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Basic Definitions

We consider the iteration of unicritical antiholomorphic polynomials
fd ,c = z̄d + c for any degree d ≥ 2 and c ∈ C. In analogy to the
holomorphic case, we define the Julia, Fatou and filled-in Julia set of fd ,c
as:

The set of all points which remain bounded under all iterations of fd ,c
is called the Filled-in Julia set K(fd ,c).

The boundary of the Filled-in Julia set is defined to be the Julia set
J(fd ,c)

The complement of the Julia set is defined to be its Fatou set
F(fd ,c).

This leads, as in the holomorphic case, to the notion of Connectedness
Locus of degree d unicritical anti-polynomials:

Definition

The Multicorn of degree d is defined as M∗d = {c ∈ C : K(fd ,c) is
connected }
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Since the second iterate of fd ,c is holomorphic, the dynamics of
anti-polynomials is similar to that of ordinary polynomials in many
respects. Here are some subtle differences that occur at odd period cycles:

The first return map of an odd-periodic cycle is an orientation
reversing map.

Every indifferent periodic point of odd period is parabolic.

There are, however, striking differences between the Multicorns M∗d) and
their holomorphic counterparts; i.e. connectedness loci of unicritical
polynomials (the Multibrots Md).

Left: The Tricorn (M∗2) . Right: The Mandelbrot set (M2).
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Earlier work

The first theoretical work on the Multicorns was done by Nakane [Na1],
who proved that the tricorn is connected, in analogy to Douady and
Hubbards classical proof on the Mandelbrot set. This generalizes naturally
to Multicorns of any degree.

Theorem (Nakane)

The map Φ : C \M∗d → C \ D, defined by c 7→ φc(c) (where φc is the
Bottcher coordinate near ∞) is a real-analytic diffeomorphism. In
particular, the Multicorns are connected.

The previous theorem also allows us to define parameter rays of the
Multicorns as pre-images of radial lines in C \D under the map Φ. It is
worth noting that the parameter dependence of the Bottcher coordinate is
only real-analytic in this case.
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Nakane and Schleicher investigated hyperbolic components of the
Multicorns [NS1] and gave natural parametrizations for them. Milnor, in a
seminal paper [Mi1], investigated real cubic polynomials and identified
antiholomorphic quadratic polynomials as a prototypical real form. One of
Milnor’s conjectures was that the tricorn is not pathwise connected. This
conjecture was established in recent work by Hubbard and Schleicher [HS].

An apparently embedded tricorn in the space of real cubic polynomials
from Milnor’s study [Mi1].
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Orbit Portraits

One of the key notions in our study is that of orbit portraits, which was
introduced by Milnor in [Mi2] as a combinatorial tool to describe the
pattern of all periodic external rays landing at different points of a periodic
cycle.

Definition

Let O = {z1, z2, · · · , zk} be a periodic cycle of a unicritical antipolynomial
f. If a dynamic ray Rf

t at a rational angle t lands at some zi ; then for all j,
the set Aj of the angles of all the dynamic rays landing at zj is a
non-empty finite subset of Q/Z. The collection {A1,A2, · · · ,Ak} will be
called the Orbit Portrait P(O) of the orbit O.

For any antipolynomial f, if the external ray Rt at angle t lands at a point
z ∈ J (f ), then the image ray f (Rt) = R−dt lands at the point f(z).
Furthermore, if three or more external rays land at z , then the cyclic order
of their angles around R/Z is reversed by the action of f.

17



Orbit Portraits

One of the key notions in our study is that of orbit portraits, which was
introduced by Milnor in [Mi2] as a combinatorial tool to describe the
pattern of all periodic external rays landing at different points of a periodic
cycle.

Definition

Let O = {z1, z2, · · · , zk} be a periodic cycle of a unicritical antipolynomial
f. If a dynamic ray Rf

t at a rational angle t lands at some zi ; then for all j,
the set Aj of the angles of all the dynamic rays landing at zj is a
non-empty finite subset of Q/Z. The collection {A1,A2, · · · ,Ak} will be
called the Orbit Portrait P(O) of the orbit O.

For any antipolynomial f, if the external ray Rt at angle t lands at a point
z ∈ J (f ), then the image ray f (Rt) = R−dt lands at the point f(z).
Furthermore, if three or more external rays land at z , then the cyclic order
of their angles around R/Z is reversed by the action of f.

18



Orbit Portraits

One of the key notions in our study is that of orbit portraits, which was
introduced by Milnor in [Mi2] as a combinatorial tool to describe the
pattern of all periodic external rays landing at different points of a periodic
cycle.

Definition

Let O = {z1, z2, · · · , zk} be a periodic cycle of a unicritical antipolynomial
f. If a dynamic ray Rf

t at a rational angle t lands at some zi ; then for all j,
the set Aj of the angles of all the dynamic rays landing at zj is a
non-empty finite subset of Q/Z. The collection {A1,A2, · · · ,Ak} will be
called the Orbit Portrait P(O) of the orbit O.

For any antipolynomial f, if the external ray Rt at angle t lands at a point
z ∈ J (f ), then the image ray f (Rt) = R−dt lands at the point f(z).
Furthermore, if three or more external rays land at z , then the cyclic order
of their angles around R/Z is reversed by the action of f.

19



This fundamental difference between the holomorphic and antiholomorphic
case plays an important role in understanding the combinatorics of
external rays.

Lemma (Structure of orbit portraits)

Let P(O) = {A1,A2, · · · ,Ak} be the (non-trivial) orbit portrait
associated with an orbit of period k of a unicritical antipolynomial f. Then
each θ ∈ Aj is periodic under θ → −dθ and there are four possibilities for
their periods:

If k is even, then all angles in P(O) have the same period rk for some
r ≥ 1.

If k is odd, then one of the following possibilities occur:

|Aj | = 2 and both angles have period k.

|Aj | = 2 and both angles have period 2k.

|Aj | = 3; one angle has period k and the other two angles have
period 2k. One of the characteristic angles has exact period k and
the other has exact period 2k.

All the above possibilities are realized.
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Bifurcation phenomenon and q.c. conjugacy

Theorem (Nakane, Schleicher)

The boundary of a hyperbolic component of odd period k consists entirely
of parameters having a parabolic orbit of exact period k. In local
conformal coordinates, the 2k-th iterate of such a map has the form
z → z + zq+1 + · · · with q ∈ {1, 2}.

A parameter c will be called a parabolic cusp point if it has a parabolic
periodic point of odd period such that q = 2 in the previous theorem. It
turns out that there are only finitely many cusp points of a given (odd)
period.

Theorem (Nakane, Schleicher)

Every non-cusp parabolic parameter lies in the interior of a real-analytic
arc consisting of non-cusp parabolic parameters with quasiconformally
equivalent but conformally inequivalent dynamics. These arcs are called
parabolic arcs. Further, each parabolic arc has two cusp points at its two
ends.
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Bifurcation phenomenon and q.c. conjugacy

Definition (Root and co-root arcs)

We call a parabolic arc a root arc if, in the dynamics of any parameter on
this arc, the parabolic orbit disconnects the Julia set. Otherwise, we call it
a co-root arc.

Remark. Since the dynamics of all the points on the arc are
quasiconformally conjugate, this classification on arcs is well-defined.

Theorem (Nakane, Schleicher)

Consider a parabolic arc of a multicorn for which the parabolic orbits have
odd period k. Then at both ends there are subarcs along which a
bifurcation from period k to period 2k occurs.

Theorem (Nakane, Schleicher)

For every even period k and every multiplier µ with |µ| ≤ 1, the set of
parameters c ∈ C for which z̄d + c has a periodic orbit with exact period
k and multiplier µ is finite.
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Periodic parameter rays and structure of hyperbolic
components

Theorem (Schleicher, -)

Let k be any odd integer. Then,

Every rational parameter ray of period k lands/accumulates on a
sub-arc of a single parabolic arc of period k.

Every rational parameter ray of period 2k either lands at a parabolic
parameter of ray period 2k or lands/accumulates on a sub-arc of a
parabolic arc of period k.

Every rational parameter ray of period 4k lands at a parabolic
parameter of ray period 4k.

The boundary of every hyperbolic component of odd period k( 6= 1)
consists of exactly d + 1 parabolic arcs and the same number of cusp
points. d of these are co-root parabolic arcs and on each of them, the
parabolic orbit portrait is trivial and constant. Exactly one parameter
ray of period k accumulates there.

35



Periodic parameter rays and structure of hyperbolic
components

Theorem (Schleicher, -)

Let k be any odd integer. Then,

Every rational parameter ray of period k lands/accumulates on a
sub-arc of a single parabolic arc of period k.

Every rational parameter ray of period 2k either lands at a parabolic
parameter of ray period 2k or lands/accumulates on a sub-arc of a
parabolic arc of period k.

Every rational parameter ray of period 4k lands at a parabolic
parameter of ray period 4k.

The boundary of every hyperbolic component of odd period k( 6= 1)
consists of exactly d + 1 parabolic arcs and the same number of cusp
points. d of these are co-root parabolic arcs and on each of them, the
parabolic orbit portrait is trivial and constant. Exactly one parameter
ray of period k accumulates there.

36



Periodic parameter rays and structure of hyperbolic
components

Theorem (Schleicher, -)

Let k be any odd integer. Then,

Every rational parameter ray of period k lands/accumulates on a
sub-arc of a single parabolic arc of period k.

Every rational parameter ray of period 2k either lands at a parabolic
parameter of ray period 2k or lands/accumulates on a sub-arc of a
parabolic arc of period k.

Every rational parameter ray of period 4k lands at a parabolic
parameter of ray period 4k.

The boundary of every hyperbolic component of odd period k( 6= 1)
consists of exactly d + 1 parabolic arcs and the same number of cusp
points. d of these are co-root parabolic arcs and on each of them, the
parabolic orbit portrait is trivial and constant. Exactly one parameter
ray of period k accumulates there.

37



Periodic parameter rays and structure of hyperbolic
components

Theorem (Schleicher, -)

Let k be any odd integer. Then,

Every rational parameter ray of period k lands/accumulates on a
sub-arc of a single parabolic arc of period k.

Every rational parameter ray of period 2k either lands at a parabolic
parameter of ray period 2k or lands/accumulates on a sub-arc of a
parabolic arc of period k.

Every rational parameter ray of period 4k lands at a parabolic
parameter of ray period 4k.

The boundary of every hyperbolic component of odd period k( 6= 1)
consists of exactly d + 1 parabolic arcs and the same number of cusp
points. d of these are co-root parabolic arcs and on each of them, the
parabolic orbit portrait is trivial and constant. Exactly one parameter
ray of period k accumulates there.

38



Periodic parameter rays and structure of hyperbolic
components

Theorem (Schleicher, -)

Let k be any odd integer. Then,
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sub-arc of a single parabolic arc of period k.
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Periodic parameter rays and structure of hyperbolic
components

Theorem (Contd..)

On the remaining (root) parabolic arc, the parabolic orbit portrait is
constant and non-trivial. This arc contains the set of accumulation
points of two periodic parameter rays of period 2k.

The boundary of every hyperbolic component of period 2k (twice an
odd integer) which bifurcates from a hyperbolic component of period
k contains exactly d − 2 co-roots (landing point of a single periodic
parameter ray of period 2k) and no root (landing point of exactly two
parameter rays of period 2k).

The boundary of every other hyperbolic component contains exactly
d − 2 co-roots and one root.
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Pictorial illustration

Figure: Zoom of M∗3 near a hyperbolic component of period 3 with the
bifurcated period 6 components. The ray landing/accumulation patterns
are shown.
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Proof

One has to deal with three different kinds of hyperbolic components.

Hyperbolic components of odd period k .

Hyperbolic components of period 2k which bifurcate from a
hyperbolic component of odd period k .

Hyperbolic components of even period which do not bifurcate from
any odd period hyperbolic component.

The analysis in the last case is similar to that in the holomorphic case and
can be found in [Eberlein, Mukherjee, Schleicher]. Here and in [Mukherjee,
Nakane, Schleicher], we emphasize on the first two cases, which are the
specialities of the anti-holomorphic parameter spaces.

46



Proof

One has to deal with three different kinds of hyperbolic components.

Hyperbolic components of odd period k .

Hyperbolic components of period 2k which bifurcate from a
hyperbolic component of odd period k .

Hyperbolic components of even period which do not bifurcate from
any odd period hyperbolic component.

The analysis in the last case is similar to that in the holomorphic case and
can be found in [Eberlein, Mukherjee, Schleicher]. Here and in [Mukherjee,
Nakane, Schleicher], we emphasize on the first two cases, which are the
specialities of the anti-holomorphic parameter spaces.

47



Proof

One has to deal with three different kinds of hyperbolic components.

Hyperbolic components of odd period k .

Hyperbolic components of period 2k which bifurcate from a
hyperbolic component of odd period k .

Hyperbolic components of even period which do not bifurcate from
any odd period hyperbolic component.

The analysis in the last case is similar to that in the holomorphic case and
can be found in [Eberlein, Mukherjee, Schleicher]. Here and in [Mukherjee,
Nakane, Schleicher], we emphasize on the first two cases, which are the
specialities of the anti-holomorphic parameter spaces.

48



Proof

One has to deal with three different kinds of hyperbolic components.

Hyperbolic components of odd period k .

Hyperbolic components of period 2k which bifurcate from a
hyperbolic component of odd period k .

Hyperbolic components of even period which do not bifurcate from
any odd period hyperbolic component.

The analysis in the last case is similar to that in the holomorphic case and
can be found in [Eberlein, Mukherjee, Schleicher]. Here and in [Mukherjee,
Nakane, Schleicher], we emphasize on the first two cases, which are the
specialities of the anti-holomorphic parameter spaces.

49



Proof

One has to deal with three different kinds of hyperbolic components.

Hyperbolic components of odd period k .

Hyperbolic components of period 2k which bifurcate from a
hyperbolic component of odd period k .

Hyperbolic components of even period which do not bifurcate from
any odd period hyperbolic component.

The analysis in the last case is similar to that in the holomorphic case and
can be found in [Eberlein, Mukherjee, Schleicher]. Here and in [Mukherjee,
Nakane, Schleicher], we emphasize on the first two cases, which are the
specialities of the anti-holomorphic parameter spaces.

50



Dynamic roots and co-roots

Definition (Roots and Co-Roots of Fatou Components)

Let z be a boundary point of a periodic Fatou component U corresponding
to a (super-)attracting or parabolic unicritical anti-polynomial so that the
first return map of U fixes z . Then we call z a root of U if it disconnects
the filled-in Julia set; if it does not, we call it a co-root.

Lemma (Schleicher)

Every co-root is the landing point of exactly one dynamic ray, and
this ray has the same exact period as the component.

Every periodic Fatou component of period greater than 1
corresponding to an attracting/parabolic orbit has exactly one root. If
the period of the component is even; then it has exactly d − 2
co-roots; if the period is odd; it has exactly d co-roots. Every Fatou
component of period 1 has exactly d+1 co-roots and no root.
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Transferring roots/co-roots from the dynamical plane to
the parameter plane: the odd period case

The orbit portraits of the dynamical root/co-roots of the centre
remain stable throughout the hyperbolic component and extend
continuously to the root/co-roots arcs (except the cusp points).

At each parabolic point, the continuation of one of the root or
co-roots become parabolic implying that every arc on the boundary
of the component corresponds to a unique dynamical root/co-root.

At least d + 1 arcs: The combinatorial rigidity of the centre [Po]
ensures that each dynamical root/co-root ‘has its own arc’.

At most d + 1 arcs: The combinatorial rigidity of the parabolics [HS]
ensures that exactly one arc ‘corresponds to’ a given dynamical
root/co-root.
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An example of discontinuity of landing points

Recall that the parabolic orbit portrait is trivial and constant on the
co-root arcs and constant of (2k , 2k) type on the root arc. It is easy
to see that the parabolic cusp where a co-root and a root arc meet
has a parabolic orbit portrait of (k , 2k , 2k) type.

The orbit portraits of the dynamical roots throughout the bifurcated
hyperbolic component is constant and is of (k, 2k , 2k) type.

However, on the sub-arcs along which the bifurcation occurs, two of
these rays land together and another lands separately proving the
discontinuous parameter dependence of the landing points of
dynamical rays.
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Number of hyperbolic components

Denote the number of hyperbolic components of period k in M∗d
(resp. Md) by s ′d ,k (resp. sd ,k).

For k > 2, let φ(d , k) be the number of angles in R/Z of exact period
k under multiplication by (−d) (or d).

Since every hyperbolic component of odd period (6= 1) and periods
divisible by 4 absorb exactly d parameter rays of the same period, we
have : s ′d ,k = φ(d ,k)

d = sd ,k unless k is twice an odd number.

Using the main theorem, one can count the number of hyperbolic
components of period k( 6= 2) which is twice an odd integer:
s ′d ,k = sd ,k + 2sd , k

2
.
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Further topological questions

Do the parameter rays of odd period land / accumulate on a sub-arc
(of positive length) of the parabolic arcs?

Do the accumulation sets of the decorations in the following figure
‘overlap’? An example of such an overlap would, in turn, prove that
the corresponding parameter ray strictly accumulates.

Figure: Zoom near a hyperbolic component of period 13 (blue) which
shows the bifurcated components of period 26 (green) and the decorations

coming out of them. These decorations accumulate on sub-arcs of the
parabolic arcs.
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Further topological questions

Are the hyperbolic components of odd period (like the one in the
previous figure) homeomorphic to the original multicorn via
straightening?

Are the hyperbolic components of even period (like the one in the
following figure) homeomorphic to the original multibrot set via
straightening?

Zoom near a hyperbolic component of even period, which resembles a
baby mandelbrot set.
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