line boundaries
that are part of the two adjacent prepole rays as shown.

There is one critical point is in the interior of Lλ.
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The right wedge

Let Rλ be the symmetric right wedge. The straight line boundaries
are part of two adjacent critical point rays.

There is one prepole in the interior of Rλ.

The critical value corresponding to the critical point in the interior of
Lλ is in Rλ.
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The subset of the trapdoor

Let Tλ be a closed subset of the trapdoor containing 0 such that
Lλ ∪Tλ ∪Rλ are connected, and they only intersect along boundaries.

This union will be referred to informally as the bowtie.
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Proposition

There are more parts to the proposition for the paper in the works,
but the part we care about for now is:

Proposition

For each λ in some roughly annular region the details of which I skipped
over:
1. Fλ maps Rλ in 1-1 fashion onto a region that contains the interior of
Lλ ∪ Tλ ∪ Rλ.
2. Wait for the paper.
3. See part 2.
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“Proof” of part 1

The critical point rays map to the prepole rays. The boundary of Rλ

in Bλ maps to the outer arc on the right. The boundary of Rλ in Tλ

maps to the outer arc on the left.

Then the image of Rλ properly contains the interiors of both Rλ and
Lλ.

In other words, inside Rλ is a bowtie which consists of a preimage of
Lλ, a preimage of Tλ, and a preimage of Rλ.
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Outline

1 Introduction and Exploration

2 Classification of the parameter plane

3 Exploration

4 The setup

5 The payoff

6 n = 4, d = 3

7 Payoff part 2

8 The future
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Drawing a picture

Let’s dress that dynamical plane up with a bowtie.
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Bowties in bowties

That bowtie contains a preimage of Rλ, which should have another
bowtie in it. Which should have another bowtie in it. Which should
have another bowtie in it.
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Back to the parameter plane

It turns out each preimage of Lλ and each preimage of Tλ

corresponds to a Mandelbrot set and a Sierpinski hole, respectively, in
the parameter plane.

Justification for this claim is at the end of the talk.

So if you believe me, we have proven the existence of a set of
infinitely many alternating Sierpinski holes and Mandelbrot sets in the
parameter plane by finding a set of infinitely many alternating
preimages of Lλ and Tλ!

There’s definitely more going on for this function, but I want to talk
about the case where n = 4, d = 3.
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The parameter plane for n = 4, d = 3

Looks like we still have a set of infinitely many alternating Sierpinski
holes and Mandelbrot sets along the negative real axis.

We should be able to prove that by a similar argument to
n = 2, d = 3.
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By analogy

There are now 7 critical points, critical values, and prepoles.

Since there seems to be no reason we can’t, let’s construct Lλ, Tλ,
and Rλ as before.

In fact, we can make another right wedge above the existing one.
Let’s refer to the wedge symmetric to Lλ as Rλ0 , and to the new one
as Rλ1 . Looks like our bowtie is now lopsided.

The existence of Mandelbrot sets and Sierpinski holes based on sets in
the dynamical plane depends on being able to vary Arg(λ) by a
certain amount, and adding more right wedges in the n = 2, d = 3
case would have violated that.
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(Lopsided) bowties in (lopsided) bowties

It’s reasonable to assume that Rλ0 contains a (now lopsided) bowtie as
before.

The mapping seems to bear that out.

Let’s go back to calling them bowties - lopsided bowtie takes too long
to type.

What about Rλ1 ?
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Bowties in bowties

So inside Rλ0 is a bowtie which consists of a preimage of Lλ, a
preimage of Tλ, a preimage of Rλ0 , and a preimage of Rλ1 .

Inside Rλ1 is a bowtie which consists of a preimage of Lλ, a preimage
of Tλ, a preimage of Rλ0 , and a preimage of Rλ1 , but “rotated” π
radians before being placed in Rλ1 . Note the orientation is preserved.
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Bowties in bowties

That bowtie contains a preimage of Rλ, which should have another
bowtie in it. Which should have another bowtie in it. Which should
have another bowtie in it. We’ll need to zoom in a bunch:
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Symolic dynamics

At this point it would be useful to be able to name the preimages of
Lλ and Tλ.

We will use sequences of 0’s and 1’s, ending with L or T to represent
preimages. 0 represents a choice of the Rλ0 preimage, and 1 the Rλ1
preimage. If the region is a preimage of Lλ or Tλ, the sequence will
end with L or T respectively.

Under this naming scheme, our diagram would be labeled:
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What a mess

We can see that trying to draw this diagram to scale quickly becomes
unmanageable.

The L and T for the same sequence go together. We can simply label
the L preimage and drop the L from the sequence without losing
information.

Another interpretation of the sequence is that the first number
denotes the R wedge in which it is located. The remaining numbers
are its image, and the final letter its eventual destination. In this
sense, the sequence can be thought of as an itinerary.

One can verify that for λ inside a Sierpinski hole corresponding to a
sequence ending in T , the critical value has that itinerary before
escaping through the trapdoor.

A more stylized depiction of the two wedges would then look like:
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Stylized depiction of the right wedges
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Stylized depiction of Rλ
0
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Stylized depiction of Rλ
0 with labeled L preimages
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Outline

1 Introduction and Exploration

2 Classification of the parameter plane

3 Exploration

4 The setup

5 The payoff

6 n = 4, d = 3

7 Payoff part 2

8 The future
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Arc madness

We can guess that every sequence ending in a 0 corresponds to an arc
of infinitely many alternating Sierpinski holes and Mandelbrot sets in
the parameter plane.

We still have the 0,00,000,0000,... arc analogous to the original arc
from the n = 2, d = 3 case.

We also its preimage in Rλ1 : the 10,100,1000,10000,... arc.

We also have the 10,100,1000,10000,... arc’s preimage in Rλ0 : the
010,0100,01000,010000,... arc.

We also have the 10,100,1000,10000,... arc’s preimage in Rλ1 : the
110,1100,11000,110000,... arc.

You get the idea.
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Sequences ending in 1

I’m still not sure how to describe this in words - here is a crude
attempt at displaying the information visually.
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More than one spiral

Actually, there is more than the 1,11,111,1111,... spiral in Rλ1 . How
should that look?
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How many?

This suggests that each element in the set {1, 10, 100, 1000, ...} has a
unique spiral in the dynamical plane that corresponds to a spiral in
the parameter plane consisting of infinitely many arcs of infinitely
many alternating S-holes and M-sets that accumulate in infinitely
many S-holes along the spiral.

Since each element in that set has a preimage in Rλ0 , there are that
many corresponding spirals in Rλ0 as well!
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Back to the parameter plane

The 0 arc is still along the negative real axis in the parameter plane.
Where are the other ones?

For that matter, where are the spirals?

That’s a good question...
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Speculation
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What’s next?

Finding the current structures in the parameter plane.

Are there other structures?

What happens when we increase to n = 6? d = 5? Can we
generalize?
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Thanks!

I had a great time here! Happy turkey day!

Long Live Catalonia!
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Justification for a Sierpinski hole

Given a specific point zkλ that varies analytically with λ and for which
F k
λ (zkλ ) = 0,

we need to find a disk D in the parameter plane for which a
critical value winds once around zkλ as λ winds once around the boundary
of D. Then there is a unique λ for which vλ = zkλ , i.e., F k+1

λ (cλ) = 0.
This unique λ is the “center” of a Sierpinski hole.
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Justification for a Mandelbrot set

Find an open disk of parameters D satisfying, for each λ in D, there are
open disks Uλ ⊂ Vλ which move analytically with λ

and F k
λ : Uλ → Vλ is

two-to-one, and, as λ winds around the boundary of D, vλ circles once
around Uλ in Uλ \ Vλ. Such a family of maps is called a polynomial-like

family. So F
(k+1)
λ is polynomial-like of degree 2 on Uk

λ , and this produces
an M-set.
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