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Let f : C→ C be a transcendental entire function with
no finite asymptotic values
exactly two critical values, say {−1,+1}

Question: What does f “look like” ??



T = f −1([−1,+1]) is an infinite bipartite tree.
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T = f −1([−1,+1]) is an infinite bipartite tree.
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cosh : Hr → C\[−1,+1] is a universal cover.



T = f −1([−1,+1]) is an infinite bipartite tree.
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∀Ω c.c. of C\T , τ|Ω = (cosh−1 ◦f|Ω) : Ω→ Hr is conformal.



Conversely: How to construct f from (T , τ) ?

More precisely, given
an infinite bipartite tree T ⊂ C with “smooth” enough geometry
a map τ such that τ|Ω : Ω→ Hr is conformal, ∀Ω c.c. of C\T

does there exist an entire function f : C→ C such that f = cosh ◦τ ?

Main problem: τ is not continuous across T in general.
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Conversely: How to construct f from (T , τ) ?

More precisely, given
an infinite bipartite tree T ⊂ C with “smooth” enough geometry
a map τ such that τ|Ω : Ω→ Hr is conformal, ∀Ω c.c. of C\T

does there exist an entire function f : C→ C such that f = cosh ◦τ ?
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Solution: Replace (T , τ) by (T ′, η) such that
T ⊂ T ′

η|Ω′ : Ω′ → Hr is quasiconformal, ∀Ω′ c.c. of C\T ′

η = τ off a small neighborhood of T ′

cosh ◦η is continuous across T ′

Then apply Ahlfors-Bers theorem:

∃ an entire function f and a quasiconformal map φ such that

f ◦ φ = cosh ◦τ off a small neighborhood of T
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The neighborhood of T
For every r > 0, define an open neighborhood of T as follows

T (r) =
⋃

e edge of T

{
z ∈ C such that dist(z , e) < rdiam(e)

}
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Lemma 0
If T has bounded geometry, namely

1 edges of T are C2 with uniform bounds
2 angles between adjacent edges are uniformly bounded away from 0
3 adjacent edges have uniformly comparable length
4 for non-adjacent edges e and f , diam(e)

dist(e,f ) is uniformly bounded

then there exists r0 > 0 such that

∀Ω c.c. of C\T , and ∀ edge e ⊂ ∂Ω,

the square in Hr that has τ|Ω(e) as one side is in τ|Ω
(
T (r0) ∩ Ω

)
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then there exists r0 > 0 such that
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Theorem 1 (Bishop 2011)
If (T , τ) satisfies the following conditions

1 T has bounded geometry
2 every edge has τ -size > π

then there exist an entire function f and a quasiconformal map φ such that

f ◦ φ = cosh ◦τ off T (r0)

Moreover 
f has no asymptotic values
the only critical values of f are {−1,+1}
φ(T ) ⊂ f −1([−1,+1]) (= φ(T ′))
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Sketch of the proof: Construct (T ′, η) such that
T ⊂ T ′ ⊂ T (r0)

η|Ω′ : Ω′ → Hr is quasiconformal, ∀Ω′ c.c. of C\T ′

η = τ off T (r0)

cosh ◦η is continuous across T ′

T ′ = (cosh ◦η)−1([−1,+1])



Particular case: ∀ edge e ⊂ ∂Ω ∪ ∂Ω′, diam(τ|Ω(e)) = diam(τ|Ω′(e)) > π

Lemma 1
There exists K1 > 1 such that
∀Ω c.c. of C\T , ∃ a K1-quasiconformal map (λΩ ◦ ıΩ) : Hr → Hr /

(λΩ ◦ ıΩ) = Id off τ|Ω
(
T (r0) ∩ Ω

)
∀ edge e ⊂ ∂Ω, (λΩ ◦ ıΩ)

(
τ|Ω(e)

)
= i
[
nπ, nπ + (2k + 1)π

]
∀ edge e ⊂ ∂Ω ∪ ∂Ω′, (λΩ ◦ ıΩ) ◦ τ|Ω = (λΩ′ ◦ ıΩ′) ◦ τ|Ω′ + imπ on e



{
ıΩ : Hr → Hr moves the vertices into iZπ
λΩ : Hr → Hr fixes iZπ and makes the continuity across T
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Particular case: ∀ edge e ⊂ ∂Ω ∪ ∂Ω′, diam(τ|Ω(e)) = diam(τ|Ω′(e)) > π

Lemma 1
There exists K1 > 1 such that
∀Ω c.c. of C\T , ∃ a K1-quasiconformal map (λΩ ◦ ıΩ) : Hr → Hr /

(λΩ ◦ ıΩ) = Id off τ|Ω
(
T (r0) ∩ Ω

)
∀ edge e ⊂ ∂Ω, (λΩ ◦ ıΩ)

(
τ|Ω(e)

)
= i
[
nπ, nπ + (2k + 1)π

]
∀ edge e ⊂ ∂Ω ∪ ∂Ω′, (λΩ ◦ ıΩ) ◦ τ|Ω = (λΩ′ ◦ ıΩ′) ◦ τ|Ω′ + imπ on e

Then define{
η|Ω = (λΩ ◦ ıΩ) ◦ τ|Ω, ∀Ω c.c. of C\T
T ′ = T with new vertices coming from η−1(iπZ)



General case: ∀ edge e ⊂ ∂Ω∪∂Ω′, min{diam(τ|Ω(e)), diam(τ|Ω′(e))} > π
We may assume τ|Ω(e) = i

[
nπ, nπ + (2k + 1)π

]
, ∀ edge e ⊂ ∂Ω.

Lemma 2 (quasiconformal folding)
There exists K2 > 1 such that
∀Ω c.c. of C\T , ∃ a K2-quasiconformal map ψΩ : WΩ ⊂ Hr → Hr /

ψΩ = Id off τ|Ω
(
T (r0) ∩ Ω

)
∀ edge e ⊂ ∂Ω, ψΩ

(
τ|Ω(e)

)
= i
[
nπ, nπ + π

]
∀ edge e ⊂ ∂Ω ∪ ∂Ω′, ψΩ ◦ τ|Ω = ψΩ′ ◦ τ|Ω′ + imπ on e



Exercise: Find a quasiconformal map ψ from a square to itself such that{
ψ maps the left side to an edge of length π
ψ acts as identity on the right side

Solution: Add some extra edges and “unfold”.

ψ

3π π

ψ−1 is called a quasiconformal folding map.

Claim of Lemma 2: The dilatation of ψ is uniformly bounded
for every side length of square.
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Exercise: Find a quasiconformal map ψ from a square to itself such that{
ψ maps the left side to an edge of length π
ψ acts as identity on the right side

Solution: Add some extra edges and “unfold”.
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ψ−1 is called a quasiconformal folding map.

Claim of Lemma 2: The dilatation of ψ is uniformly bounded
for every side length of square.
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Claim of Lemma 2: The dilatation of ψ is uniformly bounded
for every side length of square.
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ψΩ : Hr → Hr realizes an unfolding in each square of τ|Ω
(
T (r0) ∩ Ω

)
and makes the continuity across T
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General case: ∀ edge e ⊂ ∂Ω∪∂Ω′, min{diam(τ|Ω(e)), diam(τ|Ω′(e))} > π
We may assume τ|Ω(e) = i

[
nπ, nπ + (2k + 1)π

]
, ∀ edge e ⊂ ∂Ω.

Lemma 2 (quasiconformal folding)
There exists K2 > 1 such that
∀Ω c.c. of C\T , ∃ a K2-quasiconformal map ψΩ : WΩ ⊂ Hr → Hr /

ψΩ = Id off τ|Ω
(
T (r0) ∩ Ω

)
∀ edge e ⊂ ∂Ω, ψΩ

(
τ|Ω(e)

)
= i
[
nπ, nπ + π

]
∀ edge e ⊂ ∂Ω ∪ ∂Ω′, ψΩ ◦ τ|Ω = ψΩ′ ◦ τ|Ω′ + imπ on e

Then define{
η|Ω = ψΩ ◦ τ|Ω, ∀Ω c.c. of C\T
T ′ = T with decorations coming from η−1(iR)

�



Generalization: Can we construct f with
asymptotic values ?
more critical values than only {−1,+1} ?
arbitrary high degree critical points ?



Solution: Let T be an infinite bipartite graph.

R-component:
L-component:
D-component:

where ρΩ : D→ D is quasiconformal with ρΩ|∂D = Id.



Solution: Let T be an infinite bipartite graph.

The c.c. of C\T are of three different types:
R-component: τ|Ω : Ω→ Hr conformally
L-component: τ|Ω : Ω→ H` conformally
D-component: τ|Ω : Ω→ D conformally

where ρΩ : D→ D is quasiconformal with ρΩ|∂D = Id.



Solution: Let T be an infinite bipartite graph.

More precisely:

R-component: Ω
τ|Ω−−−→ Hr

cosh−−−→ C\[−1,+1]

L-component: (Ω,∞)
τ|Ω−−−→ (H`,−∞)

exp−−−→ (D, 0)
ρΩ−−−→ (D, ρΩ(0))

D-component: (Ω, cΩ)
τ|Ω−−−→ (D, 0)

z 7→zdΩ−−−→ (D, 0)
ρΩ−−−→ (D, ρΩ(0))

where ρΩ : D→ D is quasiconformal with ρΩ|∂D = Id.



Theorem 2 (Bishop 2011)
If (T , τ) satisfies the following conditions

1 T has bounded geometry
2 L,D-components only share edges with R-components
3 on R-components, every edge has τ -size > π

then ∃ an entire function f in class B and a quasiconformal map φ /

f ◦ φ = σ ◦ τ off T (r0) with σ(z) =


cosh(z) on R-component
ρΩ(exp(z)) on L-component
ρΩ(zdΩ) on D-component

Moreover
quasiconformal foldings only occur in R-components
the only asymptotic values of f are in D (from L-components)
the only critical values of f are in {−1,+1} ∪ D (from D-components)

f has critical points in D-components with arbitrary degree
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Moltes gràcies per la seva atenció.
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