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Memories

I First meeting: Early 1980s.

I Visits to IMPA; reciprocal visits to Math Department at
University of Missouri.

I Repository of Knowledge
I Love of books and libraries.
I Late for lunch while browsing stacks in the MU Engineering

Library.

I At IMPA: Introduced me to the paper of S. Diliberto, who
solved the variational equations for a planar system in
geometric quadrature. For a solution t 7→ φt(ξ) of ẋ = f (x),

Ẇ = Df (φt(ξ))W , W (0) = I ,

W (t)f (ξ) = f (φt(ξ)),

W (t)f ⊥(ξ) = a(t, ξ)f (φt(ξ)) + b(t, ξ)f ⊥(φt(ξ)),

where a and b are integrals of div f , curl f , and κ along
t 7→ φt(ξ).



Fiber Contraction Principle

I Lleida Spain, while others enjoyed a grand banquet

I A bundle map Γ : X × Y → X × Y , for X and Y metric
spaces, given by Γ(x , y) 7→ (Λ(x),Ψ(x , y)), is a fiber
contraction if y 7→ Ψ(x , y) is a contraction for each x and the
contraction constants are uniformly bounded above over X .

I Theorem (C. Pugh 60s): If Γ is continuous, the base map Λ
has a globally attracting fixed point x∞, and y∞ is a fixed
point of y 7→ Ψ(x∞, y), then (x∞, y∞) is a globally attracting
fixed point of Γ.

I Completeness not required.



Application of Fiber Contraction
I X is a closed subset of the Banach space Cb(A,B) of bounded

continuous functions between two Banach spaces A and B.
I Λ : X → X is a contraction with Λ(α) = α.
I Is α in C 1(A,B)?
I If β ∈ C 1(A,B) and Λ(β) ∈ C 1(A,B), then

DΛ(β) ∈ Y := C (A, L(A,B)). Then for Φ ∈ L(A,B), there is
Ψ(β,Φ) = DΛ(β)Φ and bundle map Γ : X × Y → X × Y
given by Γ(β,Φ) = (Λ(β),Ψ(β,Φ)).

I Pick α0 ∈ C 1(A,B) and Φ0 := Dα0, define
(αn+1,Φn+1) = Γ(αn,Φn) and prove
(1) Γ is a continuous fiber contraction
(2) Φn = Dαn

(3) convergence to Fiber Contraction Limit (α,Φ∞) is
uniform.
Then α is differentiable with derivative Φ∞.

I Idea applies to smoothness of solutions of ODEs, invariant
manifolds, and operator equations. Where else?



What mathematicians should do and what should be left
for applied mathematicians and numerics

I Soto and I were considering a bifurcation problem. He offered
a clear vision for mathematical analysis.

I As usual, he already knew what would be true.
I Mathematicians should prove a description of all local

bifurcations.
I “Global” bifurcations are generally beyond current

understanding; leave them for numerical investigation.

I Basic training and practice: genericity, hyperbolicity,
linearization at invariant sets, continuation, and bifurcation.

I This paradigm is being generalized from finite to
infinite-dimensional dynamical systems (PDEs).

I Computation is currently dominant in applied mathematics.
Correct answers? What about the rest of parameter space?

I What are the useful great challenges in Dynamical Systems?



Second Half of Talk, Topic 1: Binder Burnout

I Collaborators (Engineers): Steve Lombardo, David Retzloff

I Aluminum Oxide Ceramic Industrial Parts:

I Binder burnout schematic:

with ceramic (3), polymer binder (grey), gas exhaust pore (1).



Process Problem

I Kiln temperature is raised to burn off the binder.

I Outgassing changes pressure in pores.

I Green body might crack.

I Low temperature means long process time (several days).

I Problem: What is the least time optimal temperature control?
I Common Sense:

I Determine pressure as function of temperature.
I Set pressure upper bound.
I Raise temperature as fast as possible without exceeding bound.

I Currently no practical way to incorporate sensors.

I Modeling problem is open-ended: more complete physics
(usually) implies new optimal temperature protocol.



Modeling

I Binder ε2, gas density ρ, and temperature T model:

(ε2)t = −A exp(
−E

RT (t)
)ε2,

(ερ)t =
κRT (t)

µ
∇ · (ρ∇ρ) +

ρ2

M
A exp(

−E
RT (t)

)ε2,

ε+ ε2 = 1− ε3 (a constant),

RT (t)ρ(x , t) = P0, x ∈ ∂Ω (essential boundary condition)

I ρ∇ρ (not ∇ρ) makes PDE a porous medium equation.

I Dynamic pressure (x , t) 7→ RT (t)ρ(x , t) is constrained.

I Set δ > 0. Given admissible T , evolve until ε2(tf ) ≤ δ.

I Problem: Find T that minimizes functional T 7→ tf .

I We worked on and solved this problem: Proved OC exists and
developed viable algorithm to find it.



Optimal Control (OC)

I Binder burnout is TOC problem with state and control
constraints.

I Maximize Λ(q, u) :=
∫ tf
ti

L(q, u, t) dt subject to q̇ = f (q, u, t)
with q specified at ti or tf and possibly other constraints.

I Classical calculus of variations when q̇ = u.

I Calculus of variations view of OC culminates in Pontryagin’s
Maximum Principle:

I Define control Hamiltonian:
H(q, u, p, t) := 〈p, f (q, u, t)〉 − L(q, u, t)
for admissible control u(t) ∈ A. The optimal state q∗ and
costate p∗ satisfy Hamilton’s equations: q̇ = Hp, ṗ = −Hq and

H(q∗(t), u∗(t), p∗(t), t) := maxu(t)∈AH(q∗(t), u, p∗(t), t).

I For linear ODE almost complete understanding; for nonlinear
ODE or PDE not so much! BVPs are important.



Pseudo Steady State Approximation PSSA or Quasi
Steady State Approximation (QSSA)

I Rate equations in biochemistry model might be
ẏ = g(y , z), ż = H(y , z)

I During measurement z (usually intermediate reactant
concentration) changes slowly. Maybe ż = εh(x , y) and
0 < |ε| � 1.

I In principle, you know what to do:

I In chemistry this is called the PSSA.
I (ε2)s = −a exp(− γ

Γ(s) )ε2,

(εη)s = Γ(s)q(ε)(εη(εη)ξ)ξ + c exp(− γ
Γ(s) )ε2.

I Maybe (εη)s ≈ 0, then PSSA for PDE.



Oscillating Heat Pipe: Z.C. Feng, S. Lombardo, D. Retzloff

I Device for heat transport with no moving mechanical parts.

I Two-phase flow (liquid and vapor) in a narrow serpentine tube
through a hot and cold zone.

I Evaporation, condensation, and vapor pressure cause the
motion.

I Ideal: Efficient heat transfer from hot to cold zone.

I Current main application: cooling of electronic equipment



Oscillating Heat Pipe: Startup Problem

I Configuration space is a circle.

I

γi θ̈i + νγi θ̇i =
φi
βi
− φi+1

βi+1
,

φ̇i = ev(θi−1 + γi−1) + ev(θi ), i = 1, 2, . . . , n, i + n ≡ i .

I θ is clockwise left-end meniscus position of liquid slug and
φ/β is pressure.

I ev is nonlinear evaporation function; its parameters involve
the difference of hot and cold zone temperatures and wall
temperatures along the OHP.

I All liquid in cold zone, cold zone filled, and zero velocities at
menisci corresponds to equilibrium of ODE system.



Results

I Proposition: There is a function of temperature σ
(evaporation rate) such that at σ = ν a bifurcation occurs;
Linearization at equilibrium has only negative, zero, and pure
imaginary eigenvalues.

I Theorem: For n = 2, a supercritical nondegenerate Hopf
bifurcation occurs. Because of zero eigenvalues, reduction to
center manifold was required to apply Hopf’s theorem and
compute the stability index.

I For case n = 3 at least some cases of Hopf-Hopf are required.
In general, multiple pairs of complex conjugate eigenvalues
cross the imaginary axis. Exactly what happens is an open
problem.

I As usual in applied mathematics, the system has special
features. Maybe unknown full Hopf-Hopf bifurcation is not
needed. But, this is an open question.



OHP operation

I The startup model is not viable for OHP dynamics; fluid slugs
may merge and boiling may create new slugs.

I Multiphysics modeling is possible; perhaps a partially
phenomenological model will reveal correct qualitative
behavior.

I Smoothed Particle Hydrodynamics (SPH) might be a viable
methodology.



SPH (Monaghan, Gingold, Lucy circa 1977

I Imagine a flow of particles, perhaps embedded in a gas or
liquid and their dual nature:

I particles of the substance
I interpolation points

I Multiphysics modeling is possible; but, perhaps a partially
phenomenological model will reveal correct qualitative
behavior.

I Smoothed Particle Hydrodynamics (SPH) might be a viable
methodology.



SPH

I Fundamental Continuum Lagrangian:
L =

∫
ρ( 1

2v · v − u(ρ, S)) dV .

I Discretize: dVj = mi/ρi and suppose entropy is constant (?)

along particle trajectories. L =
∑N

j=1 mj(
1
2vj · vj − U(ρj))

I Equations of motion: d
dt
∂L
∂q̇ = ∂L

∂q are discrete version of Euler’s
equations. Conservation laws are automatically satisfied.

I mj v̇j = ∂U
∂ρ

∂ρ
∂x .

I From 1st Law of Thermodynamics dU = Tds − pdV.

I With volume viewed as inverse density,
dU = Tds − pd( 1

ρ) = Tds + p
ρ2 dρ.

I So, formally at least, ∂U
∂ρ = p

ρ2 .



SPH
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Smoothing Kernel, h=0.06

I Now SPH: For a positive and normalized smoothing kernel w ,
the SPH bridge between discrete and continuous is
ρ(x) =

∑N
j=1 mjw(x − xj , h).

I It leads to the foundational model: ẋi = vi ,
v̇i = −

∑N
j=1
j 6=i

mj

( pi
ρ2
i

+
pj
ρ2
j

)
w ′(xj − xi )

xj−xi
|xj−xi | + fi

ρi
,

which is closed by an equation of state p = g(ρ).
I Two phase flow can (with difficulty) be implemented using

two different particle masses. What motion is predicted?
I Toy examples with special features where a dynamical system

analysis can be done might be insightful. Does SPH always
agree with Euler? What happens when parameters are
changed?



In Memorium

Many cast about in love, work, and play as time passes too
quickly. Few find true love, create enduring work, and have a
positive and lasting influence on their community. We honor one of
the outstanding few today. Thank you Soto.



Optimal Control History

I Wonderful Article: H. Sussmann and J. Willems 300 Years of
Optimal Control, IEEE, 1997

I Main takeaway: Hamilton wrote down the wrong Hamiltonian

I Hamilton said ṗ = ∂L
∂q̇ (q, q̇, t) and

H(q, p, t) = 〈q, q̇〉 − L(p, q̇, t)



Pontryagin’s maximum principle
The main result on necessary conditions for time optimal control is
of course the Pontryagin Maximum Principle (PMP). It is usually
stated for the classic problem where the dynamic is ẋ = f (x , u)
with initial state x(0) = x0 ∈ Rk and a payoff function

G (u) =

∫ τ

0
g(x(t), u(t)) dt

where g is some running payoff function and τ is defined to be the
first time the state reaches some preassigned surface S. The (free
time, fixed endpoint) problem is to find u∗ that maximizes the
payoff. Here the control theory Hamiltonian is defined by

H(x , p, υ) = 〈f (x , υ), p〉+ g(x , υ).

The PMP states that if u∗ is the control policy that maximizes the
payoff and x∗ is the corresponding solution of the dynamical
system, then there is a function p∗ : [0, τ∗]→ Rk (called the
co-state)



Maximum Principle

such that

ẋ∗ = Hp(x∗, p∗, u∗),

ṗ∗ = −Hx(x∗, p∗, u∗),

the boundary conditions for x are satisfied (that is, the initial data
and the final point on S), the maximum principle holds

0 = H(x∗(t), p∗(t), u∗(t)) = max
υ∈U

H(x∗(t), p∗(t), υ), 0 ≤ t ≤ τ∗,

and the transversality condition holds: final costate p(τ∗) is
orthogonal to the surface S.
For time-optimal control (TOC) the running payoff is given by
g(x , υ) = −1.



Maximum Principle

The maximum principle for optimal control problems with state
constraints is complicated by the nature of the constraints. In case
the constraint is in the form of a simple inequality, say
g(x(t)) ≤ 0, the formulation takes a simple form. As in the usual
context for Lagrange multipliers when a constraint is present,
suppose that x happens to lie in the boundary of the constraint set
for some portion of the time interval on which it is defined; that is,
g(x(t)) = 0 for some time interval. Then, of course,

∇g(x(t))ẋ(t) = 0.



Maximum Principle

Let c : Rk × Rk → R be the function defined by
c(x , u) = ∇〈g(x), f (x , u)〉. As before, suppose that u∗ and x∗ are
the optimal control and corresponding state trajectory. If x∗ is not
in the boundary of the constraint, then the usual maximum
principle applies. If x∗ is in the boundary on some interval of time,
then there is a co-state p∗ and a function λ∗ : R→ R defined on
this interval such that the dynamical system associated with the
problem is solved by x∗ and u∗, the co-state solves

ṗ∗ = −Hx(x∗, p∗, u∗) + λcx(x∗, u∗)

and

H(x∗(t), p∗(t), u∗(t)) = max
υ∈U
{H(x∗(t), p∗(t), υ) : c(x∗(t), υ)} = 0.

Of course, λ is akin to a Lagrange multiplier and the constraint
also constrains the admissible controls.


