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The study of the dynamics of holomorphic complex maps
f : C→ C was started in the early twentieth century by Pierre
Fatou and Gaston Julia [1].

They focused on studying the behavior of the points on C under
iteration of the function f , and they divided the plane into two
disjoint invariant sets[1].

Nada Alhabib joint work with my Supervisor Prof Lasse Rempe-GillenEXPLOSION POINTS FOR EXPONENTIAL MAPS



Introduction
Topological Background

The Topological Model X
The Theorem

References

The study of the dynamics of holomorphic complex maps
f : C→ C was started in the early twentieth century by Pierre
Fatou and Gaston Julia [1].
They focused on studying the behavior of the points on C under
iteration of the function f , and they divided the plane into two
disjoint invariant sets[1].

Nada Alhabib joint work with my Supervisor Prof Lasse Rempe-GillenEXPLOSION POINTS FOR EXPONENTIAL MAPS



Introduction
Topological Background

The Topological Model X
The Theorem

References

f : C→ C

The first set is the Fatou set F (f ) which consists of the all
points at which the function f has a stable behavior under the
iteration.

The other set is called the Julia set J(f ) which is the
complement of F (f ) and it consists of the points near which
the function has ’chaotic’ behavior.

Most of the interesting and mysterious dynamics appears on the
Julia set J(f ) . Due to that most of the study of the dynamics of
holomorphic functions centers on the structure of the Julia set.
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In our project we are looking at the family of complex exponential
functions

fa(z) = exp z + a a ∈ C.

For certain parameters, including a ∈ (−∞,−1), the Julia set J(fa)
of this family is well understood. It is an uncountable union of
curves, each consisting of a finite endpoint and a ray that connects
this endpoint to infinity.
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The following is an example of these Julia sets: the Julia set of
f−2(z) = ez − 2.
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In 1988 John Mayer [4] showed that the set of endpoints E (fa)
of the complex exponential function fa has the surprising property

that E (fa) is totally disconnected but E (fa) ∪ {∞} is connected.
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In the project our first goal was to show that for all a ∈ C the
union of the set Ẽ (fa) of escaping endpoints with the point at
infinity is connected.

Theorem

Let a ∈ C. Then there is an invariant set A ⊂ Ẽ (fa) such that ∞
is an explosion point of A ∪ {∞}.
In particular, Ẽ (fa) ∪ {∞} is connected.
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We proved the theorem by using an explicit topological model X
for the dynamics of fa on the Julia set for a ∈ (−∞,−1).

This model was developed by Lasse Rempe-Gillen [6] and will be
defined later.
We proved first that the set of escaping endpoints of X satisfies
Mayer’s property (that it is totally disconnected, but connected
when joined infinity). This uses the concept of a Lelek fan. We
then transfer the result to the complex plane by using a general
conjugacy result from [6]
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We introduce some topological concepts to clarify the definition of
the Lelek fan.

Definition

A continuum is a nonempty, compact, connected metric space.

For a continuum S if for every closed, connected subsets A and B
of S such that S = A ∪ B and A ∩ B is connected then S is called
unicoherent continuum.
If every closed, connected subset of S is a unicoherent then S is
called a hereditarily unicoherent continuum.
In other words, a continuum S is hereditarily unicoherent if and
only if it does not contain any subset that disconnected the sphere
Ĉ.
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Definition

A dendroid is an arcwise connected hereditarily unicoherent
continuum.

A dendroid is a uniquely arcwise connected, otherwise it could be
not hereditarily unicoherent.
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A point z0 is said to be a ramification point of the dendroid S if
there are three arcs az0, bz0 and cz0 in S and the intersection of
any two of these three arcs is only the point {z0}.

Definition

A Fan is a dendroid with exactly one ramification point. This point
is called the top of the fan.

A fan with a top t is said to be a smooth fan if for each sequence
{qn}∞n=1 of its points converging to a point q, then the arcs tqn

converge uniformly to the arc tq.
An endpoint of a fan is a point that is the endpoint of each arc
containing it.
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Definition

A smooth fan with a dense set of endpoints is called a Lelek fan
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Definition

A smooth fan with a dense set of endpoints is called a Lelek fan
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Wlodzimierz Charatonik in [8] obtained the following theorem
which gives some properties of a chosen smooth fan Y in terms of
the Lelek fan.

Theorem (Charatonik)

If Y is a smooth fan, different from an arc, then the following are
equivalent:

1 the set of endpoints of Y is dense;

2 the set of the endpoints of Y together with the top is
connected.
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The top point on the Lelek fan is called the explosion point of the
set of endpoints of the fan. A point m0 is called an explosion point
of a topological space M if M is connected but M \ {m0} is totally
separated.

In our proof we are going to use Charatonik’s theorem by showing
that our chosen subset of the set of escaping endpoints satisfies 1
and hence it is homeomorphic to the Lelek fan and satisfies 2.
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Back to our Julia set of the map f−2(z).

For each z ∈ J(fa) a unique sequence s = s0s1s2s3 . . .,
f k
a (z) ∈ Ssk∀k .
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The explicit topological model X which we are using to study the
dynamics for the Julia set of fa, where a ∈ (−∞,−1), was
developed by L. Rempe-Gillen [6].

Define

F : [0,∞)→ [0,∞); t 7→ exp(t)− 1,

σ : ZN0 → ZN0 ; s0s1s2 . . . 7→ s1s2s3 . . .

and a function

F : ZN0 × [0,∞)→ ZN0 × R;F(s, t) := (σ(s),F (t)− 2π|s1|).

Then we set

X := {(s, t) ∈ ZN0×[0,∞) : Fn(s, t) ∈ ZN0×[0,∞) for all n ≥ 0}.
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For every sequence of integers s, there is a real number ts with
0 ≤ ts ≤ ∞ such that

{t ≥ 0 : (s, t) ∈ X} = [ts ,∞).

The point (s, ts) is called an endpoint. Moreover we define E to be
the set of all endpoints in X .
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A point (s, t) ∈ X is called an escaping point if its second
component is escaping to infinity under iteration of F . As in [6]
we will write T as the projection to the second component; i.e.
T (s, t) = t.

We define X to be the set of all escaping points of X ,

X := {(s, t) ∈ X : T (Fn(s, t))→∞}.
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Therefore the endpoints which escape are called
the escaping endpoints of X and denoted

Ẽ := E ∩ X .
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Now I will define some subsets of Ẽ and prove some lemmas about
these subsets to prove our theorem.

A sequence s0 ∈ ZN0 is called an exponentially bounded address if
ts <∞.
Furthermore, a sequence s is called fast if (s, ts) ∈ X .
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Let s0 be an exponentially bounded address and define A(s0) and
X (s0) as :

A(s0) := {s ∈ ZN0 : |sj | ≥ |s0j | for all j},

X (s0) := {(s, t) ∈ X : s ∈ A(s0)}.

Clearly X (s0) is closed subset of X and since X ∪ {∞} is compact,
X (s0) ∪ {∞} is compact too.

Lemma

Let s0 be fast address. Then the space X (s0) is a smooth fan.
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For an exponentially bounded address s define t∗s as

t∗s := sup
k≥1

F−k(2π|sk |)

.

Then
t∗s ≤ ts ≤ t∗s + 1.

Lemma

For any x ∈ X (s0) where x := (s, t) let xn := (sn, tsn) ∈ X (s0) ,
c > 0 and a sequence kn →∞ such that:

1 snj = sj for all j ≤ kn and |sni | ≥ |si | for all i > kn.

2 |t∗
σkn (sn)

− T (F kn(x))| ≤ c .

then (sn, tsn)→ x .
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Theorem

The set of endpoints E (X (s0)) of the space X (s0) is dense.
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Directly from the Charatonik’s theorem we obtained:

Proposition

For the space X (s0) the set E (X (s0)) ∪ {∞} is connected.

Hence we could easily prove the following theorem:

Theorem

Let Ẽ be the set of escaping endpoints in X :

Ẽ := {(s, ts) : s is fast}.

Then

1 Ẽ is totally disconnected.

2 Ẽ ∪ {∞} is connected.
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The result:

Theorem

Let a ∈ C. Then there is an invariant set A ⊂ Ẽ (fa) such that ∞
is an explosion point of A ∪ {∞}. In particular, Ẽ (fa) ∪ {∞} is
connected.
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Thanks for listening .
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