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Recall that a polynomial P € C[z] of degree
d > 2 is postcritically finite (PCF) if its
postcritical set is finite, i.e. if

J pere))

n>1
is a finite set.

This implies in particular that all c € C(P)
is (pre)periodic under iteration by P.

Question. How do postcritically finite poly-
nomials equidistribute in the space of all
degree d polynomials when the (pre)period
of each critical point tends to oco?

We would like to give an answer to this
question.



1 — The quadratic case

Let us set P.(z) ;= 22+ ¢ for ¢ € C. The
filled Julia set of P, is

Ke:={2z€C | (P(z)) is bounded}.

The important picture appearing in the pa-
rameter space of the family (FPe).cc is the
Mandelbrot set

Mo = {ceC| (P"(0)) is bounded}
= {ceC | K. is connected} .

Let Per(n) :={ce C | P™(0) = 0}.

Fact. 1. ¢g € C\ OMs if and only if as
a family of holomorphic maps of ¢, {c —
P2™"(0)}n>1 is @ normal family in a neigh.
of cg, i.e. OMo is the bifurcation locus,
2. OMo C UnZl Per(n).

Proof. Montel’s Theorem. L]



Question. How to quantify this approxi-
mation?

Recall that the subharmonic function

IMm,(€) = ge(e) = lim2 " log™ [P (¢))

is the Green function of M, and that

Mo = {gm,(c) =0} .
Let upir := dd°g g, then supp(upif) = OMo.
Lpif 1S the bifurcation, measure.

Theorem (Levin). The sequence

1
Pon(0)=0

converges to upisr in the weak topology of
measures.



Proof of Thm Levin. Since P*(0) = 0 has
simple roots (Douady-Hubbard),

un = dd°log |P."(0)] .
We then apply Hartogs’ Lemma and get

109 |P"(0)] — gpuz(e) in L. .

The “global method" (Baker-H'sia) allows
to get an estimate on the speed of conver-
gence:

Theorem (Favre-Rivera-Letelier). There ex-
ists C >0, s.t. for p € CX(C) and n > 1,

n\ 1/2
‘/wun—/wubif‘ <C (5) |oller -



2 — The cubic case

Let us set Peqa(z) := 323 — 522 4 a3 for
(c,a) € C2. How to generalize M7

Three different solutions:

1. The non-escaping set of ¢c1 ;=0

1 = {(c¢a)€ C? | (P;5(0)) is bounded}
= {(c,a) € C? | geale1) =0},

2. The non-escaping set of ¢y :=c¢

Mo = {(c,a) € C? | (P%(c)) is bounded}
= {(c,a) € C? | ge,a(cp) =0},

3. The connectedness locus

M3z = {(c,a) € C? | Kc,q is connected}
= {(c,a) € C? | in:"zlié{gaa(ci)} = 0}

= I1Nlo.



2.1 — Cases 1 and 2

The set 01 (resp. 9») is the bifurcation
locus of the critical point ¢1 (resp. ¢»).

Theorem (Branner-Hubbard). M3 is a com-
pact subset of C=2.

Let Peri(n) := {(c,a) € C?| Peuler) = c1}
and Pery(n) 1= {(c,a) € C?| PY%(c2) = cp}.

Recall that a closed positive (1, 1)-current
can be seen as a degenerate metric (as
well as a positive measure is a degenerate
volume form).

Let T; := ddc,a(c;) for i = 1,2 so that
supp(T;) = 9I;. Generalizing (non-trivially)
the approach of Levin one can prove the
following.

Theorem (Dujardin-Favre). The sequence
37 "[Per;(n)] converges to T; fori=1,2.



2.2 — Case 3
Let Per(n,m) := Per1(n) N Per>(m).

What plays here the role of O My is Ogp M 3:
Theorem (Bassanelli-Berteloot, D-F).

8ShM3 C U Per(n,m).

n,m>1

We generalize upir by setting (B-B, D-F)

ppir = 11 NTo
= (ddgr5(c,a))?
where gaq,(c,a) = max;=12{gcalc;)}. It
is known that (D-F)
supp(upif) = dsh M3 .
Our main result is the following.

Theorem 1 (Favre-G.). Let ny, % my, with
ng, mp — 00 as k — oco. Then the measures
1

He = 3nptTmy Z Ocsa
(C,CL) S Per(nkamkj)

converge to upif.



Global method

Our proof relies on Yuan's equiditribution
of points of small heights.

Let P := {p > 2 prime number}. For p €
PU{co}, we let |- |p be

]y = p —adic norm ifpe P,
P 1 complex norm if p= oo .

The naive height h: Q% — Ry is

logT max; ;
seGal(Q/Q) PU{co} 9z
Let geap(z) :=limp 37" log™ |P2%(2)|p and

g./\/l3,p(ca a) ‘= max{gec,a,p(0), ge,a,p(c) }.
We define a critical height H : Q% — R.:

| IMz,plo(c,a))
H(c,a):= Z- 2 (j)epg(c a)
s€Gal(0/Q) PU{co} )



Theorem (Yuan). Let (F},) C Q2 be a se-
quence of finite sets such that:

(1) Fp is Galois-invariant,

(2) H|p, =0 for all k,

(3) For any algebraic curve Z C C?,

Card(Fk NZ)
Card(Fy)

Then in the sense of measures on C2:

1
Pk = Card(Fy,)

>0 .

Z dc,a — Hpif -
(c,a)EF],

Let us set
b = Per(nk,mk) .

Remark that P2i(c;) —c¢; € Qc,al, i.e. that
Per(n,m) c Q2 and F is Galois-invariant.
Moreover, H|p = 0 for all k. So (1) and
(2) hold.

It remains to prove that (3) holds and that
Card(E},) ~ 3™T™Mk as k — oo.



Remark that there exists plenty of curve
Z C C2 containing infinitely many (c,a) €
C? s.t. P.qis PCF (e.g. {c=0}). Soitis
not sufficient to prove that Card(F}) — .
We rely on Epstein’s transversality theory.
The asumption n; #= my is made for apply-
ing his theory. Conjecturally, it is a non-
necessary condition.

Theorem (Epstein). Let (c,a) € F), then
Peri(ng) and Pero(my) are smooth and
transverse at (c,a).

Then, by Bezout,
Card(F},) = deg(F},) ~ 3™ T
and Card(Fp N Z) is at most

C - max{deg(Perq(ng)),deg(Pero(mg))} ,
i.e. C-3Max(nemp) = o(3n—k+mi),



Further results and open questions.

The same method (plus combinatoric tools
developped by Kiwi) allows to prove that
Misiurewicz parameters with critical points
of prescribed perperiods (and periods tend-
ing to oo) also equidistribute towards pupis.
Another consequence is the following.

Let Perp(w) = {(c,a) € C? s.t. P4 has a
cycle of exact period n and multiplier w}.

Theorem 2 (Favre-G.). Let ny, % my, with
ng, mp — 0o as k — oo. Let also (wy,wy) €
D2. Then the measures

1
lu’k = 3nk—|—mk Z 5670’
Pernk (wl)ﬂPermk (wo)

converge to upif.

Question. What happens in the case when
lw1| > 1 and/or |wo| > 17



