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We are interested in a natural generalisation of holomorphic functions to
higher dimensions.
A function f : G → C is holomorphic, if and only if

f is C1 in the real sense and

||Df (z)||2 = Jf (z) for all z ∈ G ,

where Jf denotes the Jacobian of f . Hence holomorphic functions map
infinitesimal small circles to infinitesimal circles.
We can easily generalise this definition to higher dimensions. But if we
take G ⊂ R

d open and f : G → R
d satisfying

f is C1 in the real sense and

||Df (x)||d = Jf (x) for all x ∈ G ,

then f is either constant or a sense preserving Möbius transformation.
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conditions in the following way:

Definition

A continuous function f : Rd → R
d is called quasiregular, if

f ∈ W 1
d,loc(R

d)

and K1 ≥ 1 exists, such that ||Df (x)||d ≤ K1Jf (x) a.e.,

where W 1
d,loc(R

d) denotes the set of all functions

f = (f1, . . . fd) : U → R
d , for which the weak partial first order

derivatives ∂k fi exist and are locally in Ld .
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In order to get a more interesting class of functions, we relax the
conditions in the following way:

Definition

A continuous function f : Rd → R
d is called quasiregular, if

f ∈ W 1
d,loc(R

d)

and K1 ≥ 1 exists, such that ||Df (x)||d ≤ K1Jf (x) a.e.,

where W 1
d,loc(R

d) denotes the set of all functions

f = (f1, . . . fd) : U → R
d , for which the weak partial first order

derivatives ∂k fi exist and are locally in Ld .

Similarly there exists K2 ≥ 1, such that Jf (x) ≤ K2ℓ(Df (x))d a.e., where
ℓ(Df (x)) := inf

||h||=1
||Df (x)(h)||.

For the smallest constants K1 and K2 satisfying the conditions above, we
call K := min{K1, K2} the dilatation of f .
So f maps infinitesimal balls to infinitesimal ellipsoids with bounded
eccentricity.
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Motivation

qr maps are open and discrete.

The composition of two qr maps is again qr, but in general the
dilatation grows.

There are analogues of Picard’s and Montel’s theorem, but for
Montel’s analogue we need that the iterates are uniformly qr.

Bergweiler and Nicks are working on an iteration theory for
non-uniform qr maps by defining the Julia set of such a map by the
”blowing up” property.
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Motivation

We want to investigate a certain qr map which can be seen as a
quasiregular analogue of sine. First we start with a result by McMullen
about the measure of the escaping set for a member of the sine family:

Theorem (McMullen 1987)

For g(z) = λ sin(z) + µ, λ 6= 0, the set I(g) has positive area.

We want to generalise this theorem for a quasiregular analogue of sine.
Before constructing the map, we recall the construction of the complex
exponential map by using the real exponential map.
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Construction of the map
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π
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Construction of the map

R
d

[−1, 1]d−1 × [0, 1]

S. Vogel (University of Kiel) Measure of the escaping set 14 June 2013 8 / 28



Construction of the map

h

R
d

[−1, 1]d−1 × [0, 1] {x ∈ R
d : ||x || ≤ 1, xd ≥ 0}

bi-Lipschitz

S. Vogel (University of Kiel) Measure of the escaping set 14 June 2013 8 / 28



Construction of the map

h

R
d

[−1, 1]d−1 × [0, 1] {x ∈ R
d : ||x || ≤ 1, xd ≥ 0}

bi-Lipschitz

S. Vogel (University of Kiel) Measure of the escaping set 14 June 2013 8 / 28



Construction of the map

x f (x) = exp(xd − 1)h((x1, ..., xd−1, 1))

f
(x1, ..., xd−1, 1)

h((x1, ..., xd−1, 1))

[−1, 1]d−1 × [0, ∞] {x ∈ R
d : xd ≥ 0}
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Construction of the map

x x ′

x ′′ f (x ′) = f (x ′′)

f (x) = exp(xd − 1)h((x1, ..., xd−1, 1))

f
(x1, ..., xd−1, 1)

h((x1, ..., xd−1, 1))
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Construction of the map

The construction of the map is due to Bergweiler and Eremenko.

It is similar to the construction of Zorich maps, which can be seen
as higher dimensional analogues of the exponential map.

It works in any dimension d ≥ 2.

Bergweiler and Eremenko showed that the map f is in fact
quasiregular.

f is differentiable almost everywhere.
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g(z) = λ sin(z) + µ, with parameters λ and µ chosen such that the
critical values are strictly preperiodic.
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Preliminary results

In the plane we have the following result by Schleicher:

Theorem (Schleicher 2007)

There exists a representation of C as a union of dynamic rays with the
following properties: the intersection of two rays is either empty or
consists of the common endpoint and the union of the rays without their
endpoints has Hausdorff dimension 1.

This representation is defined by the dynamics of the map
g(z) = λ sin(z) + µ, with parameters λ and µ chosen such that the
critical values are strictly preperiodic.
In this case J(g) = C.
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Preliminary results

There are the following analogues of this theorem:

Theorem (Bergweiler and Eremenko 2011)

There exists a representation of Rd as a union of dynamic rays with the
following properties: the intersection of two rays is either empty or
consists of the common endpoint and the union of the rays without their
endpoints has Hausdorff dimension 1.

This representation is defined by the dynamics of the (locally expanding)
map λf , λ sufficiently large.

Theorem (Fletcher and Nicks 2012)

For λ sufficiently large, the periodic points of f̃ = λf are dense in R
d

(and all repelling).
Furthermore f̃ has the blowing-up property everywhere in R

d , that is

∞⋃

k=0

f̃ k(U) = R
d , for any non-empty open set U ⊂ R

d .
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Theorem

In the case where the map f is not chosen to be locally expanding, we
have the following analogue of McMullen’s theorem:
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Theorem

In the case where the map f is not chosen to be locally expanding, we
have the following analogue of McMullen’s theorem:

Theorem

Let f be the quasiregular analogue of sine. Then

meas(I(f )) > 0,

where meas denotes the d-dimensional Lebesgue measure.

S. Vogel (University of Kiel) Measure of the escaping set 14 June 2013 12 / 28
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The proof uses some ideas of Aspenberg and Bergweiler (2010).
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We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
Let

L :=

{
x ∈ R

d : |fd(x)| ≥ exp

(
1

2
|xd |

)}

and
T := {x ∈ L : f n(x) ∈ L for all n ∈ N}.

Then T ⊂ I(f ). For n ≥ 0 let

Tn := {x ∈ L : f k(x) ∈ L for 0 ≤ k ≤ n}.
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Sketch of proof

The proof uses some ideas of Aspenberg and Bergweiler (2010).
We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
Let

L :=

{
x ∈ R

d : |fd(x)| ≥ exp

(
1

2
|xd |

)}

and
T := {x ∈ L : f n(x) ∈ L for all n ∈ N}.

Then T ⊂ I(f ). For n ≥ 0 let

Tn := {x ∈ L : f k(x) ∈ L for 0 ≤ k ≤ n}.

Then L = T0 and we put
S := R

d \ L.
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Sketch of proof

Definition

For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.
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Sketch of proof

Definition

For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.

For x ∈ R
d we denote by

Q(x) :=

{
y ∈ R

d : |yj − xj | ≤ |xd |
2

}

the axis parallel cube around x with edges of length |xd |
2 .
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Sketch of proof

Lemma

For x0 large and |xd | ≥ x0 we have

dens(S, Q(x)) ≤ 2L̃4 exp

(
−|xd |

4
+

1

2

)
=: 2L̃4δ(|xd |),

where L̃ denotes the Lipschitz constant of f |[−1,1]d−1×[0,1].
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Sketch of proof

We put R := Z
d−1 × {−1, 1} and for r = (r1, ..., rd ) ∈ R we define

T (r) := {x ∈ R
d : |xj − 2rj | ≤ 1 for 1 ≤ j ≤ d − 1, rdxd ≥ 0}

T (0, 0, .) T (1, 0, .)

T (0, 1, .)

T (−1, 0, .)

T (1, 1, .)
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We put R := Z
d−1 × {−1, 1} and for r = (r1, ..., rd ) ∈ R we define

T (r) := {x ∈ R
d : |xj − 2rj | ≤ 1 for 1 ≤ j ≤ d − 1, rdxd ≥ 0}

T (0, 0, .) T (1, 0, .)

T (0, 1, .)

T (−1, 0, .)

T (1, 1, .)

Depending on r , f maps T (r) bijectively onto {x ∈ R
d : xd ≥ 0} or onto

{x ∈ R
d : xd ≤ 0}.

For r ∈ R we denote by Λr the inverse function of f |T (r), thus
Λr : H+ → T (r) or Λr : H− → T (r) depending on r .
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Sketch of proof

Let u ∈ Tn−1 with |ud | > x0.
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Sketch of proof

Let u ∈ Tn−1 with |ud | > x0. Denote by s the external address of u, i.e.
the sequence s = (sk)k≥0 in R with f k(x) ∈ T (sk) and put

ϕn := Λs0 ◦ ... ◦ Λsn−1.

f n(u)

Q(f n(u))

Q(f n−1(u))

Q(f n−2(u))

Λsn−1(Q(f n(u))

Λsn−2(Q(f n(u))

Λsn−1Λsn−2 f n−1(u)f n−2(u)

So we have Λsn−j−1(Q(f n−j(u))) ⊂ Q(f n−j−1(u)) for x0 large and
0 ≤ j ≤ n − 1.
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Sketch of proof

We denote by B(u, rn(u)) = B(u, rn) the largest ball around u in
ϕn(Q(f n(u))).
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Sketch of proof

We denote by B(u, rn(u)) = B(u, rn) the largest ball around u in
ϕn(Q(f n(u))).

ϕn
f n(u)u

Q(f n(u))

B(u, rn)

rn
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Sketch of proof

Lemma

For x0 large we have

dens(f −n(S), B(u, rn)) ≤ η̃δ

(
En

1
2
(x0)

)
Kn =: η̃δ(x0,n)K

n

for some constants η̃, K ≥ 1, where E 1
2
: R → R, x 7→ exp

(
1
2x
)

ϕn
f n(u)u

Q(f n(u))

S
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Sketch of proof

dens(f −n(S), B(u, rn))
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Sketch of proof

dens(f −n(S), B(u, rn))

≤ 2d

cd

dens(S, Q(f n(u)))

sup
y∈Q(f n(u))

|Jϕn(y)|
(

inf
y∈Q(f n(u))

ℓ(Dϕn(y))

)d
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dens(f −n(S), B(u, rn))

≤ 2d

cd

dens(S, Q(f n(u)))

sup
y∈Q(f n(u))

|Jϕn(y)|
(

inf
y∈Q(f n(u))

ℓ(Dϕn(y))

)d

≤ 2d

cd

δ

(
En

1
2
(x0)

) n−1∏

j=0

sup
y∈Q(f n−j(u))

|JΛsn−j−1 (y)|
(

inf
y∈Q(f n−j(u))

ℓ(DΛsn−j−1 (y))

)d
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Sketch of proof

dens(f −n(S), B(u, rn))

≤ 2d

cd

dens(S, Q(f n(u)))

sup
y∈Q(f n(u))

|Jϕn(y)|
(

inf
y∈Q(f n(u))

ℓ(Dϕn(y))

)d

≤ 2d

cd

δ

(
En

1
2
(x0)

) n−1∏

j=0

sup
y∈Q(f n−j(u))

|JΛsn−j−1 (y)|
(

inf
y∈Q(f n−j(u))

ℓ(DΛsn−j−1 (y))

)d

≤ 2d

cd

δ

(
En

1
2
(x0)

)(
c3

cd
1

(
1 + 2

√
d
)d
)n
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Sketch of proof

Theorem (Besicovitch covering lemma)

Let M ⊂ R
d be bounded, r : M → ]0, ∞[. Then there exists an at most

countable subset A of M satisfying

M ⊂
⋃

x∈A

B(x , r(x))

such that no point in R
d is contained in more than 42d of the balls

B(x , r(x)), x ∈ A.
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Sketch of proof

Now let w ∈ R
d with |wd | > 2x0.
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Sketch of proof

Now let w ∈ R
d with |wd | > 2x0.

Tn−1

Q(w)
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Sketch of proof

So we get the following

Lemma

dens(f −n(S), Tn−1∩Q(w)) = dens(Tn−1\Tn, Tn−1∩Q(w)) ≤ ηδ(x0,n)K
n
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So we get the following

Lemma

dens(f −n(S), Tn−1∩Q(w)) = dens(Tn−1\Tn, Tn−1∩Q(w)) ≤ ηδ(x0,n)K
n

Lemma

For x0 large, the product

∞∏

k=1

(
1 − ηδ(x0,n)K

k
)

converges and we have
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Sketch of proof

So we get the following

Lemma

dens(f −n(S), Tn−1∩Q(w)) = dens(Tn−1\Tn, Tn−1∩Q(w)) ≤ ηδ(x0,n)K
n

Lemma

For x0 large, the product

∞∏

k=1

(
1 − ηδ(x0,n)K

k
)

converges and we have

dens(Tn, T0 ∩ Q(w)) ≥
∞∏

k=1

(
1 − ηδ(x0,n)K

k
)

> 0.
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Sketch of proof

Hence we have
dens(T , T0 ∩ Q(w)) > 0

and meas(T ) > 0 and since T ⊂ I(f ) we get meas(I(f )) > 0.
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Additional result

By using the technique of the proof, we get a similar result as Schubert:
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Theorem (Schubert 2008)

Let S be a strip of width 2π. Then S \ I(sinh) has finite area.
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Additional result

By using the technique of the proof, we get a similar result as Schubert:

Theorem (Schubert 2008)

Let S be a strip of width 2π. Then S \ I(sinh) has finite area.

In the case of the quasiregular analogue of sine we have

Theorem

Let T (r) be a tract of f . Then T (r) \ I(f ) has finite measure.
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Sketch of proof

During the proof of the first theorem we showed, that

dens(T , T0 ∩ Q(w)) ≥
∞∏

k=1

(
1 − ηδ(x0,n)K

k
)

for all w with |wd | > 2x0, for large x0.
Now we cover the initial tract T ((0, ..., 0, 1)) with cubes Q(wj) in the
following way:
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Sketch of proof

w1

w2

w3
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Thank you very much for your attention.

S. Vogel (University of Kiel) Measure of the escaping set 14 June 2013 28 / 28


	Motivation
	Construction of the map
	Preliminary results
	Theorem
	Sketch of proof
	Additional result

