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Abstract

While the limit cycles of the piecewise differential systems in the plane R2 have

been studied intensively during these last twenty years, this is not the case for

the limit cycles of the piecewise differential systems in the space R3.

The goal of this article is to study the continuous and discontinuous piece-

wise differential systems in R3, formed by linear vector fields similar to planar

centers separated by one or two parallel planes. We call those “center-type”

differential systems, which have two pure imaginary numbers and zero as eigen-

values. When these kinds of piecewise differential systems are continuous or

discontinuous separated by one plane, then they have no limit cycles. Also,

if they are continuous separated by two planes, then generically they do not

have limit cycles. But when the piecewise differential systems are discontinuous

separated two parallel planes, we show that generically they can have at most

four limit cycles, and that there exist such systems with four limit cycles. The

genericity here means that the statements hold in a residual set of the space of

parameters associated to the differential system.

We recall that the same problem but for discontinuous piecewise differential

systems in R2 formed by linear differential centers separated by two parallel
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straight lines have at most one limit cycle.
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1. Introduction and statement of the main results

The study of piecewise vector fields (PVF) goes back to Andronov, Vitt,

and Khaikin [1] and still continues to receive strong attention from researchers.

These last years a renewed interest has appeared in the mathematical commu-

nity working in differential equations for understanding the dynamical richness5

of the piecewise vector fields, because these vector fields are widely used to

model processes appearing in electronics, mechanics, economy, etc., see for in-

stance the books [2] and [3] and the survey of [4] and the hundreds of references

quoted in these last three works.

In this paper, we shall work with piecewise vector fields in R2 and R3, and10

the definition of these vector fields on the separation line of their pieces in R2,

or on the discontinuity region of their pieces in R3 follow the rules of Filippov

[5], see a summary of these rules in Section 2.

These last two decades the limit cycles of the piecewise differential systems

in the plane R2 have been studied intensively, see for instance [6–30]. This is15

not the case for the limit cycles of the piecewise differential systems in the space

R3.

A center of a differential system in the plane R2 is an equilibrium point x

having a neighbourhood U such that U \{x} is filled of periodic orbits. A global

center is a center x such that R2 \ {x} is filled of periodic orbits. The notion of20

a center appeared already in the works of Poincaré [31] in 1881 and Dulac [32]

in 1908.

One of the main objects in the study of the vector fields is the limit cycles.

A limit cycle of a vector field is a periodic orbit isolated in the set of all periodic

orbits of the vector field.25
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In the paper [28] it is proved that continuous and discontinuous piecewise

vector fields in R2 formed by two pieces separated by one straight line and

formed by two arbitrary linear centers cannot have limit cycles, and that also

the continuous piecewise vector fields in R2 formed by three pieces separated

by two parallel straight lines and formed by three arbitrary linear centers have30

no limit cycles. But the discontinuous piecewise differential systems separated

by two parallel straight lines and formed by three arbitrary linear centers can

have at most one limit cycle, and there are such systems which one limit cycle.

The objective of this paper is to study a similar problem for continuous and

discontinuous piecewise vector fields in R3.35

In R3 there are no centers in the sense that there are no equilibrium points

x having a neighborhood U such that U \ {x} is filled with periodic orbits, see

for instance [33].

The main goal of this paper is to study the limit cycles of the continuous

and discontinuous piecewise vector fields in R3 separated by one plane or by40

two parallel planes and formed by linear “center-type” vector fields of R3.

More precisely, we consider the linear vector field

X(x) =


A11 A12 A13

A21 A22 A23

A31 A32 A33



x

y

z

 +


B1

B2

B3

 = Ax +B, (1)

where

A11 = a1a3c2 + b1b3c2 − a1a2c3 − b1b2c3,

A12 = a2a3c2 + b2b3c2 − a22c3 − b22c3,

A13 = a23c2 + b23c2 − a2a3c3 − b2b3c3,

A21 = −a1a3c1 − b1b3c1 + a21c3 + b21c3,

A22 = −a2a3c1 − b2b3c1 + a1a2c3 + b1b2c3,

A23 = −a23c1 − b23c1 + a1a3c3 + b1b3c3,

A31 = a1a2c1 + b1b2c1 − a21c2 − b21c2,

A32 = a22c1 + b22c1 − a1a2c2 − b1b2c2,

A33 = a2a3c1 + b2b3c1 − a1a3c2 − b1b3c2,
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B1 = a3a4c2 + b3b4c2 − a2a4c3 − b2b4c3,

B2 = −a3a4c1 − b3b4c1 + a1a4c3 + b1b4c3,

B3 = a2a4c1 + b2b4c1 − a1a4c2 − b1b4c2.

The vector field (1) is obtained after applying the affine transformation

(x, y, z) 7→ (a1x+ a2y + a3z + a4, b1x+ b2y + b3z + b4, c1x+ c2y + c3z + c4)

with inverse

(x, y, z) 7→ −1
det(A) (a4b3c2 − a3b4c2 − a4b2c3 + a2b4c3 + a3b2c4 − a2b3c4
−b3c2x+ b2c3x+ a3c2y − a2c3y − a3b2z + a2b3z,−a4b3c1
+a3b4c1 + a4b1c3 − a1b4c3 − a3b1c4 + a1b3c4 + b3c1x− b1c3x

−a3c1y + a1c3y + a3b1z − a1b3z, a4b2c1 − a2b4c1 − a4b1c2
+a1b4c2 + a2b1c4 − a1b2c4 − b2c1x+ b1c2x+ a2c1y − a1c2y

−a2b1z + a1b2z).

to the linear differential system

ẋ = −y, ẏ = x, ż = 0, (2)

which has the two independent first integrals f1(x) = x2 + y2 and f2(x) = z.

Here we assume that det(A) = −a3b2c1 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 +

a1b2c3 6= 0. We emphasize the genericity in this paper means that some result

holds in a residual set.45

Note that the linear differential system (2) in R3 has the full z-axis filled

with singular points, and on the invariant planes z = z0 =constant we have

a global center at (0, 0, z0), i.e. all the periodic orbits surrounding the center

(0, 0, z0) in the plane z = z0 fill this plane with the exception of the singular

point (0, 0, z0).50

In this paper the linear differential system in R3 defined by a vector fields

X will be called a linear center or simply a center in R3.

Changing the parameters (ai, bi, ci) of the vector field X(x) to (αi, βi, γi) for

i = 1, 2, 3 we get another linear vector field Y (x) = Cx +D.
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For any piecewise vector field in R3 formed by two pieces and separated by55

one plane we can assume without loss of generality, after an affine change in R2

if necessary, that such a plane is the plane x = 0.

We define the piecewise vector field N = (X,Y ) in R3 of two pieces separated

by the plane x = 0 and formed by the two centers X and Y of R3 as

N(x) =

 X(x) = Ax +B, ifx ≥ 0,

Y (x) = Cx +D, ifx ≤ 0.

If X = Y on the plane x = 0 we say that the piecewise vector field N is

continuous, and if X 6= Y on the plane x = 0 we say that the piecewise vector

field N is discontinuous. For these two kinds of piecewise vector fields N we60

have the following two results.

Theorem 1.1. A piecewise vector field in R3 separated by one plane and formed

by two linear centers X and Y has no limit cycles.

The limit cycles of Theorem 1.1 are crossing limit cycles, see for details the

last part of Section 2.65

If we assume that the discontinuity region of a piecewise vector field in R3

is formed by two parallel planes, then without loss of generality we can assume,

after an affine change in R3 if necessary, that these parallel planes are the planes

x = 1 and x = −1.

We consider piecewise vector fields separated by the planes x = ±1 and70

formed by three centers X, Y and Z, where Z(x) = Ex + F is obtained from

X changing the coefficients (ai, bi, ci) by (Ai, Bi, Ci) for i = 1, 2, 3.

More precisely, we define the piecewise vector field M = (X,Y, Z) in R3 of

three pieces separated by the two planes x = ±1 and formed by the three centers

X, Y and Z of R3 as

M(x) =


X(x) = Ax +B, ifx ≥ 1,

Y (x) = Cx +D, if − 1 ≤ x ≤ 1,

Z(x) = Ex + F, ifx ≤ −1.
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As in the case when the discontinuity line was formed by a unique plane,

now we can consider continuous and discontinuous piecewise vector fields. Our

main results for the piecewise vector fields M are the following two theorems.75

Theorem 1.2. A continuous piecewise vector field separated by two parallel

planes and formed by three linear centers X, Y and Z generically has no limit

cycles.

We notice that our parameter space is R36. Thus, when we claim that the

continuous piecewise vector field has generically no limit cycle we mean that it80

has no limit cycles in a residual set of R36. It other others, the possible scenario

where the result could not be verified has measure zero (here we can assume

Lebesgue measure).

Theorem 1.3. A discontinuous piecewise vector field separated by two parallel

planes and formed by three linear centers X, Y and Z generically has at most85

four limit cycles, and we provide one of these piecewise vector fields with exactly

four limit cycles.

The meaning of genericity in the statement of Theorem 1.3 is the same as in

Theorem 1.2. Again the limit cycles of Theorems 1.2 and 1.3 are crossing limit

cycles, see for details the last part of Section 2. The proofs of Theorems 1.1,90

1.2 and 1.3 are given in the Section 3.

2. Filippov rules for defining the piecewise vector fields

Following the Filippov rules introduced in [5] we first consider an open set

U ⊂ R3 and the discontinuity region Σ = f−1(0) being 0 a regular value of a

Cr smooth function f : U ⊂ R3 → R, for 1 ≤ r ≤ ∞. As usual a Cr vector field95

is a Cr function X : U → R3. The set of Cr vector fields over R3 will denoted

by Xr(R3).

Let Xi ∈ Xr(R3) be arbitrary vector fields, with i = 1, . . . , n where n is

the number of connected components Di of R3 \Σ. We denote a (non-smooth)
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piecewise vector field in R3 by the n-tuple N = (X1, . . . , Xn) where

N(x) = Xi(x), if x inDi,

here x = (x, y, z) ∈ R3. We note that on the discontinuity region Σ the piecewise

vector field N is bi-valuated.

Now we precisely define N = (X,Y ) over Σ. A point x ∈ Σ is of crossing100

type if vector fields X(x) and Y (x) points in the same direction respect to Σ.

It is of sliding type if both X(x) and Y (x) points inward Σ and it is of escaping

type if X(x) and Y (x) points outward Σ. In each situation we are assuming

that the trajectories of X and Y are transversal to Σ. Otherwise we say that a

point x ∈ Σ is a tangency point of X or Y .105

An effective criterion for classifying points on the discontinuity region Σ can

be established in terms of the Lie derivatives as follows. We define the Lie

derivative at x ∈ Σ as

Xf(x) = 〈∇f(x), X(x), 〉

and for k ≥ 2 we define Xkf(x) = 〈∇Xk−1f(x), X(x)〉. The transversal points

on Σ with respect to the vector fields X and Y are classified as follows:

• Crossing region: Σc = {x ∈ Σ, (Xf(x)).(Y f(x)) > 0}, formed by crossing

points.

• Sliding region: Σs = {x ∈ Σ, Xf(x) < 0 andY f(x) > 0}, formed by110

sliding points.

• Escaping region: Σe = {x ∈ Σ, Xf(x) > 0 andY f(x) < 0}, formed by

escaping points.

Filippov’s convention [5] allows to define of two kinds of limit cycles for the

piecewise vector fields, the so-called sliding limit cycles and the crossing limit115

cycles. Sliding limit cycles contain sliding points on the line of discontinuity

and crossing limit cycles contain only crossing points. Here we only work with

crossing limit cycles, or simply limit cycles.
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3. Proof of the results

Proof of Theorem 1.1. The continuous case. Consider a continuous piecewise120

linear differential system in R3 separated by one plane and formed by two centers

X and Y . Without loss of generality, we can suppose that the plane is x = 0.

The continuous hypothesis, X(x) = Y (x) at (x, y, z) = (0, y0, z0), provides

3 polynomial equations of degree 1 in the variables y0 and z0, each equation

corresponding to the coordinates of the involved vector fields. They write

(B1 −D1) + (A12 − C12)y0 + (A13 − C13)z0 = 0

(B2 −D2) + (A22 − C22)y0 + (A23 − C23)z0 = 0

(B3 −D3) + (A32 − C32)y0 + (A33 − C33)z0 = 0

Thus we get 9 cubic equations for the parameters, looking at each coefficient,

Bi − Di = 0, Ai2 − Ci2 = 0 and Ai3 − Ci3 = 0 for i = 1, 2, 3. From those

equations we get 7 parameters b4, b1, a1, b2, a2, α1, β1 in terms of the other125

ones, as solution of the system.

If the continuous piecewise differential system has a limit cycle, this must

intersect the plane x = 0 in two points (0, y0, z0) and (0, y1, z1) with (y0, z0) 6=

(y1, z1). For the vector field X we have the first integrals

F1(x) = (a4 + a1x+ a2y + a3z)
2 + (b4 + b1x+ b2y + b3z)

2,130

F2(x) = c4 + c1x+ c2y + c3z,

and for the vector field Y the first integrals

G1(x) = (α1x+ α2y + α3z + α4)2 + (β1x+ β2y + β3z + β4)2,

G2(x) = γ1x+ γ2y + γ3z + γ4.

Clearly that the two points (0, y0, z0) and (0, y1, z1) with (y0, z0) 6= (y1, z1)135

where the limit cycles intersects the plane x = 0 must satisfy the system of four

equations

e1 = F1(0, y0, z0)− F1(0, y1, z1) = 0,
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e2 = F2(0, y0, z0)− F2(0, y1, z1) = 0,

e3 = G1(0, y0, z0)−G1(0, y1, z1) = 0,140

e4 = G2(0, y0, z0)−G2(0, y1, z1) = 0.

Since the unique solution of this system is y0 = y1 and z0 = z1, it follows that

the continuous piecewise differential system formed by the centers X and Y has

no limit cycles.

The discontinuous case. Assume that we have a discontinuous piecewise145

linear differential system in R3 separated by one plane and formed by two centers

X and Y . Without loss of generality we can suppose that the plane is x = 0.

Then a limit cycle intersects the plane x = 0 in the two points (0, y0, z0)

and (0, y1, z1) with (y0, z0) 6= (y1, z1). The vector fields X and Y have the

first integrals F1(x), F2(x) and G1(x), G2(x) respectively, given in the proof of150

Theorem 1.1. As in that proof the two points (0, y0, z0) and (0, y1, z1) must

satisfy

e1 = F1(0, y0, z0)− F1(0, y1, z1) = 0,

e2 = F2(0, y0, z0)− F2(0, y1, z1) = 0,

e3 = G1(0, y0, z0)−G1(0, y1, z1) = 0,155

e4 = G2(0, y0, z0)−G2(0, y1, z1) = 0.

Computing the Gröebner basis of the polynomials e1, e2, e3 and e4 respect

to the variables y0, z0, y1 and z1, we obtain an equivalent polynomial system

to e1 = e2 = e3 = e4 = 0 formed by 59 equations. One of those ones is

(z1 − z0)(c3γ2 − c2γ3) = 0.160

Assume that c3γ2 − c2γ3 is not zero. Then z1 = z0. Therefore e4 = (y0 −

y1)γ2. Since y1 cannot be equal to y0, otherwise the point (0, y0, z0) would be

equal to (0, y1, z1), we have that γ2 = 0. Then e2 = (y0 − y1)c2 = 0, so c2 = 0,

in contradiction with the assumption that c3γ2 − c2γ3 is not zero. Therefore in
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what follows we can assume that c3γ2 − c2γ3 = 0 and that z0 6= z1. Now we165

consider two cases.

Case 1: c2 is not zero. Then γ3 = c3γ2/c2. Doing again the Gröebner basis of

the polynomials e1, e2, e3 and e4 respect to the variables y0, z0, y1 and z1, we

obtain an equivalent polynomial system with eight equations. After removing

the non-zero factor z0−z1 from the equations having such a factor, all these are170

linear in the variables y0, z0, y1 and z1 except one equation. These equations

can be solved and we obtain a continuum of solutions. Consequently, again we

do not have limit cycles in this case.

Case 2: c2 = 0. Then e2 = c3(z0 − z1) = 0. Hence c3 = 0. It remains three

equations e1 = e3 = e4 = 0 and four unknowns. we obtain a continuum of175

solutions. Consequently again we do not have limit cycles in this case.

Proof of Theorem 1.2. The continuous hypotheses that X(x) = Y (x) at (x, y, z)

= (1, y0, z0) and Y (x) = Z(x) at (x, y, z) = (−1, y1, z1), provide 6 polynomial

equations of degree 1 in the variables y0, z0, y1 and z1, each equation corre-

sponding to the coordinates of the involved vector fields. Thus, similarly to the180

proof of Theorem 1.1, we get 18 equations for the parameters, looking at each

coefficient. From that system we get 13 parameters, which satisfy the whole

equations, b4, b1, a1, b2, a2, α1, β1, B4, B1, A1, B2, A2 and γ1 in terms of the

other ones.

The vector fields X and Y have the first integrals F1(x), F2(x) and G1(x),185

G2(x), respectively. For the vector field Z we have the firsts integrals

H1(x) = (A1x+A2y +A3z +A4)2 + (B1x+B2y +B3z +B4)2,

H2(x) = C1x+ C2y + C3z + C4.

A possible limit cycle intersects at the points (1, y0, z0) and (1, y3, z3) the

plane x = 1, and at the points (−1, y1, z1) and (−1, y2, z2) in the plane x = −1,190

with (y0, z0) 6= (y3, z3) and (y1, z1) 6= (y2, z2). These four points have to satisfy

the following system of equations for (y0, y1, y2, y3, z0, z1, z2, z3).

e1 = F1(1, y3, z3)− F1(1, y0, z0) = 0,
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e2 = F2(1, y3, z3)− F2(1, y0, z0) = 0,

e3 = G1(1, y0, z0)−G1(−1, y1, z1) = 0,195

e4 = G2(1, y0, z0)−G2(−1, y1, z1) = 0,

e5 = H1(−1, y1, z1)−H1(−1, y2, z2) = 0,

e6 = H2(−1, y1, z1)−H2(−1, y2, z2) = 0,

e7 = G1(−1, y2, z2)−G1(1, y3, z3) = 0,

e8 = G2(−1, y2, z2)−G2(1, y3, z3) = 0.200

Using the even equations we get that

z1 =
2(c1C2γ3 − c1γ2C3 − C1c2γ3 + C1γ2c3)

γ3(C2c3 − c2C3)
+
γ2y0
γ3
− γ2y1

γ3
+ z0,

z2 =
2(c1C2γ3 − c1γ2C3 − C1c2γ3 + C1γ2c3)

γ3(C2c3 − c2C3)
− y1(γ2C3 − C2γ3)

γ3C3

−C2y2
C3

+
γ2y0
γ3

+ z0,

y3 = −c3y1(γ2C3 − C2γ3)

C3(γ2c3 − c2γ3)
+
c3y2(γ2C3 − C2γ3)

C3(γ2c3 − c2γ3)
+ y0,

z3 =
c2y1(γ2C3 − C2γ3)

C3(γ2c3 − c2γ3)
− c2y2(γ2C3 − C2γ3)

C3(γ2c3 − c2γ3)
+ z0.

Note that we are assuming that all the denominators which appear in the

previous expressions of z1, z2, y3 and z3 are non-zero. That is, we are solving

the system e1 = 0, . . . , e8 = 0, in the more generic case, i.e. when the mentioned

denominators do not vanish, and the denominators which will appear solving

the remaining equations e1 = e3 = e5 = e7 = 0 do not vanish.205

Then we have e1 = e3 = e5 = e7 = 0 for solving y0, y1, y2, z0. From e1 = 0

and e3 = 0 we can find y2 and z0, respectively. Substituting y2 and z0 in e5

and e7, we find that y1 = y0 + 2(C1c3 − c1C3)/(C2c3 − c2C3) vanishes both

equations. So we have a continuum of periodic orbits and no limit cycles.

Proof of Theorem 1.3. We consider such a possible limit cycle which intersects210

at the points (1, y0, z0) and (1, y3, z3) the plane x = 1 and at the points
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(−1, y1, z1) and (−1, y2, z2) the plane x = −1, with (y0, z0) 6= (y3, z3) and

(y1, z1) 6= (y2, z2). The vector fields X, Y and Z have the first integrals

F1(x), F2(x), G1(x), G2(x) and H1(x), H2(x), respectively.

These four points must satisfy the following systems of equations for the215

variables (y0, y1, y2, y3, z0, z1, z2, z3).

e1 = F1(1, y3, z3)− F1(1, y0, z0) = 0,

e2 = F2(1, y3, z3)− F2(1, y0, z0) = 0,

e3 = G1(1, y0, z0)−G1(−1, y1, z1) = 0,

e4 = G2(1, y0, z0)−G2(−1, y1, z1) = 0,220

e5 = H1(−1, y1, z1)−H1(−1, y2, z2) = 0,

e6 = H2(−1, y1, z1)−H2(−1, y2, z2) = 0,

e7 = G1(−1, y2, z2)−G1(1, y3, z3) = 0,

e8 = G2(−1, y2, z2)−G2(1, y3, z3) = 0.

Using the even equations we get

z1 = z0 +
2γ1
γ3

+
y0γ2
γ3
− y1γ2

γ3
,

z2 = −C2y2
C3

+ z0 +
2γ1
γ3

+
y0γ2
γ3
− y1(C3γ2 − C2γ3)

C3γ3
,

y3 = y0 −
c3y1(C3γ2 − C2γ3)

C3(c3γ2 − c2γ3)
+
c3y2(C3γ2 − C2γ3)

C3(c3γ2 − c2γ3)
,

z3 = z0 +
c2y1(C3γ2 − C2γ3)

C3(c3γ2 − c2γ3)
− c2y2(C3γ2 − C2γ3)

C3(c3γ2 − c2γ3)
.

Again note that we are assuming that all the denominators which appear225

in the previous expressions of z1, z2, y3 and z3, are non-zero. That is, we are

solving the system e1 = 0, . . . , e8 = 0, in the more generic case, i.e. when the

mentioned denominators do not vanish, and the denominators which will appear

solving the remaining equations e1 = e3 = e5 = e7 = 0 do not vanish.
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EqVar y0 y1 y2 z0

e1 1 1 1 1

e3 2 2 0 1

e5 1 1 1 1

e7 2 2 2 1

Table 1: Maximum exponent for each variable in the polynomials ek for k = 1, 3, 5, 7.

We substitute the obtained values of y3, z1, z2 and z3 in the equations ek = 0230

for k = 1, 3, 5, 7.

It remains to solve the equations e1 = e3 = e5 = e7 = 0 with respect to

the unknowns y0, y1, y2 and z0. We do not provide the big explicit expressions

of the equations e1 = e3 = e5 = e7 = 0, which are easy to obtain with some

algebraic manipulator as Mathematica or Mapple.235

The equations e1 = 0 and e5 = 0 are both of degree one, see Table 1. Thus

we can find the variables y0 and y1 as linear functions of the variables y2 and of

z0.

Substituting the expressions of y0 and y1 into the remaining equations e3 = 0

and e7 = 0 we obtain two polynomial equations of degree two in the variables z0240

and y2. Again we do not provide the huge explicit expressions of the equations

e3 = 0 and e7 = 0 which will need several pages for writing them.

Applying the Bézout Theorem (see [34]) to this system we know that at

most there are four real solutions for (y2, z0), which can produce four limit

cycles substituting these solutions in the previously obtained expressions of245

(y0, y1, y3, z1, z2, z3). Hence the first part of Theorem 1.3 is proved.

In order to complete the proof of Theorem 1.3 we provide a discontinuous

piecewise differential system in R3 formed by three centers and separated by

two parallel planes, obtained numerically following the ideas described in [35]

with an absolute tolerance of 10−15. Using the notation of the first part of the

proof of Theorem 1.3, the center given by the vector field X is obtained for the
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values of the parameters

a1 = 13.708561862548212.., b1 = −2.0668139685572826..,

a2 = −0.46436203202470083.., b2 = −2.1162121013313744..,

a3 = −1.5737561143110694.., b3 = −0.30359559321560803..,

a4 = −5.2597752179200175.., b4 = −3.837509139027315..,

c1 = 1, c2 = −0.938643702906351.., c3 = 1, c4 = 1.

For the vector field Y we have that

α1 = 2, α2 = −5, α3 = −7, α4 = −11,

β1 = −3, β2 = 1, β3 = 3, β4 = 1,

γ1 = 0.454545454545454, γ2 = −0.5454545454545444, γ3 = 1, γ4 = 6.

And the vector field Z is given by

A1 = −3.840000000006582, A2 = 5, A3 = 0, A4 = 14,

B1 = 1, B2 = 12, B3 = 11, B4 = 14,

C1 = 2, C2 = −4, C3 = 5, C4 = −8.

When we have computed (y3, z1, z2, z3) from e2 = e4 = e6 = e8 = 0 in

the last proof, it remains the equations e1 = e3 = e5 = e7 = 0 for computing

(y0, y1, y2, z0). From the equation e1 = 0 the variable y2 appears linearly and

we obtain y2 = Py2
(y0, y1, z0). Now from the equation e5 = 0 the variable y1

appears linearly and we have y1 = Py1(y0, z0). From the polynomial equations

e3 = e7 = 0 both of degree two, we can obtain the four solutions for (y0, z0),

and from these four solutions we obtain the intersection points (y0, z0, y1, z1,

y2, z2, y3, z3) of our limit cycles with the two planes of discontinuity, see Figure

1, which are

(0.8978733932366719..,−2.2444618685679187..,−0.8476262083331095..,

−2.2874616512423445.., 0.885305277605572..,−0.901116462491399..,

2.0197502924959307..,−1.1914191816421125..),

(2.618593513041539..,−2.017041157299665.., 1.6304557768236465..,

−1.6469344679639704..,−0.25095559475947454..,−3.152063565230467..,

1.4005927017518383..,−3.1603099489515696..),

14



Figure 1: The four limit cycles, vector fields X (red), Y (blue) and Z (green).
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(0.5348395678273713..,−1.7034390938102253..,−1.2941046025617466..,

−1.7919540958406528.., 0.47916792990915597..,−0.3733360698639303..,

1.6828327264792675..,−0.6258825444620513..),

(1.7558413358089768..,−3.9459570275133773.., 0.15273809964405125..,

−3.911286065421518.., 2.3088449504708346..,−2.1864005847600914..,

3.1516763632780256..,−2.635765268683441..).

4. Conclusions

We have shown that from the four classes of piecewise differential systems in

R3 here studied, generically the only ones having limit cycles are the discontin-250

uous piecewise differential systems in R3 separated by two parallel planes and

formed by three centers having at most four limit cycles, see Theorem 1.3.

We remark that the discontinuous piecewise differential systems in R2 sepa-

rated by two parallel straight lines and formed by three linear differential centers

can have at most one limit cycle, see [28].255
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