The escaping set of entire functions

David Martí Pete

Dept. de Matemàtica Aplicada i Anàlisi Universitat de Barcelona

SUMMER SCHOOL: TOPICS IN COMPLEX DYNAMICS 2013 Institut de Matemàtiques de la Universitat de Barcelona, Barcelona 11th June 2013

Sketch of the talk

- The escaping set, Eremenko's conjecture, existence of hairs, and Cantor bouquets
- The fast escaping set, the quite fast escaping set, slow escaping points, and spider's webs
- 3. Annular itineraries

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire transcendental function, the **escaping set** is

$$\mathcal{I}(f) := \{ z \in \mathbb{C} : f^n(z) \to \infty \text{ as } n \to +\infty \}.$$

There are examples where the escaping set is:

- ► a union of disjoint curves tending to infinity (**Cantor bouquet**);
- a parabolic domain at infinity (**Baker domain**);
- ► a wandering domain.

Example: $f(z) = z + 1 + e^{-z}$

Blue: a Cantor bouquet — Red: a Baker domain.

Theorem (Eremenko 1989)

Let f be an entire transcendental function. Then,

- $\mathcal{I}(f) \cap \mathcal{J}(f) \neq \emptyset;$
- $\mathcal{J}(f) = \partial \mathcal{I}(f);$
- all the components of $\overline{\mathcal{I}(f)}$ are unbounded;
- if $f \in \mathcal{B}$, then $\mathcal{I}(f) \subseteq \mathcal{J}(f)$.

Alexandre E. Eremenko, *On the iteration of entire functions*, Dynamical Systems and Ergodic Theory, Banach Center Publ. **23** (1989), 339–345.

On 1926, Fatou observes that for some entire functions (e.g. $f(z) = r \sin z$ for $r \in \mathbb{R}$) the Julia set contains curves of points that escapte to infinity under iteration and he already remarks that:

Il serait intéressant de rechercher si cette propriété nâappartiendrait pas à des substitutions beaucoup plus générales. II

On 1989 Eremenko made the following conjecture for entire functions:

It is plausible that the set $\mathcal{I}(f)$ always has the following property: every point $z \in \mathcal{I}(f)$ can be joined with ∞ by a curve in $\mathcal{I}(f)$.

Pierre Fatou, Sur lâitération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-370.

Alexandre E. Eremenko, *On the iteration of entire functions*, Dynamical Systems and Ergodic Theory, Banach Center Publ. **23** (1989), 339–345.

Theorem (Rottenfußer, Rückert, Rempe, Schleicher 2011)

Let $f \in \mathcal{B}$ be a function of finite order, or more generally a finite composition of such functions. Then every point $z \in \mathcal{I}(f)$ can be connected to ∞ by a curve γ such that $f_{|\gamma}^n \to \infty$ uniformly.

- Proved for a special case (finite type + technical conditions) by Robert L. Devaney and Folkert Tangerman in 1986.
- Krzysztof Barański proved it for the disjoint-type case.
- ▶ With Núria Fagella we have proven a similar result for holomorphic self-maps of C^{*} which have two essential sing. (*in preparation*).

Robert L. Devaney, and Folkert Tangerman, *Dynamics of entire functions near the essential singularity*, Ergodic Theory Dynam. Systems **6** (1986), no. 4, 489–503. Krzysztof Barański, *Trees and hairs for some hyperbolic entire maps of finite order*, Math Z. **257** (2007), no. 1, 33–59. Günter Rottenfußer, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, *Dynamic rays of*

bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77-125.

Cantor bouquets

Definition

A straight brush is a subset B of $[0,\infty) \times (\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{R}^2$ such that

- ► $\forall (y, \alpha) \in B, \exists t_{\alpha} \in [0, \infty) \text{ such that } \{t : (t, \alpha) \in B\} = [t_{\alpha}, \infty);$
- ▶ the set { α : $\exists y$, $(y, \alpha) \in B$ } is dense in $\mathbb{R} \setminus \mathbb{Q}$ i $\forall (y, \alpha) \in B$, $\exists (\beta_n)_n, (\gamma_n)_n \subseteq \mathbb{R} \setminus \mathbb{Q}, \ \beta_n \nearrow \alpha, \ \gamma_n \searrow \alpha$ such that $t_{\beta_n}, t_{\gamma_n} \to t_{\alpha}$;
- *B* is a closed subset of \mathbb{R}^2 .

A Cantor bouquet is a set ambiently homeomorphic to a straight brush.

Topological properties:

▶ it has Hausdorff dimension 2, although it has Lebesgue measure 0;

if Λ denotes the set of extreme points e_α = (t_α, α),
 Λ is a totally disconnected set,
 but Λ ∪ {∞} is connected!

Jan M. Aarts and Lex G. Oversteegen, *The geometry of Julia sets*, Trans. Amer. Math. Soc. **338** (1993), 897-918.

Theorem (Barański, Jarque, Rempe 2012)

a) Let f be a disjoint-type function that can be written as a finite composition of finite-order functions in the class \mathcal{B} , then $\mathcal{J}(f)$ is a Cantor bouquet.

b) In general, if f is a finite order function in the class \mathcal{B} (or, more generally, a composition of such functions) then the Julia set of such a function always contains a Cantor bouquet.

Krzysztof Barański, Xavier Jarque, and Lasse Rempe, Brushing the hairs of transcendental entire functions, Topology Appl. **159** (2012), no. 8, 2102-2114.

If f is an entire function and R > 0,

$$M(R,f) := \max_{|z|=R} |f(z)|.$$

If f is an entire function and R > 0,

$$M(R,f) := \max_{|z|=R} |f(z)|.$$

🔺 We will usualy require that

$$R > 0$$
 is such that $M(r, f) > r$ for $r \ge R$.

Observe that this is equivalent to the fact that $M^n(R, f) \to \infty$ as $n \to \infty$, and it is enough to take

$$R > \min_{z \in \mathcal{J}(f)} |z|$$

by Montel's theorem.

The fast escaping set

Let f be an entire transcendental function, the **fast escaping set** is

 $\mathcal{A}(f) := \{ z \in \mathbb{C} : \exists \ell \in \mathbb{N}, |f^{n+\ell}(z)| \ge M^n(R, f) \text{ for } n \in \mathbb{N} \},\$

where R > 0 is such that M(r, f) > r for $r \ge R$.

Walter Bergweiler, and Aimo Hinkkanen, *On semiconjugation of entire functions*, Math. Proc. Cambridge Philos. Soc. **126** (1999) 565–574. Philip J. Rippon, and Gwyneth M. Stallard, *Fast escaping points of entire functions*, Proc. London Math. Soc., **105** (2012), 787–820.

The fast escaping set

Let f be an entire transcendental function, the **fast escaping set** is

 $\mathcal{A}(f) := \{ z \in \mathbb{C} : \exists \ell \in \mathbb{N}, |f^{n+\ell}(z)| \ge M^n(R, f) \text{ for } n \in \mathbb{N} \},\$

where R > 0 is such that M(r, f) > r for $r \ge R$.

Theorem (Bergweiler, Hinkkanen 1999)

Let f be an entire transcendental function. Then,

 $\mathcal{J}(f) = \partial \mathcal{A}(f).$

Remember that Eremenko showed that $\mathcal{J}(f) = \partial \mathcal{I}(f)$.

Philip J. Rippon, and Gwyneth M. Stallard, *Fast escaping points of entire functions*, Proc. London Math. Soc., **105** (2012), 787–820.

Walter Bergweiler, and Aimo Hinkkanen, *On semiconjugation of entire functions*, Math. Proc. Cambridge Philos. Soc. **126** (1999) 565–574.

Theorem (Rippon, Stallard 2005)

Let f be an entire transcendental function. All the components of $\mathcal{A}(f)$ are unbounded, and $\mathcal{A}(f) \neq \emptyset$. Hence, there is at least one unbounded component of $\mathcal{I}(f)$.

Philip J. Rippon, and Gwyneth M. Stallard, *On questions of Fatou and Eremenko*, Proc. Amer. Math. Soc. **133** (2005) 1119–1126.

 $\mathcal{A}(f)$ can be decomposed into **level sets**:

$$\begin{aligned} A_R^{\ell}(f) &:= \{ z \in \mathbb{C} : |f^n(z)| \ge M^{n+\ell}(R, f) \text{ for } n \in \mathbb{N}, \ n+\ell \in \mathbb{N} \}; \\ A_R^{-\ell}(f) &:= \{ z \in \mathbb{C} : |f^{n+\ell}(z)| \ge M^n(R, f) \text{ for } n \in \mathbb{N}, \ n+\ell \in \mathbb{N} \}; \\ A_R(f) &:= A_R^0(f) := \{ z \in \mathbb{C} : |f^n(z)| \ge M^n(R, f) \text{ for } n \in \mathbb{N} \} \end{aligned}$$

are *closed* sets and

$$\mathcal{A}(f) = \bigcup_{\ell \in \mathbb{N}} A_R^{-\ell}(f) = \bigcup_{\ell \in \mathbb{N}} f^{-\ell}(A_R(f)).$$

Observe that $f(A_R^\ell(f))\subseteq A_R^{\ell+1}(f)\subseteq A_R^\ell(f)$ for $\ell\in\mathbb{Z}$ and hence

$$A_R^{-\ell}(f) \subseteq A_R^{-(\ell+1)}(f)$$
 for $\ell \in \mathbb{N}$.

Theorem (Rippon, Stallard 2011)

Let f be a transcendental entire function, let R > 0 be such that M(r, f) > r for $r \ge R$, and let $\ell \in \mathbb{Z}$. If U is a Fatou component that meets $A_R^{\ell}(f)$, then (a) $\overline{U} \subseteq A_R^{\ell-1}(f)$; (b) if, in addition, U is simply connected, then $\overline{U} \subseteq A_R^{\ell}(f)$.

In particular, if U is a Fatou component in $\mathcal{A}(f)$, then $\partial U \subseteq \mathcal{A}(f)$.

This is not true for $\mathcal{I}(f)$! In the example $f(z) = z + 1 + e^{-z}$, $\mathcal{F}(f)$ is connected (a Baker domain) and not all the points in $\partial \mathcal{F}(f) = \mathcal{J}(f)$ escape, there are periodic points. Baker domains are contained in the **slow** escaping set.

Philip J. Rippon, and Gwyneth M. Stallard, *Boundaries of escaping Fatou components*, Proc. Amer. Math. Soc. **139** (2011) 2807–2820.

The quite fast escaping set of an entire transc. function f is

 $\mathcal{Q}(f) := \{ z \in \mathbb{C} : \exists \ell \in \mathbb{N}, |f^{n+\ell}(z)| \ge \mu_{\varepsilon}^n(R, f) \text{ for } n \in \mathbb{N} \},$

where $\mu_{\varepsilon}(R, f) = M(R, f)^{\varepsilon}$, $0 < \varepsilon < 1$, and $\mu_{\varepsilon}^{n}(R, f) \to \infty$.

Philip J. Rippon, and Gwyneth M. Stallard, *Regularity and fast escaping points of entire functions*, preprint, 2013. arXiv:1301.2193v1 [math.DS].

The quite fast escaping set of an entire transc. function f is

$$\mathcal{Q}(f) := \{ z \in \mathbb{C} : \exists \ell \in \mathbb{N}, |f^{n+\ell}(z)| \ge \mu_{\varepsilon}^{n}(R, f) \text{ for } n \in \mathbb{N} \},$$

where $\mu_{\varepsilon}(R, f) = M(R, f)^{\varepsilon}$, $0 < \varepsilon < 1$, and $\mu_{\varepsilon}^{n}(R, f) \to \infty$.

$$\mathcal{A}(f) \subseteq \mathcal{Q}(f) \subseteq \mathcal{I}(f).$$

Q: Are these sets always different?

Philip J. Rippon, and Gwyneth M. Stallard, *Regularity and fast escaping points of entire functions*, preprint, 2013. arXiv:1301.2193v1 [math.DS].

Theorem (Rippon, Stallard 2011)

Let f be a transcendental entire function. Then

 $\mathcal{A}(f) \neq \mathcal{I}(f), \quad \mathcal{Q}(f) \neq \mathcal{I}(f)$

since $\mathcal{I}(f)$ cointains points that escape arbitrarily slowly: given any positive sequence $(a_n)_n$ with $a_n \to \infty$ as $n \to +\infty$, there exists

 $\zeta \in \mathcal{I}(f) \cap \mathcal{J}(f), \text{ and } N \in \mathbb{N}$

such that $|f^n(\zeta)| \leq a_n$ for $n \geq N$.

Philip J. Rippon, and Gwyneth M. Stallard, *Regularity and fast escaping points of entire functions*, preprint, 2013. arXiv:1301.2193v1 [math.DS].

We say that a set *E* is an (infinite) **spider's web** if *E* is connected and there exists a sequence of bounded simply connected domains G_n with $G_n \subseteq G_{n+1}$ for $n \in \mathbb{N}$, $\partial G_n \subseteq E$ for $n \in \mathbb{N}$ and

$$\bigcup_{n\geq 0} G_n = \mathbb{C}.$$

Theorem (Rippon, Stallard 2012)

Let f be a transcendental entire function and let R > 0 be such that M(r, f) > r for $r \ge R$. If $\mathbb{C} \setminus A_R(f)$ has a bounded component, then each of $A_R(f)$, $\mathcal{A}(f)$ and $\mathcal{I}(f)$ is a spider's web.

This cannot happen in class \mathcal{B} !

Philip J. Rippon, and Gwyneth M. Stallard, *Fast escaping points of entire functions*, Proc. London Math. Soc. **105** (2012) 787–820.

John W. Osborne, *The structure of spider's web fast escaping sets*, Bull. London Math. Soc. **44** (2012), 503–519.

Example of an spider's web

$$f(z) = \frac{1}{2} (\cos z^{1/4} + \cosh z^{1/4})$$

(Picture borrowed from Dr. Dominique Fleischmann)

Let f be an entire transcendental function and let R > 0 be such that M(r, f) > r for $r \ge R$. Define the sets $A_0(R) := \mathbb{D}_R$ and, for $n \ge 1$,

$$A_n(R) := \{z \in \mathbb{C} : M^{n-1}(R, f) \leq |z| < M^n(R, f)\},\$$

which form a *partition* of the plane.

Philip J. Rippon, and Gwyneth M. Stallard, Annular itineraries for entire functions, preprint, 2013. arXiv:1301.1328v1 [math.DS]

Let f be an entire transcendental function and let R > 0 be such that M(r, f) > r for $r \ge R$. Define the sets $A_0(R) := \mathbb{D}_R$ and, for $n \ge 1$,

$$A_n(R) := \{z \in \mathbb{C} : M^{n-1}(R, f) \leq |z| < M^n(R, f)\}$$

which form a *partition* of the plane.

The **annular itinerary** of z is $s_0 s_1 s_2 \ldots$, where

 $f^n(z) \in A_{s_n}(R)$, for $n \ge 0$.

Philip J. Rippon, and Gwyneth M. Stallard, Annular itineraries for entire functions, preprint, 2013. arXiv:1301.1328v1 [math.DS]

Let f be an entire transcendental function and let R > 0 be such that M(r, f) > r for $r \ge R$. Define the sets $A_0(R) := \mathbb{D}_R$ and, for $n \ge 1$,

$$A_n(R) := \{z \in \mathbb{C} : M^{n-1}(R, f) \leq |z| < M^n(R, f)\}$$

which form a *partition* of the plane.

The **annular itinerary** of z is $s_0 s_1 s_2 \ldots$, where

$$f^n(z) \in A_{s_n}(R)$$
, for $n \ge 0$.

Maximum principle $\Rightarrow \forall n \in \mathbb{N}, s_{n+1} \leq s_n + 1.$

Philip J. Rippon, and Gwyneth M. Stallard, Annular itineraries for entire functions, preprint, 2013. arXiv:1301.1328v1 [math.DS]

Constructing orbits

Lemma

Let C_m , $m \ge 0$, be compact sets in $\mathbb C$ and f continuous such that

```
f(C_m) \supseteq C_{m+1}, for m \ge 0.
```

Then $\exists \xi$ such that $f^m(\xi) \in C_m$, for $m \ge 0$.

Theorem (Rippon, Stallard 2013)

Let f be a transcendental entire function. There exists R and closed annuli

 $B_n := \{ z \in \mathbb{C} : r_n \leq |z| < r'_n \}, n \in \mathbb{N},$

all meeting $\mathcal{J}(f)$ such that

- (a) $f(B_n) \supseteq B_{n+1}$, for $n \in \mathbb{N}$;
- (b) $B_n \subseteq A_n$, for $n \in \mathbb{N}$;
- (c) $\exists n_j \rightarrow +\infty$ such that $f(B_{n_j}) \supseteq B_n$, for $1 \le n \le n_j$, with at most one exception.

Prescribing itineraries

Observe that if $f^n(\xi) \in B_n$ for all $n \in \mathbb{N}$, then $\xi \in \mathcal{A}(f)$.

Theorem (Rippon, Stallard 2013)

Let f be a transcendental entire function. There exists $s \in \mathbb{N}$ and $n_j \rightarrow +\infty$ such that any itinerary with the following properties is achievable:

s_n ≥ s, for n ≥ 0;
s_{n+1} =
$$\begin{cases}
s_n + 1, & \text{if } n \neq n_j; \\
s_{n_j+1} & \text{or one of } \{s, ..., s_{n_j}\} & \text{with at most one exception;}
\end{cases}$$

In particular, we can construct points with the following itineraries:

- periodic itineraries, in given consecutive fundamenta annuli;
- uncountably many bounded itineraries;
- uncountably many unbounded non-escaping itineraries;
- arbitrarily slowly escaping itineraries.

Theorem (Rippon, Stallard 2013)

Let f be a transcendental entire function. There exists $R_0(f) > 0$ such that for any $(a_m)_m$ with $a_m \ge R_0(f)$ and $a_{m+1} \le M(a_m, f)$, for $m \in \mathbb{N}$, there exist $\zeta \in \mathcal{J}(f)$ and $m_j \to \infty$ such that

•
$$|f^m(\zeta)| \ge a_m$$
, for $m \in \mathbb{N}$;

•
$$|f^{m_j}(\zeta)| \leqslant M^3(\mathsf{a}_{m_j},f)$$
, for $j \in \mathbb{N}$.

Theorem (Rippon, Stallard 2013)

Let f be a transcendental entire function, then

$$Q(f) = A(f) \Leftrightarrow f$$
 is weakly regular.

To obtain $\zeta \in \mathcal{Q}(f) \setminus \mathcal{A}(f)$ take

$$a_m = \mu_{\varepsilon}^m(R, f), \ m \in \mathbb{N}.$$

In particular, if $f \in \mathcal{B}$, then $\mathcal{Q}(f) = \mathcal{A}(f)$.

Philip J. Rippon, and Gwyneth M. Stallard, *Regularity and fast escaping points of entire functions*, preprint, 2013. arXiv:1301.2193v1 [math.DS]

THE END Thank you for your attention!