From quasiconformal foldings to entire functions

Sébastien Godillon

Universitat de Barcelona

TCD 2013, June 10th

Let $f:\mathbb{C}\to\mathbb{C}$ be a transcendental entire function with

- no finite asymptotic values
- \bullet exactly two critical values, say $\{-1,+1\}$

Question: What does f "look like" ??

 $T = f^{-1}([-1,+1])$ is an infinite bipartite tree.

 $T = f^{-1}([-1,+1])$ is an infinite bipartite tree.

 $\cosh: \mathbb{H}_r \to \mathbb{C} \setminus [-1, +1]$ is a universal cover.

 $T = f^{-1}([-1,+1])$ is an infinite bipartite tree.

 $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus \mathcal{T}, \ \tau_{|\Omega} = (\cosh^{-1} \circ f_{|\Omega}) : \Omega \to \mathbb{H}_r \text{ is conformal.}$

Conversely: How to construct f from (T, τ) ?

Conversely: How to construct f from (T, τ) ?

More precisely, given

- \bullet an infinite bipartite tree $\mathcal{T} \subset \mathbb{C}$ with "smooth" enough geometry
- a map τ such that $\tau_{|\Omega} : \Omega \to \mathbb{H}_r$ is conformal, $\forall \Omega$ c.c. of $\mathbb{C} \setminus \mathcal{T}$

does there exist an entire function $f : \mathbb{C} \to \mathbb{C}$ such that $f = \cosh \circ \tau$?

Conversely: How to construct f from (T, τ) ?

More precisely, given

- \bullet an infinite bipartite tree $\mathcal{T} \subset \mathbb{C}$ with "smooth" enough geometry
- a map τ such that $\tau_{|\Omega} : \Omega \to \mathbb{H}_r$ is conformal, $\forall \Omega$ c.c. of $\mathbb{C} \setminus \mathcal{T}$

does there exist an entire function $f : \mathbb{C} \to \mathbb{C}$ such that $f = \cosh \circ \tau$?

Main problem: τ is not continuous across T in general.

Solution: Replace (T, τ) by (T', η) such that

- $T \subset T'$
- $\eta_{|\Omega'}: \Omega' \to \mathbb{H}_r$ is quasiconformal, $\forall \Omega' \text{ c.c. of } \mathbb{C} \setminus T'$
- $\eta = \tau$ off a small neighborhood of T'
- $\cosh \circ \eta$ is continuous across T'

Solution: Replace (T, τ) by (T', η) such that

- $T \subset T'$
- $\eta_{|\Omega'}: \Omega' \to \mathbb{H}_r$ is quasiconformal, $\forall \Omega'$ c.c. of $\mathbb{C} \setminus \mathcal{T}'$
- $\eta = \tau$ off a small neighborhood of T'
- $\cosh \circ \eta$ is continuous across T'

Then apply Ahlfors-Bers theorem:

 \exists an entire function f and a quasiconformal map ϕ such that

 $f \circ \phi = \cosh \circ \tau$ off a small neighborhood of T

The neighborhood of T

For every r > 0, define an open neighborhood of T as follows

$$\mathcal{T}(r) = igcup_{e ext{ edge of } \mathcal{T}} \Big\{ z \in \mathbb{C} ext{ such that } \operatorname{dist}(z, e) < r \operatorname{diam}(e) \Big\}$$

Lemma 0

- If \mathcal{T} has bounded geometry, namely
 - edges of T are C^2 with uniform bounds
 - angles between adjacent edges are uniformly bounded away from 0
 - adjacent edges have uniformly comparable length
 - for non-adjacent edges e and f, $\frac{\operatorname{diam}(e)}{\operatorname{dist}(e,f)}$ is uniformly bounded

then there exists $r_0 > 0$ such that

 $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T, \text{ and } \forall \text{ edge } e \subset \partial \Omega,$

the square in \mathbb{H}_r that has $au_{|\Omega}(e)$ as one side is in $au_{|\Omega}\Big(au(r_0)\cap\Omega\Big)$

Lemma 0

If T has bounded geometry, then there exists $r_0 > 0$ such that

 $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus \mathcal{T}, \text{ and } \forall \text{ edge } e \subset \partial \Omega,$ the square in \mathbb{H}_r that has $\tau_{|\Omega}(e)$ as one side is in $\tau_{|\Omega} \Big(\mathcal{T}(r_0) \cap \Omega \Big)$

Theorem 1 (Bishop 2011)

If (T, τ) satisfies the following conditions

- T has bounded geometry
- **2** every edge has τ -size $\geq \pi$

then there exist an entire function f and a quasiconformal map ϕ such that

$$f \circ \phi = \cosh \circ \tau \text{ off } T(r_0)$$

Moreover

 $\left\{ \begin{array}{l} f \text{ has no asymptotic values} \\ \text{the only critical values of } f \text{ are } \{-1,+1\} \\ \phi(\mathcal{T}) \subset f^{-1}([-1,+1]) \quad (=\phi(\mathcal{T}')) \end{array} \right.$

Sketch of the proof: Construct (T', η) such that

- $T \subset T' \subset T(r_0)$
- $\eta_{|\Omega'}: \Omega' \to \mathbb{H}_r$ is quasiconformal, $\forall \Omega'$ c.c. of $\mathbb{C} \setminus T'$
- $\eta = \tau$ off $T(r_0)$
- $\cosh \circ \eta$ is continuous across T'
- $T' = (\cosh \circ \eta)^{-1}([-1,+1])$

Particular case: $\forall \text{ edge } e \subset \partial \Omega \cup \partial \Omega'$, $\operatorname{diam}(\tau_{|\Omega}(e)) = \operatorname{diam}(\tau_{|\Omega'}(e)) \ge \pi$

Lemma 1

There exists $K_1 \ge 1$ such that $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T$, $\exists a K_1$ -quasiconformal map $(\lambda_\Omega \circ \imath_\Omega) : \mathbb{H}_r \to \mathbb{H}_r /$ • $(\lambda_\Omega \circ \imath_\Omega) = \text{Id off } \tau_{|\Omega} \Big(T(r_0) \cap \Omega \Big)$ • $\forall \text{ edge } e \subset \partial \Omega, \ (\lambda_\Omega \circ \imath_\Omega) \Big(\tau_{|\Omega}(e) \Big) = i \Big[n\pi, n\pi + (2k+1)\pi \Big]$ • $\forall \text{ edge } e \subset \partial \Omega \cup \partial \Omega', \ (\lambda_\Omega \circ \imath_\Omega) \circ \tau_{|\Omega} = (\lambda_{\Omega'} \circ \imath_{\Omega'}) \circ \tau_{|\Omega'} + im\pi \text{ on } e$

$\begin{cases} \iota_{\Omega} : \mathbb{H}_r \to \mathbb{H}_r \text{ moves the vertices into } i\mathbb{Z}\pi \\ \lambda_{\Omega} : \mathbb{H}_r \to \mathbb{H}_r \text{ fixes } i\mathbb{Z}\pi \text{ and makes the continuity across } T \end{cases}$

$\begin{cases} \iota_{\Omega} : \mathbb{H}_r \to \mathbb{H}_r \text{ moves the vertices into } i\mathbb{Z}\pi \\ \lambda_{\Omega} : \mathbb{H}_r \to \mathbb{H}_r \text{ fixes } i\mathbb{Z}\pi \text{ and makes the continuity across } T \end{cases}$

 $\mathsf{Particular \ case:} \ \forall \ \mathsf{edge} \ e \subset \partial \Omega \cup \partial \Omega', \ \mathrm{diam}(\tau_{|\Omega}(e)) = \mathrm{diam}(\tau_{|\Omega'}(e)) \geqslant \pi$

Lemma 1

There exists $K_1 \ge 1$ such that $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T$, $\exists a K_1$ -quasiconformal map $(\lambda_\Omega \circ \imath_\Omega) : \mathbb{H}_r \to \mathbb{H}_r /$ • $(\lambda_\Omega \circ \imath_\Omega) = \text{Id off } \tau_{|\Omega} \Big(T(r_0) \cap \Omega \Big)$ • $\forall \text{ edge } e \subset \partial \Omega, \ (\lambda_\Omega \circ \imath_\Omega) \Big(\tau_{|\Omega}(e) \Big) = i \Big[n\pi, n\pi + (2k+1)\pi \Big]$

• $\forall edge \ e \subset \partial \Omega \cup \partial \Omega'$, $(\lambda_{\Omega} \circ \imath_{\Omega}) \circ \tau_{|\Omega} = (\lambda_{\Omega'} \circ \imath_{\Omega'}) \circ \tau_{|\Omega'} + im\pi$ on e

Then define

$$\begin{cases} \eta_{|\Omega} = (\lambda_{\Omega} \circ \imath_{\Omega}) \circ \tau_{|\Omega}, \ \forall \Omega \text{ c.c. of } \mathbb{C} \setminus T \\ T' = T \text{ with new vertices coming from } \eta^{-1}(i\pi\mathbb{Z}) \end{cases}$$

General case: \forall edge $e \subset \partial \Omega \cup \partial \Omega'$, min $\{\operatorname{diam}(\tau_{|\Omega}(e)), \operatorname{diam}(\tau_{|\Omega'}(e))\} \ge \pi$ We may assume $\tau_{|\Omega}(e) = i \left[n\pi, n\pi + (2k+1)\pi \right]$, \forall edge $e \subset \partial \Omega$.

Lemma 2 (quasiconformal folding)

There exists $K_2 \ge 1$ such that $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T, \exists a K_2$ -quasiconformal map $\psi_\Omega : W_\Omega \subset \mathbb{H}_r \to \mathbb{H}_r /$ • $\psi_\Omega = \text{Id off } \tau_{|\Omega} \Big(T(r_0) \cap \Omega \Big)$ • $\forall \text{ edge } e \subset \partial\Omega, \ \psi_\Omega \Big(\tau_{|\Omega}(e) \Big) = i \Big[n\pi, n\pi + \pi \Big]$ • $\forall \text{ edge } e \subset \partial\Omega \cup \partial\Omega', \ \psi_\Omega \circ \tau_{|\Omega} = \psi_{\Omega'} \circ \tau_{|\Omega'} + im\pi \text{ on } e$

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

 ψ^{-1} is called a quasiconformal folding map.

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

 ψ^{-1} is called a quasiconformal folding map.

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

 $\left\{ \begin{array}{l} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{array} \right.$

Solution: Add some extra edges and "unfold".

 ψ^{-1} is called a quasiconformal folding map.

 $\begin{cases} \psi \text{ maps the left side to an edge of length } \pi \\ \psi \text{ acts as identity on the right side} \end{cases}$

Solution: Add some extra edges and "unfold".

 ψ^{-1} is called a quasiconformal folding map.

Claim of Lemma 2: The dilatation of ψ is uniformly bounded for every side length of square.

 $\psi_{\Omega} : \mathbb{H}_r \to \mathbb{H}_r$ realizes an unfolding in each square of $\tau_{|\Omega} \Big(\mathcal{T}(r_0) \cap \Omega \Big)$ and makes the continuity across \mathcal{T}

 $\psi_{\Omega} : \mathbb{H}_r \to \mathbb{H}_r$ realizes an unfolding in each square of $\tau_{|\Omega} \Big(\mathcal{T}(r_0) \cap \Omega \Big)$ and makes the continuity across \mathcal{T}

General case: \forall edge $e \subset \partial \Omega \cup \partial \Omega'$, min $\{\operatorname{diam}(\tau_{|\Omega}(e)), \operatorname{diam}(\tau_{|\Omega'}(e))\} \ge \pi$ We may assume $\tau_{|\Omega}(e) = i \left[n\pi, n\pi + (2k+1)\pi \right]$, \forall edge $e \subset \partial \Omega$.

Lemma 2 (quasiconformal folding)

There exists $K_2 \ge 1$ such that $\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T$, $\exists a K_2$ -quasiconformal map $\psi_{\Omega} : W_{\Omega} \subset \mathbb{H}_r \to \mathbb{H}_r / \mathbb{C}$

•
$$\psi_{\Omega} = \text{Id off } \tau_{|\Omega} \Big(T(r_0) \cap \Omega \Big)$$

•
$$\forall$$
 edge $e \subset \partial \Omega$, $\psi_{\Omega} \Big(\tau_{|\Omega}(e) \Big) = i \Big[n\pi, n\pi + \pi \Big]$

•
$$\forall$$
 edge $e \subset \partial \Omega \cup \partial \Omega'$, $\psi_{\Omega} \circ \tau_{|\Omega} = \psi_{\Omega'} \circ \tau_{|\Omega'} + im\pi$ on e

Then define

$$\begin{cases} \eta_{|\Omega} = \psi_{\Omega} \circ \tau_{|\Omega}, \ \forall \Omega \text{ c.c. of } \mathbb{C} \setminus T \\ T' = T \text{ with decorations coming from } \eta^{-1}(i\mathbb{R}) \end{cases}$$

Generalization: Can we construct f with

- asymptotic values ?
- \bullet more critical values than only $\{-1,+1\}$?
- arbitrary high degree critical points ?

Solution: Let T be an infinite bipartite graph.

Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C} \setminus T$ are of three different types: *R*-component: $\tau_{|\Omega} : \Omega \to \mathbb{H}_r$ conformally *L*-component: $\tau_{|\Omega} : \Omega \to \mathbb{H}_\ell$ conformally *D*-component: $\tau_{|\Omega} : \Omega \to \mathbb{D}$ conformally Solution: Let T be an infinite bipartite graph.

More precisely: *R*-component: $\Omega \xrightarrow{\tau_{|\Omega}} \mathbb{H}_{r} \xrightarrow{\cosh} \mathbb{C} \setminus [-1, +1]$ *L*-component: $(\Omega, \infty) \xrightarrow{\tau_{|\Omega}} (\mathbb{H}_{\ell}, -\infty) \xrightarrow{\exp} (\mathbb{D}, 0) \xrightarrow{\rho_{\Omega}} (\mathbb{D}, \rho_{\Omega}(0))$ *D*-component: $(\Omega, c_{\Omega}) \xrightarrow{\tau_{|\Omega}} (\mathbb{D}, 0) \xrightarrow{z \mapsto z^{d_{\Omega}}} (\mathbb{D}, 0) \xrightarrow{-\rho_{\Omega}} (\mathbb{D}, \rho_{\Omega}(0))$

where $\rho_{\Omega} : \mathbb{D} \to \mathbb{D}$ is quasiconformal with $\rho_{\Omega \mid \partial \mathbb{D}} = \mathrm{Id}$.

Theorem 2 (Bishop 2011)

- If ($\mathcal{T},\tau)$ satisfies the following conditions
 - T has bounded geometry
 - 2 L, D-components only share edges with R-components
 - **③** on *R*-components, every edge has τ -size $\geq \pi$

then \exists an entire function f in class ${\cal B}$ and a quasiconformal map ϕ /

$$f \circ \phi = \sigma \circ \tau \text{ off } T(r_0) \text{ with } \sigma(z) = \begin{cases} \cosh(z) & \text{on } R\text{-component} \\ \rho_{\Omega}(\exp(z)) & \text{on } L\text{-component} \\ \rho_{\Omega}(z^{d_{\Omega}}) & \text{on } D\text{-component} \end{cases}$$

Moreover

quasiconformal foldings only occur in *R*-components the only asymptotic values of *f* are in \mathbb{D} (from *L*-components) the only critical values of *f* are in $\{-1, +1\} \cup \mathbb{D}$ (from *D*-components) *f* has critical points in *D*-components with arbitrary degree

Moltes gràcies per la seva atenció.