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Motivation

Question: Given a domain G in the plane, does there exist an entire
function in class S which is bounded on C \ G?
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Motivation

Question: Given a domain G in the plane, does there exist an entire
function in class S which is bounded on C \ G?
Or can we even say more about the behaviour of this function?
In other words: given a tract G , find an entire function in class S which
has only this tract.
One possibility to construct functions in class S with a given property is
quasiconformal folding, a method introduced by C. Bishop in 2011.
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The idea behind quasiconformal folding is quite simple. Let f be a function
in class S with no asymptotic value and exactly two critical values (±1).
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in class S with no asymptotic value and exactly two critical values (±1).
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Bishop’s quasiconformal folding Idea of quasiconformal folding

The idea behind quasiconformal folding is quite simple. Let f be a function
in class S with no asymptotic value and exactly two critical values (±1).

−1 1

f

τ

cosh

Reverse this procedure!
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The function g(z) = cosh(τ(z)) is holomorphic off T but in general
not continuous across T .
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not continuous across T .

Modify g in a neighbourhood of T so that it is continuous across T
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Bishop’s quasiconformal folding Idea of quasiconformal folding

The function g(z) = cosh(τ(z)) is holomorphic off T but in general
not continuous across T .

Modify g in a neighbourhood of T so that it is continuous across T
and quasiregular on the whole plane.

Apply the measurable Riemann mapping theorem.
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So called bounded geometry graphs play an important role in Bishop’s
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Bishop’s quasiconformal folding Bounded geometry

So called bounded geometry graphs play an important role in Bishop’s
construction.

Definition

Let T be an unbounded, locally finite graph in C. We say T has bounded
geometry if:

the edges of T are C2 with uniform bounds (i.e. the edges are curves
with uniformly bounded curvature).

the angles between adjacent edges are bounded uniformly away from
zero.

adjacent edges have uniformly comparable lengths.

for non-adjacent edges e and f , diam(e)
dist(e,f ) is uniformly bounded.
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Bishop’s quasiconformal folding Components of C \ T

Remark

Let T be a locally finite, unbounded, connected graph in C. In Bishop’s
construction there are three different types of components of C \ T :

R components: unbounded simply connected components (not
necessarily Jordan domains), which are mapped onto the right
half-plane (our illustration only used such components).

L components: unbounded Jordan domains, which are mapped onto
the left half-plane (these components will assign asymptotic values to
f ).

D components: bounded Jordan domains, which are mapped onto D

(these components will assign critical points of arbitrary high order to
f ).
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Bishop’s quasiconformal folding Bishop’s quasiconformal folding theorem

Theorem (Bishop, 2011)

Suppose T is a bounded geometry graph and suppose τ is conformal from
each complementary component of T to its standard version (i.e.
left/right half-plane or unit disc). Assume that

D and L components only share edges with R components.

τ on a D component with n edges maps the vertices to nth roots of
unity.

on L components τ maps edges to intervals of length 2π on ∂Hl with
endpoints in 2πiZ,

on R components the τ -sizes of all edges are ≥ π.

Then there is an entire function f and a quasiconformal map φ of the plane
so that f ◦ φ = σ ◦ τ off T (r0) (a neighbourhood of T).
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Bishop’s quasiconformal folding Bishop’s quasiconformal folding theorem

Theorem (Bishop, 2011)

Suppose T is a bounded geometry graph and suppose τ is conformal from
each complementary component of T to its standard version (i.e.
left/right half-plane or unit disc). Assume that

D and L components only share edges with R components.

τ on a D component with n edges maps the vertices to nth roots of
unity.

on L components τ maps edges to intervals of length 2π on ∂Hl with
endpoints in 2πiZ,

on R components the τ -sizes of all edges are ≥ π.

Then there is an entire function f and a quasiconformal map φ of the plane
so that f ◦ φ = σ ◦ τ off T (r0) (a neighbourhood of T). The only singular
values of f are ±1 (critical values coming from the vertices of T) and the
critical values and singular values assigned by the D and L components.
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Bishop’s quasiconformal folding Remarks on Bishop’s theorem

Remark

Folding does only occur in R components.

Quasiconformal folding can be used to prove e.g.

Merenkov’s results on functions in class S of arbitrary order of growth.
Every bounded, countable subset of C (which contains at least two
points) can be the singular set of an entire function in class B.
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Main result The theorem

Theorem

Let x0 > 0, c > 0 and φ : [x0,∞) → (0,∞) be a function such that
φ(x)

x
→ 0 as x → ∞,

φ(x) ≥ c
√

x for all x ≥ x0,

φ fulfils certain regularity conditions.

Let G = {x + iy : x > x0, |y | < φ(x)}.
Then there exists an entire function f with only two critical values which is
bounded outside of a quasiconformal image of G.

Remark

The regularity conditions are satisfied e.g. for xε if 1
2 ≤ ε < 1.
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Sketch of the proof ∂G is a bounded geometry Graph

By the construction above, we added the structure of a graph to ∂G
(using η(2πiZ) as vertices, the components of ∂G \ η(2πiZ) as edges).
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following four things:

edges are C2: fulfilled if φ is sufficiently regular.

the angles between adjacent edges are bounded uniformly away from
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Sketch of the proof ∂G is a bounded geometry Graph

By the construction above, we added the structure of a graph to ∂G
(using η(2πiZ) as vertices, the components of ∂G \ η(2πiZ) as edges). To
see that ∂G is indeed a bounded geometry graph, we need to check the
following four things:

edges are C2: fulfilled if φ is sufficiently regular.

the angles between adjacent edges are bounded uniformly away from
zero: also fulfilled if φ is sufficiently regular.

adjacent edges have uniformly comparable lengths:
ℓ(η(2πi [n, n + 1])) ∼ n, hence lengths of adjacent edges are
comparable.

for non-adjacent edges e and f , diam(e)
dist(e,f ) is uniformly bounded: clear

for edges on the same side of ∂G . For edges on opposite sides:
dist(e, f ) & φ(n2) and since φ(x) ≥ c

√
x and ℓ(e) ∼ n also in this

case the quotient is bounded.
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Sketch of the proof ℓ(τ(e)) ≥ π

It remains to show, that there exists a conformal map τ : G → Hr such
that ℓ(τ(e)) ≥ π for all edges e.
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Sketch of the proof ℓ(τ(e)) ≥ π
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Sketch of the proof Last step

We now apply Bishop’s theorem and obtain an entire function f in class S
and a quasiconformal map q such that f ◦ q = σ ◦ ω off T (r0)
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We now apply Bishop’s theorem and obtain an entire function f in class S
and a quasiconformal map q such that f ◦ q = σ ◦ ω off T (r0) where
ω = τ on G \ T (r0) and ω = η−1 on C \ G . The map σ is defined in the
proof of Bishop’s theorem, but in particular σ = exp on the left half-plane
which belongs to C \ G . Hence f is bounded on q(C \ G).

Remark

In many cases we even get f ∼ exp ◦ω.
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Perspective Work in progress

Behaviour of q:
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∼ a 6= 0 as |z| → ∞)

or even q(z) = a1z + a0 + a
−1z−1 + . . .+ a

−mz−m + O(z−(m+1)) as
z → ∞.

The construction does also apply to domains which are bounded by√
x or x

log(x)p for some p > 0. Therefore, extending work by Gwyneth

Stallard and Lasse Rempe-Gillen:

construct f in class S with given Hausdorff dimension of J (f ).
construct f in class S with dimH(I(f )) = 1.
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The End

Thank you very much for your attention.
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