On the construction of entire functions in the Speiser class

Simon Albrecht

Christian-Albrechts-Universität zu Kiel

Barcelona, 10 June 2013

3 Main result

Question: Given a domain G in the plane, does there exist an entire function in class S which is bounded on $\mathbb{C} \setminus \overline{G}$?

Question: Given a domain G in the plane, does there exist an entire function in class S which is bounded on $\mathbb{C} \setminus \overline{G}$? Or can we even say more about the behaviour of this function? Question: Given a domain G in the plane, does there exist an entire function in class S which is bounded on $\mathbb{C} \setminus \overline{G}$? Or can we even say more about the behaviour of this function? In other words: given a tract G, find an entire function in class S which has only this tract. Question: Given a domain G in the plane, does there exist an entire function in class S which is bounded on $\mathbb{C} \setminus \overline{G}$?

Or can we even say more about the behaviour of this function? In other words: given a tract G, find an entire function in class S which has only this tract.

One possibility to construct functions in class S with a given property is *quasiconformal folding*, a method introduced by C. Bishop in 2011.

The idea behind quasiconformal folding is quite simple.

-1 1

Reverse this procedure!

 The function g(z) = cosh(τ(z)) is holomorphic off T but in general not continuous across T.

- The function $g(z) = \cosh(\tau(z))$ is holomorphic off T but in general not continuous across T.
- Modify g in a neighbourhood of T so that it is continuous across T and quasiregular on the whole plane.

- The function $g(z) = \cosh(\tau(z))$ is holomorphic off T but in general not continuous across T.
- Modify g in a neighbourhood of T so that it is continuous across T and quasiregular on the whole plane.
- Apply the measurable Riemann mapping theorem.

Definition

Definition

Let T be an unbounded, locally finite graph in \mathbb{C} . We say T has bounded geometry if:

• the edges of T are C^2 with uniform bounds (i.e. the edges are curves with uniformly bounded curvature).

Definition

- the edges of T are C^2 with uniform bounds (i.e. the edges are curves with uniformly bounded curvature).
- the angles between adjacent edges are bounded uniformly away from zero.

Definition

- the edges of T are C^2 with uniform bounds (i.e. the edges are curves with uniformly bounded curvature).
- the angles between adjacent edges are bounded uniformly away from zero.
- adjacent edges have uniformly comparable lengths.

Definition

- the edges of T are C^2 with uniform bounds (i.e. the edges are curves with uniformly bounded curvature).
- the angles between adjacent edges are bounded uniformly away from zero.
- adjacent edges have uniformly comparable lengths.
- for non-adjacent edges e and f, $\frac{\text{diam}(e)}{\text{dist}(e,f)}$ is uniformly bounded.

Let ${\mathcal T}$ be a locally finite, unbounded, connected graph in ${\mathbb C}.$

Let T be a locally finite, unbounded, connected graph in \mathbb{C} . In Bishop's construction there are three different types of components of $\mathbb{C} \setminus T$:

Let T be a locally finite, unbounded, connected graph in \mathbb{C} . In Bishop's construction there are three different types of components of $\mathbb{C} \setminus T$:

• *R* components: unbounded simply connected components (not necessarily Jordan domains), which are mapped onto the right half-plane (our illustration only used such components).

Let T be a locally finite, unbounded, connected graph in \mathbb{C} . In Bishop's construction there are three different types of components of $\mathbb{C} \setminus T$:

- *R* components: unbounded simply connected components (not necessarily Jordan domains), which are mapped onto the right half-plane (our illustration only used such components).
- *L* components: unbounded Jordan domains, which are mapped onto the left half-plane (these components will assign asymptotic values to *f*).

Let T be a locally finite, unbounded, connected graph in \mathbb{C} . In Bishop's construction there are three different types of components of $\mathbb{C} \setminus T$:

- *R* components: unbounded simply connected components (not necessarily Jordan domains), which are mapped onto the right half-plane (our illustration only used such components).
- *L* components: unbounded Jordan domains, which are mapped onto the left half-plane (these components will assign asymptotic values to *f*).
- *D* components: bounded Jordan domains, which are mapped onto \mathbb{D} (these components will assign critical points of arbitrary high order to *f*).

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc).

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc). Assume that

• D and L components only share edges with R components.

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc). Assume that

- D and L components only share edges with R components.
- τ on a D component with n edges maps the vertices to nth roots of unity.

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc). Assume that

- D and L components only share edges with R components.
- τ on a D component with n edges maps the vertices to nth roots of unity.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiZ,
Theorem (Bishop, 2011)

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc). Assume that

- D and L components only share edges with R components.
- τ on a D component with n edges maps the vertices to nth roots of unity.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiZ,
- on R components the τ -sizes of all edges are $\geq \pi$.

Theorem (Bishop, 2011)

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc). Assume that

- D and L components only share edges with R components.
- τ on a D component with n edges maps the vertices to nth roots of unity.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiZ,
- on R components the τ -sizes of all edges are $\geq \pi$.

Then there is an entire function f and a quasiconformal map ϕ of the plane so that $f \circ \phi = \sigma \circ \tau$ off $T(r_0)$ (a neighbourhood of T).

Theorem (Bishop, 2011)

Suppose T is a bounded geometry graph and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane or unit disc). Assume that

- D and L components only share edges with R components.
- τ on a D component with n edges maps the vertices to nth roots of unity.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiZ,
- on R components the τ -sizes of all edges are $\geq \pi$.

Then there is an entire function f and a quasiconformal map ϕ of the plane so that $f \circ \phi = \sigma \circ \tau$ off $T(r_0)$ (a neighbourhood of T). The only singular values of f are ± 1 (critical values coming from the vertices of T) and the critical values and singular values assigned by the D and L components.

• Folding does only occur in R components.

- Folding does only occur in R components.
- Quasiconformal folding can be used to prove e.g.

- Folding does only occur in R components.
- Quasiconformal folding can be used to prove e.g.
 - Merenkov's results on functions in class ${\mathcal S}$ of arbitrary order of growth.

- Folding does only occur in R components.
- Quasiconformal folding can be used to prove e.g.
 - Merenkov's results on functions in class ${\mathcal S}$ of arbitrary order of growth.
 - Every bounded, countable subset of \mathbb{C} (which contains at least two points) can be the singular set of an entire function in class \mathcal{B} .

Let $x_0 > 0$, c > 0

Let $x_0>0,\ c>0$ and $\phi:[x_0,\infty) o (0,\infty)$ be a function such that

Let $x_0 > 0$, c > 0 and $\phi : [x_0, \infty) \to (0, \infty)$ be a function such that • $\frac{\phi(x)}{x} \to 0$ as $x \to \infty$,

Let $x_0 > 0$, c > 0 and $\phi : [x_0, \infty) \to (0, \infty)$ be a function such that • $\frac{\phi(x)}{x} \to 0$ as $x \to \infty$, • $\phi(x) \ge c\sqrt{x}$ for all $x \ge x_0$,

Let $x_0 > 0$, c > 0 and $\phi : [x_0, \infty) \to (0, \infty)$ be a function such that

•
$$\frac{\phi(x)}{x} \to 0$$
 as $x \to \infty$,

•
$$\phi(x) \ge c\sqrt{x}$$
 for all $x \ge x_0$,

• ϕ fulfils certain regularity conditions.

Let $x_0 > 0$, c > 0 and $\phi : [x_0, \infty) \to (0, \infty)$ be a function such that • $\frac{\phi(x)}{x} \to 0$ as $x \to \infty$,

- $\phi(x) \ge c\sqrt{x}$ for all $x \ge x_0$,
- ϕ fulfils certain regularity conditions.
- Let $G = \{x + iy : x > x_0, |y| < \phi(x)\}.$

Let $x_0 > 0$, c > 0 and $\phi : [x_0, \infty) \to (0, \infty)$ be a function such that • $\frac{\phi(x)}{2} \to 0$ as $x \to \infty$.

•
$$\phi(x) \ge c\sqrt{x}$$
 for all $x \ge x_0$,

• ϕ fulfils certain regularity conditions.

Let $G = \{x + iy : x > x_0, |y| < \phi(x)\}.$

Then there exists an entire function f with only two critical values which is bounded outside of a quasiconformal image of G.

Let $x_0 > 0$, c > 0 and $\phi : [x_0, \infty) \to (0, \infty)$ be a function such that $\frac{\phi(x)}{2} \to 0$ as $x \to \infty$

•
$$\phi(x) \ge c\sqrt{x}$$
 for all $x \ge x_0$,

• ϕ fulfils certain regularity conditions.

Let $G = \{x + iy : x > x_0, |y| < \phi(x)\}.$

Then there exists an entire function f with only two critical values which is bounded outside of a quasiconformal image of G.

Remark

The regularity conditions are satisfied e.g. for x^{ε} if $\frac{1}{2} \leq \varepsilon < 1$.

By the construction above, we added the structure of a graph to ∂G (using $\eta(2\pi i\mathbb{Z})$ as vertices, the components of $\partial G \setminus \eta(2\pi i\mathbb{Z})$ as edges).

• edges are C^2 :

• edges are C^2 : fulfilled if ϕ is sufficiently regular.

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- the angles between adjacent edges are bounded uniformly away from zero:

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- the angles between adjacent edges are bounded uniformly away from zero: also fulfilled if ϕ is sufficiently regular.

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- \bullet the angles between adjacent edges are bounded uniformly away from zero: also fulfilled if ϕ is sufficiently regular.
- adjacent edges have uniformly comparable lengths:

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- $\bullet\,$ the angles between adjacent edges are bounded uniformly away from zero: also fulfilled if ϕ is sufficiently regular.
- adjacent edges have uniformly comparable lengths: ℓ(η(2πi[n, n + 1])) ~ n, hence lengths of adjacent edges are comparable.

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- $\bullet\,$ the angles between adjacent edges are bounded uniformly away from zero: also fulfilled if ϕ is sufficiently regular.
- adjacent edges have uniformly comparable lengths:
 ℓ(η(2πi[n, n + 1])) ~ n, hence lengths of adjacent edges are comparable.
- for non-adjacent edges e and f, $\frac{\text{diam}(e)}{\text{dist}(e,f)}$ is uniformly bounded:

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- $\bullet\,$ the angles between adjacent edges are bounded uniformly away from zero: also fulfilled if ϕ is sufficiently regular.
- adjacent edges have uniformly comparable lengths:
 ℓ(η(2πi[n, n + 1])) ~ n, hence lengths of adjacent edges are comparable.
- for non-adjacent edges e and f, $\frac{\text{diam}(e)}{\text{dist}(e,f)}$ is uniformly bounded: clear for edges on the same side of ∂G .

- edges are C^2 : fulfilled if ϕ is sufficiently regular.
- $\bullet\,$ the angles between adjacent edges are bounded uniformly away from zero: also fulfilled if ϕ is sufficiently regular.
- adjacent edges have uniformly comparable lengths:
 ℓ(η(2πi[n, n + 1])) ~ n, hence lengths of adjacent edges are comparable.
- for non-adjacent edges e and f, $\frac{\text{diam}(e)}{\text{dist}(e,f)}$ is uniformly bounded: clear for edges on the same side of ∂G . For edges on opposite sides: $\text{dist}(e, f) \gtrsim \phi(n^2)$ and since $\phi(x) \ge c\sqrt{x}$ and $\ell(e) \sim n$ also in this case the quotient is bounded.

It remains to show, that there exists a conformal map $\tau : G \to \mathbb{H}_r$ such that $\ell(\tau(e)) \ge \pi$ for all edges e.

It remains to show, that there exists a conformal map $\tau: G \to \mathbb{H}_r$ such that $\ell(\tau(e)) \ge \pi$ for all edges e.

Theorem (Ahlfors, 1930 (restricted to symmetric strips))
Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$.

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$ such that $\operatorname{Re}(\sigma(z)) \to \pm \infty$ as $\operatorname{Re}(z) \to \pm \infty$.

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$ such that $\operatorname{Re}(\sigma(z)) \to \pm \infty$ as $\operatorname{Re}(z) \to \pm \infty$. Let $\beta(x) = \inf_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$ such that $\operatorname{Re}(\sigma(z)) \to \pm \infty$ as $\operatorname{Re}(z) \to \pm \infty$. Let $\beta(x) = \inf_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$ and $\alpha(x) = \sup_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$.

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$ such that $\operatorname{Re}(\sigma(z)) \to \pm \infty$ as $\operatorname{Re}(z) \to \pm \infty$. Let $\beta(x) = \inf_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$ and $\alpha(x) = \sup_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$. If $\int_{x_1}^{x_2} \frac{\mathrm{d}t}{\psi(t)} > 4$

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$ such that $\operatorname{Re}(\sigma(z)) \to \pm \infty$ as $\operatorname{Re}(z) \to \pm \infty$. Let $\beta(x) = \inf_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$ and $\alpha(x) = \sup_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$. If $\int_{x_1}^{x_2} \frac{\mathrm{d}t}{\psi(t)} > 4$, then

$$\beta(x_2) - \alpha(x_1) \geq \frac{\pi}{2} \int_{x_1}^{x_2} \frac{\mathrm{d}t}{\psi(t)} - 4\pi.$$

Theorem (Ahlfors, 1930 (restricted to symmetric strips))

Let $\Omega = \{x + iy : |y| < \psi(x)\}$ be a horizontal strip with some non-negative function $\psi : \mathbb{R} \to \mathbb{R}$. Let σ map Ω conformally onto $\{x + iy : |y| < \frac{\pi}{2}\}$ such that $\operatorname{Re}(\sigma(z)) \to \pm \infty$ as $\operatorname{Re}(z) \to \pm \infty$. Let $\beta(x) = \inf_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$ and $\alpha(x) = \sup_{|y| < \psi(x)} \operatorname{Re}(\sigma(x + iy))$. If $\int_{x_1}^{x_2} \frac{\mathrm{d}t}{\psi(t)} > 4$, then

$$\beta(x_2)-\alpha(x_1)\geq \frac{\pi}{2}\int_{x_1}^{x_2}\frac{\mathrm{d}t}{\psi(t)}-4\pi.$$

Sketch of the proof $\ell(\tau(e)) \geq \pi$

We now apply Bishop's theorem and obtain an entire function f in class Sand a quasiconformal map q such that $f \circ q = \sigma \circ \omega$ off $T(r_0)$

We now apply Bishop's theorem and obtain an entire function f in class S and a quasiconformal map q such that $f \circ q = \sigma \circ \omega$ off $T(r_0)$ where $\omega = \tau$ on $G \setminus T(r_0)$ and $\omega = \eta^{-1}$ on $\mathbb{C} \setminus \overline{G}$.

We now apply Bishop's theorem and obtain an entire function f in class S and a quasiconformal map q such that $f \circ q = \sigma \circ \omega$ off $T(r_0)$ where $\omega = \tau$ on $G \setminus T(r_0)$ and $\omega = \eta^{-1}$ on $\mathbb{C} \setminus \overline{G}$. The map σ is defined in the proof of Bishop's theorem, but in particular $\sigma = \exp$ on the left half-plane which belongs to $\mathbb{C} \setminus \overline{G}$.

We now apply Bishop's theorem and obtain an entire function f in class S and a quasiconformal map q such that $f \circ q = \sigma \circ \omega$ off $T(r_0)$ where $\omega = \tau$ on $G \setminus T(r_0)$ and $\omega = \eta^{-1}$ on $\mathbb{C} \setminus \overline{G}$. The map σ is defined in the proof of Bishop's theorem, but in particular $\sigma = \exp$ on the left half-plane which belongs to $\mathbb{C} \setminus \overline{G}$. Hence f is bounded on $q(\mathbb{C} \setminus \overline{G})$.

We now apply Bishop's theorem and obtain an entire function f in class S and a quasiconformal map q such that $f \circ q = \sigma \circ \omega$ off $T(r_0)$ where $\omega = \tau$ on $G \setminus T(r_0)$ and $\omega = \eta^{-1}$ on $\mathbb{C} \setminus \overline{G}$. The map σ is defined in the proof of Bishop's theorem, but in particular $\sigma = \exp$ on the left half-plane which belongs to $\mathbb{C} \setminus \overline{G}$. Hence *f* is bounded on $q(\mathbb{C} \setminus \overline{G})$.

Remark

In many cases we even get $f \sim \exp \circ \omega$.

• asymptotical conformality (I.e. $\frac{q(z)}{z} \sim a \neq 0$ as $|z| \rightarrow \infty$)

- asymptotical conformality (i.e. $\frac{q(z)}{z} \sim a \neq 0$ as $|z| \rightarrow \infty$)
- or even $q(z) = a_1 z + a_0 + a_{-1} z^{-1} + \ldots + a_{-m} z^{-m} + O(z^{-(m+1)})$ as $z \to \infty$.

- asymptotical conformality (i.e. $\frac{q(z)}{z} \sim a \neq 0$ as $|z| \rightarrow \infty$)
- or even $q(z) = a_1 z + a_0 + a_{-1} z^{-1} + \ldots + a_{-m} z^{-m} + O(z^{-(m+1)})$ as $z \to \infty$.
- The construction does also apply to domains which are bounded by \sqrt{x} or $\frac{x}{\log(x)^p}$ for some p > 0.

- asymptotical conformality (I.e. $\frac{q(z)}{z} \sim a \neq 0$ as $|z| \rightarrow \infty$)
- or even $q(z) = a_1 z + a_0 + a_{-1} z^{-1} + \ldots + a_{-m} z^{-m} + O(z^{-(m+1)})$ as $z \to \infty$.
- The construction does also apply to domains which are bounded by \sqrt{x} or $\frac{x}{\log(x)^p}$ for some p > 0. Therefore, extending work by Gwyneth Stallard and Lasse Rempe-Gillen:

- asymptotical conformality (I.e. $\frac{q(z)}{z} \sim a \neq 0$ as $|z| \to \infty$)
- or even $q(z) = a_1 z + a_0 + a_{-1} z^{-1} + \ldots + a_{-m} z^{-m} + O(z^{-(m+1)})$ as $z \to \infty$.
- The construction does also apply to domains which are bounded by \sqrt{x} or $\frac{x}{\log(x)^p}$ for some p > 0. Therefore, extending work by Gwyneth Stallard and Lasse Rempe-Gillen:
 - construct f in class S with given Hausdorff dimension of $\mathcal{J}(f)$.

- asymptotical conformality (I.e. $\frac{q(z)}{z} \sim a \neq 0$ as $|z| \rightarrow \infty$)
- or even $q(z) = a_1 z + a_0 + a_{-1} z^{-1} + \ldots + a_{-m} z^{-m} + O(z^{-(m+1)})$ as $z \to \infty$.
- The construction does also apply to domains which are bounded by \sqrt{x} or $\frac{x}{\log(x)^p}$ for some p > 0. Therefore, extending work by Gwyneth Stallard and Lasse Rempe-Gillen:
 - construct f in class S with given Hausdorff dimension of $\mathcal{J}(f)$.
 - construct f in class S with $\dim_H(I(f)) = 1$.

Thank you very much for your attention.