
PERIODIC BOUNCING SOLUTIONS OF THE LAZER-SOLIMINI
EQUATION WITH WEAK REPULSIVE SINGULARITY

DAVID ROJAS1 AND PEDRO J. TORRES2

Abstract. We prove the existence and multiplicity of periodic solutions of boun-
cing type for a second-order differential equation with a weak repulsive singularity.
Such solutions can be catalogued according to the minimal period and the number
of elastic collisions with the singularity in each period. The proof relies on the
Poincaré-Birkhoff Theorem.

1. Introduction

Differential equations with singularities appear as mathematical models in many
scientific areas and have been studied from many viewpoints [14]. In this paper, we
consider the singular second order differential equation

ü− 1

uα
= p(t), u > 0, (1)

with parameter α > 0 and p : R → R a continuous and 2π-periodic function. In a
seminal paper, Lazer and Solimini [3] proved that when α > 1 equation (1) has a
positive periodic solution if and only if p has negative mean value. The authors also
showed that the statement is sharp with respect to the parameter α in the sense that
if 0 < α < 1, a function p with negative mean value can be constructed in such a
way that (1) has no periodic solutions. Later, [6, Example 3.9] provided an effective
sufficient condition over p for the existence of a classical periodic solution in the
weak repulsive case. The particular case α = 1/2 has been studied in [8] showing
that the equation corresponds to a perturbed isochronous oscillator and resonance
conditions on the forcing term p(t) are given.

In the mentioned references, existence of solutions is understood in the classical
sense and collisions with the singularity are not allowed. The goal of the present
paper is twofold. First, we aim to extend the notion of solutions of equation (1) for
0 < α < 1 admitting elastic collisions with the singularity at x = 0. Second, we
prove the existence of harmonic and sub-harmonic bouncing solutions of equation (1)
for any negative 2π-periodic forcing p(t).

For the analogous equation with attractive nonlinearity (that is, changing the sign
of the second term of the left-hand side of the equation), the notion of bouncing
solution has been adequately defined and studied in a number of papers [4, 5, 7, 9,
13, 12, 15]. In contrast, it remains unexplored for the repulsive case. Our aim is to
fill, at least partially, this gap.

The structure of the paper is as follows. In Section 2, we analyze in detail the
autonomous case (when the forcing term p(t) is constant), including the associated
period function and the continuation of colliding orbits. In Section 3, we define
rigurously the notion of bouncing solution, proving that the initial boundary value
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problem is well-defined and continuable to the whole real line. Section 4 begins with
the definition of the so-called successor map, which is a section of the flux whose
fixed points are equivalent to periodic solutions of the equation. It can be proved
that this map is area-preserving and a suitable version of the Poincaré-Birkhoff
Theorem can be applied by using the estimates from Section 2, leading to the main
results.

2. The integrable weak-singular system

Throughout this section we consider a general potential function V ∈ C2(I) de-
fined in an open interval I = (α,+∞) satisfying

lim
u→α+

V (u) = h∗ and lim
u→α+

V ′(u) = −∞.

Additionally we assume that u = 0 is the only local minimum of V . More precisely,

V (0) = V ′(0) = 0, V ′′(0) > 0 and uV ′(u) > 0 if u 6= 0.

Under these hypothesis it is clear that there exists β > 0 with

lim
u→β

V (u) = lim
u→α+

V (u) = h∗ > 0,

and the equation

ü+ V ′(u) = 0, u ∈ I, (2)

has a center at the origin with a bounded period annulus, namely P, which pro-
jection over the u-axis is the open interval (α, β) (see Figure 1.) The associated
first order differential system is a Hamiltonian system with Hamiltonian function
H(u, u̇) = 1

2
u̇2 +V (u). In particular, the energy at the outer boundary of the period

annulus is h∗. From the first integral H we have that periodic orbits inside the period
annulus correspond to energy levels h ∈ (0, h∗). On the other hand, energies greater
than h∗ correspond to solutions that collide with the singularity. More precisely, if
u(t) is a solution of (2) with H(u, u̇) = h > h∗ and initial condition u̇(0) = 0, there
exists t0 > 0 such that limt→t−0

u(t) = limt→−t+0
u(t) = α. Moreover, by conservation

of energy the limits limt→t−0
u̇(t) = u̇(t−0 ) and limt→−t+0

u̇(t) = u̇(−t+0 ) exist and the

equality u̇(t−0 ) = −u̇(−t+0 ) holds. That is, the collision with the singularity can
be interpreted as an elastic collision. In particular, one can understand solutions
with collisions as generalized periodic solutions, also known as bouncing periodic
solutions. Indeed, the continuation is done by taking u̇(t+0 ) = −u̇(t−0 ).

2.1. The period function and its extension to bouncing solutions. The pre-
vious discussion shows that all solutions of equation (2) (classical and bouncing
type) are periodic. The period function parametrized by the energy, Tp : (0, h∗) −→
(0,+∞), is the function that, for each 0 < h < h∗, assigns the period of the peri-
odic solution u(t) inside the energy level h = H(u, u̇). Due to the symmetry of the
system with respect to the u-axis the function Tp(h) is given by

Tp(h) =
√

2

∫ u+(h)

u−(h)

du√
h− V (u)

, h ∈ (0, h∗),

where α < u−(h) < 0 < u+(h) are the negative and positive solution of the equality
h− V (u) = 0. That is, the endpoints of the projection of the orbit over the u-axis.
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Figure 1. On the left, potential function with a weak singularity at
x = α. On the right, the phase portrait of the potential system. The
grey region corresponds to the period annulus. Its outer boundary is
emphasized in bold.

When h > h∗ solutions of equation (2) are of bouncing type. In this case, we can
define the time between two consecutive collisions of the solution u(t) as

Tb(h) =
√

2

∫ u+(h)

α

du√
h− V (u)

, h > h∗.

The function Tb can be understood as an extension of the period function Tp outside
the period annulus. Therefore we define the function

T (h) =

{
Tp(h) if 0 < h < h∗,

Tb(h) if h > h∗,

as the extended period function.

Lemma 2.1. The function T (h) is C1(0,+∞).

Proof. The function Tp is C1(0, h∗) by the classical theory of the period function. In
addition, the function Tb is C1(h∗,+∞) since V ′(u) > 0 for all u > 0 and V (α) < h∗.
Let us show that the result is true for h = h∗. To do so let us define

g(u) =

u
(
V (u)
u2

)1/2
if u 6= 0,

0 if u = 0.

The change of variable u = g−1(
√
h sin θ) transforms the integral expression of Tb

into

Tb(h) =
√

2

∫ π
2

− arcsin
√

h∗
h

(g−1)′(
√
h sin θ)dθ.

The same change of variables transforms Tp into

Tp(h) =
√

2

∫ π
2

−π
2

(g−1)′(
√
h sin θ)dθ.

At this point the continuity becomes clear since limh→(h∗)+ arcsin
√

h∗

h
= π

2
. We

differentiate with respect to h to obtain

T ′b(h) =
1√
2h

∫ π
2

− arcsin
√

h∗
h

(g−1)′′(
√
h sin θ) sin θdθ −

√
h∗

2h
√
h− h∗

lim
z→−

√
h∗

(g−1)′(z).
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Using the identity g2 = V , we notice that

(g−1)′(z) =
1

g′(g−1(z))
=

2g

V ′
(g−1(z)).

The previous equality together with limu→α+ g(u) = −
√
h∗ implies that

lim
z→−

√
h∗

(g−1)′(z) = lim
u→α+

2g(u)

V ′(u)
= 0

since V ′(u) → −∞ as u → α+. Consequently, on account of the previous limit

together with the notation u = g−1(
√
h sin θ), the derivative of Tb writes

T ′b(h) =
1√
2h

∫ π
2

− arcsin
√

h∗
h

−g′′(u)

g′(u)3
sin θdθ. (3)

This shows the continuity of the derivative at h = h∗. �

Lemma 2.2. If u/V ′(u)→ +∞ as u→ +∞ and V ′′(u) > 0 for all u > β then the
function T (h) tends to infinity as h tends to infinity.

Proof. For h > h∗ the extended period function writes

T (h) =
√

2

∫ β

α

du√
h− V (u)

+
√

2

∫ u+(h)

β

du√
h− V (u)

>
∫ u+(h)

β

du√
h− V (u)

,

where (α, β) is the projection over the u-axis of the period annulus and u+(h) is the
positive solution of h− V (u) = 0 with V ′(u+(h)) > 0. By the mean value theorem,
there exists β < c(h) < u+(h) such that

1√
h− V (u)

=
1√

V ′(c(h))
√
u+(h)− u

,

and so ∫ u+(h)

β

du√
h− V (u)

=
2
√
u+(h)− β√
V ′(c(h))

.

From the hypothesis V ′′(u) > 0 for all u > β, we have V ′(c(h)) < V ′(u+(h)) and
the previous equality yields to∫ u+(h)

β

du√
h− V (u)

>
2
√
u+(h)− β√
V ′(u+(h))

Since limh→+∞ u
+(h) = +∞ and limu→+∞ u/V

′(u) = +∞ the previous inequality
proves the result. �

The following result is an extension of Schaaf’s monotonicity criterium [10] for
the period function of planar potential systems with a weak singularity. The proof
follows similarly to the original and here we only include some comments for the
sake of brevity.

Theorem 2.3. If V ∈ C4(I) satisfies that

(a) (5(V ′′′)2 − 3V ′′V (4))(u) > 0 for all u ∈ I where V ′′(u) > 0,
(b) V ′(u)V ′′′(u) < 0 if V ′′(u) = 0,

then T ′(h) > 0 for all h > 0.
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Proof. From Schaaf’s monotonicity criterium [10] we already know that the hypoth-
esis in the statement imply that Tp(h) is monotone increasing on (0, h∗). To show
that Tb(h) is monotone increasing on (h∗,+∞) we perform the change of variable

u = g−1(
√
h sin θ) on the expression in (3) and the derivative of Tb writes

√
2hT ′b(h) =

∫ β

α

φ(u)V ′(u)du√
h− V (u)

+

∫ u+(h)

β

φ(u)V ′(u)du√
h− V (u)

, (4)

where φ(u) = (V ′)2−2V V ′′
(V ′)3

(u) and (α, β) is the projection of the period annulus over

the u-axis. The original proof of Schaaf shows that the first integral is positive but
the same arguments employed in [10, Lemma 1] prove that φ(u) > 0 for u > 0 and
so the second integral is also positive. �

Lemma 2.4. If (1−2V V ′′/(V ′)2)(u) > ` > 0 for all u large enough, u/V ′(u)→ +∞
as u→ +∞ and V ′′(u) > 0 for all u > β then there exists h > h∗ such that T (h) is
monotone increasing on (h,+∞).

Proof. Denoting by u the point such that (1−2V V ′′/(V ′)2)(u) > ` if u > u, we split
the expression (4) in two parts:

√
2hT ′b(h) =

∫ u

α

ψ(u)du√
h− V (u)

+

∫ u+(h)

u

ψ(u)du√
h− V (u)

,

where ψ(u) = (1−2V V ′′/(V ′)2)(u). For the singular value h = V (u) the first integral
corresponds to the period of the bouncing solution with initial conditions u(0) = u,
u̇(0) = 0. That is, the integral is bounded for h = V (u). Clearly this bound is
uniform if h is increased since the numerator is bounded on the fixed interval of
integration and the denominator increases as the energy does. We claim that the
second integral tends to infinity as h tends to infinity. Indeed, we have∫ u+(h)

u

ψ(u)du√
h− V (u)

> `

∫ u+(h)

u

du√
h− V (u)

.

The integral at the right-hand side of the inequality tends to infinity as h tends to in-
finity, as we have already shown in Lemma 2.2. Consequently, limh→+∞

√
2hT ′b(h) =

+∞ and the result follows. �

2.2. The power-like integrable system. In this section we recover system (1)
and analyze it when p(t) ≡ p0 is a negative constant. That is,

ü− 1

uα
= p0, u > 0. (5)

Equation (5) has an associated potential energy function given by

V (u) := −p0u−
u1−α

1− α
, u > 0.

A direct study of the potential shows that the associated first order differential sys-
tem of equation (5) exhibits a center at ((−p0)−1/α, 0) with bounded period annulus,
which projection over the u-axis is (0, ((α − 1)p0)

−1/α). The total energy function
is denoted by H(u, u̇) := 1

2
u̇2 + V (u). In particular, h = 0 is the energy at the col-

lision point with zero velocity (i.e. the energy at the outer boundary of the period
annulus).
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We denote by u(t;u0) the solution of (5) with initial conditions u(0;u0) = u0 > 0
and u̇(0;u0) = 0. Solutions with initial conditions u0 ∈ (0, ((α− 1)p0)

−1/α) (that is,
with negative energy) are globally defined and periodic. On the other hand, solutions
with u0 > ((α−1)p0)

−1/α (positive energy) are no longer globally defined since they
reach the singularity u = 0 in finite time. From the expression of the energy function
these orbits reach the singularity with finite velocity and the energy is conserved so
the singularity can be interpreted as an elastic collision. More precisely, there exists
t0 > 0 such that u(t0;u0) = u(−t0;u0) = 0 and u̇(t0;u0) = −u̇(−t0;u0).

Lemma 2.5. Consider the extended period function T (h) associated to equation (5)
and any p0 < 0.

(a) If α > 1/2 then T (h) is monotone increasing and tends to infinity.
(b) If α = 1/2 then T (h) is constant for h < 0, and monotone increasing and tends

to infinity for h > 0.
(c) If 0 < α < 1/2 then T (h) is monotone decreasing for h < 0 and there exists

h > 0 such that T (h) is monotone increasing in (h,+∞) and tends to infinity.

Proof. The result in (a) follows applying Theorem 2.3. Indeed, elementary compu-
tations lead to V ′′(u) = αu−(α+1) > 0 for all u > 0 and

(5(V ′′′)2 − 3V ′′V (4))(u) = α2(α + 1)(2α− 1)u−2(α+2). (6)

Therefore assumptions in Theorem 2.3 are fulfilled when α > 1/2 so the extended
period function is monotone increasing. Moreover,

lim
u→+∞

u

V ′(u)
= lim

u→+∞

u

−p0 − u−α
= +∞

since α > 0 and p0 < 0. Then Lemma 2.2 implies that T (h) tends to infinity.
To show (c) we first employ the classical Schaaf’s criterion in [10] for monotone

decreasing period function. In this case the condition to be satisfied is expression
in (6) to be negative. Clearly this is so for 0 < α < 1/2 and then T (h) is monotone
decreasing for h < 0. For h > 0 we notice that

lim
u→+∞

(
1− 2V V ′′

(V ′)2

)
(u) = lim

u→+∞
1 +

2α
(
p0u+ u1−α

1−α

)
u1+α(p0 + u−α)2

= 1,

so assumptions in Lemma 2.4 hold and the result in (c) follows.
Finally, we prove (b) by direct computation. Indeed, for α = 1/2 the integral of

the expression of the period function writes

√
2

∫
du√

h− V (u)
=
√

2

∫
du√

h+ p0u+ 2
√
u
.

The change of variables u = z2 yields to

√
2

∫
du√

h− V (u)
= 2
√

2

∫
zdz√

h− 1
p0

+ p0(z + 1/p0)2
,

which can be explicitly integrated, giving

2
√

2

(−p0)
3
2

arctan

 √
−p0(z + 1

p0
)√

h− 1
p0

+ p0(z + 1
p0

)

+
2
√

2
√
h− 1

p0
+ p0(z + 1

p0
)

p0
.
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It is then a computation to show that, if h < 0, the evaluation of the previous
function on both endpoints of the interval of integration give

Tp(h) ≡ 2
√

2π

(−p0)
3
2

.

On the other hand, if h > 0 the left-hand endpoint is z = 0 and so

Tb(h) =
2
√

2

(−p0)
3
2

(π
2

+ arctan((−p0h)−
1
2 )
)
− 2
√

2h

p0
.

In particular, limh→0+ Tb(h) = 2
√

2π(−p0)−
3
2 . The properties on the statement are

easily checked using the expression of Tb. �

3. Regularization of collisions and bouncing solutions

We now return to system (1). The periodicity of p(t) is not needed at this moment
so we assume that p : R → R is a continuous and bounded negative function
satisfying

p2 6 p(t) 6 p1 < 0 (7)

for all t ∈ R.
Let us consider the first order differential system associated to (1). That is,

X : u̇ = v, v̇ =
1

uα
+ p(t).

We also denote by X1 and X2 the first order differential systems associated to (1)
taking p(t) ≡ p1 and p(t) ≡ p2, respectively. Notice that X1 and X2 are both
integrable first order differential systems associated to an equation of the form (5).
We denote by H1 and H2 the energy functions associated to X1 and X2. We also
define η = ((α− 1)p1)

−1/α for convenience.

Lemma 3.1. Let us assume that p(t) is a continuous and bounded negative function
satisfying (7). Then every classical solution u of equation (1) with initial conditions
u(0) > η and u̇(0) = 0 has a finite maximal interval of definition (t0, t1) such that
u(t0) = u(t1) = 0. Moreover, u̇(t0) > 0 and u̇(t1) < 0 are finite.

Proof. Let u(t) be a maximal solution of equation (1) with initial conditions u(0) =
u0 > 0 and u̇(0) = 0 and let u1(t) and u2(t) be the maximal solutions of equation (1)
with same initial conditions as u(t) taking p(t) ≡ p1 and p(t) ≡ p2, respectively.
Since p1 and p2 are negative and the initial conditions satisfy ui(0) > η and u̇i(0) = 0,
i = 1, 2, by the discussion of the previous section, both u1 and u2 are solutions
defined in a bounded interval, (t01, t11) and (t02, t12) respectively, and they reach the
singularity. The function u1 is contained in the level curve H1(u, v) = 1

2
v2 − p1u −

u1−α

1−α = H1(u0, 0) whereas u2 is contained in the level curve H2(u, v) = 1
2
v2 − p2u−

u1−α

1−α = H2(u0, 0). Notice that H2(u0, 0)−H1(u0, 0) = (p1 − p2)u0 > 0.
First we show that t12 < t11. To do so let us argue by contradiction assuming that

t11 6 t12. Since u1(0) = u2(0) > η and u̇1(0) = u̇2(0) = 0 the difference function
ω(t) = u1(t) − u2(t) satisfies ω(0) = 0, ω̇(0) = 0 and ω̈(t) = 1

u1(t)α
− 1

u2(t)α
+ p1 −

p2. In particular, ω̈(0) = p1 − p2 > 0 and so u1(t) > u2(t) for small t positive.
Therefore, if t11 6 t12, there exists some 0 < t∗ 6 t11 such that u1(t

∗) = u2(t
∗)
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with |u̇1(t∗)| > |u̇2(t∗)|. Using the energy level of each solution, we have that
H2(u2(t

∗), u̇2(t
∗))−H1(u1(t

∗), u̇1(t
∗)) = (p1 − p2)u0. That is,

1

2
(u̇2(t

∗)2 − u̇1(t∗)2) = (p1 − p2)(u0 − u1(t∗)) > 0.

Then u̇2(t
∗)2 > u̇1(t

∗)2 reaching contradiction. Similarly one can show that t01 < t02.
Therefore (t02, t12) ⊂ (t01, t11).

Let us show now that the maximal interval of definition of u(t) is (t0, t1) finite
satisfying

t01 6 t0 6 t02 < 0 < t12 6 t1 6 t11 (8)

and that u2(t) 6 u(t) 6 u1(t) for all t in the common interval of definition. Indeed,
〈X,∇H1〉 = v(p(t)− p1) which, since p(t) 6 p1, has opposite sign than v. Similarly,
〈X,∇H2〉 = v(p(t) − p2) has the same sign than v. In particular, the trajectory
(u(t), u̇(t)) is confined in the region delimited by H1(u, v) = H1(u0, 0) and H2(u, v) =
H2(u0, 0) for all time t in the interval of definition of u(t). We point out that the
outer boundary of the region is given by H2(u0, 0), whereas the inner boundary is
given by H1(u0, 0). Moreover, at (u0, 0) the vector field X is vertical and points
down. This implies that the function u(t) for t > 0 is decreasing and u̇(t) cannot
tend to zero. Thus u(t) reaches the singularity u = 0 in finite time and −∞ <
u̇1(t11) 6 u̇(t1) 6 u̇2(t12) < 0. Finally assume that t1 > t11. Then there exists t∗ in
such a way u(t∗) = u1(t

∗) and u̇(t∗) > u̇1(t
∗). This contradicts the fact that u(t) is

inside the region mentioned before. Thus t1 6 t11. Respective arguments with u2
shows t1 > t12. The result holds backwards in time similarly. �

Lemma 3.2. Let t0 and v0 be two numbers with v0 >
√

2(p1 − p2)η. Assume that
p(t) is Lipschitz-continuous. Then there exists a unique maximal solution of (1)
defined in (t0, t1) with t0 < t1 < +∞ satisfying

lim
t→t+0

u(t) = lim
t→t−1

u(t) = 0

and
lim
t→t+0

u̇(t) = v0 and lim
t→t−1

u̇(t) = v1,

for some real number v1 < 0.

Proof. Let us consider the system

u̇ = +
√

2(w − V (u)), ẇ = p(t)
√

2(w − V (u)).

For the classical theory of differential equations the Cauchy problem u(0) = 0,
w(0) = h0 has a local unique solution if h0 > 0 = V (0). That function u = u(t) is
defined in some open interval (0, t∗) in which it is also solution of the equation (1)
with initial conditions u(0) = 0 and u̇(0) = +

√
2h0. Indeed, from the first equation

of the previous system,
1

2
u̇2 = w − V (u).

Multiplying by u̇ and integrating the equation we get

ü(t)u̇(t) = (p(t)− V (u))u̇(t),

so we recover equation (1) due to u̇(t) 6= 0 for t ∈ (0, t∗). The previous system then
acts as a regularization of the collision of equation (1). Indeed, by uniqueness of
the initial value problem equation (1) has a unique solution defined in (0, t∗) and
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Figure 2. Scheme of the proof of Lemma 3.4 for n = 4. Lines in
black (bold and dashed) correspond to level curves of the differential
system X1. Lines in grey (bold and dashed) correspond to level curves
of the differential system X2. Arrows represent the direction of the
vector field X on the level curves of X1 and X2.

coinciding with u(t) in that interval. This is enough to ensure that they coincide
everywhere in the interval of definition (t0, t1). Here t1 may be infinite. Arguing
similarly as in the proof of Lemma 3.1, the condition on v0 in the statement implies
that the solution reach a local maximum u∗ > η. Therefore, the solution of the
equation (1) satisfies the assumptions in Lemma 3.1 and so t1 is finite and u(t) has
a collision with finite velocity at t = t1. �

The previous results allow to define a bouncing solution of (1) as a continuous
function u : R→ [0,+∞) satisfying

(a) Z = {t ∈ R : u(t) = 0} is discrete,
(b) for any open interval I ⊂ R \ Z the function u is in C2(I) and satisfies equa-

tion (1) on I,
(c) for each t0 ∈ Z the limits limt→t+0

u̇(t) = u̇(t+0 ) and limt→t−0
u̇(t) = u̇(t−0 ) exist

and satisfy u̇(t+0 ) = −u̇(t−0 ).

Remark 3.3. We point out that the last item implies that the limit

lim
t→t0

H(u(t), u̇(t)) = h0

exists. This limit is taken from both sides of t0 and hence the energy function has
a well defined value at t = t0. That is, the energy is preserved at the collision. In
all arguments velocity and energy play an analogous role. For instance, condition
v0 >

√
2(p1 − p2)η can be replaced by h0 > (p1 − p2)η.

Condition v0 >
√

2(p1 − p2)η is enough to ensure the occurrence of at least one
collision, but subsequent impacts are not ensured. The following lemma implies that
solutions with sufficiently high energy exhibit an arbitrary number of collisions.

Lemma 3.4. Assume that p(t) is Lipschitz-continuous. For any n ∈ N, there exists
γn > 0 such that if t0 and v0 are two numbers with v0 > γn, the unique solution
of (1) has at least n impacts.
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Proof. Let us take γ1 >
√

2(p1 − p2)η and consider the solution of X1 that reaches
the point (0,−γ1). This solution crosses the v−axis backwards in time at some
u = u1 > 0. Now consider the solution of X2 that crosses the point (u1, 0). This
solution collides with the singularity u = 0 backwards in time with some velocity
v = γ2.

First, we point out that γ2 > γ1. Indeed, H2(u1, 0)−H1(u1, 0) = (p1 − p2)u1 > 0
and H1(u1, 0) = H1(0, γ1) = 1

2
γ21 and H2(u1, 0) = H2(0, γ2) = 1

2
γ22 . In particular,

γ2 >
√

2(p1 − p2)η and Lemma 3.2 implies that the solution of (1) with u(0) = 0
and u̇(0) = v0 > γ2 has at least one collision.

Second, since 〈X,∇H1〉 = v(p(t)− p1) and 〈X,∇H2〉 = v(p(t)− p2), property (7)
implies that the solution of (1) impacts the singularity with velocity −v1 < −γ1.
Thus the bouncing solution is continued by the solution of (1) with initial conditions
u(0) = 0, u̇(0) = v1 > γ1, which ensures at least one collision more. Thus the
solution of (1) with u(0) = 0 and u̇(0) = v0 > γ2 has at least two collisions.

This procedure generates a succession γ1 < γ2 < · · · < γn and the solution of (1)
with initial conditions u(0) = 0 and u̇(0) = v0 > γn has at least n collisions with
the singularity. �

4. The successor map and the twist condition

Now we recover the periodicity property of the forcing term p(t). For convenience,

let us call γ :=
√

2(p1 − p2)η. For a given t0 ∈ R and v0 > γ, Lemma 3.2 assures that
there exists a unique solution u(t) of (1) such that u(t0) = 0, u̇(t0) = v0. Moreover,
such solution has a finite interval of definition and vanishes at some time t1. We
define the successor map

S : R× (γ,+∞)→ R× R+

(t0, v0)→ S(t0, v0) = (t1,−u̇(t−1 )).

In the following, we denote S1(t0, v0) = t1, S2(t0, v0) = −u̇(t−1 ). The map S is one-
to-one and continuous in its domain. Moreover, by the 2π-periodic dependence of
the equation, one has

S(t0 + 2π, v0) = S(t0, v0) + (2π, 0),

and then (t0, v0) can be seen as polar coordinates.

4.1. The generalized Poincaré-Birkhoff Theorem. For completeness, in this
subsection we enunciate the version of the Poincaré-Birkhoff Theorem that is used
in the proofs. This version was presented in [5] as a variant of the main result of [2].

Theorem 4.1 (twist theorem). Let A = S1× [a1, a2], B = S1× [b1, b2] be two annuli
in the plane with A ⊂ B. Assume that f : A→ B is an area-preserving homeomor-
phism such that the area of the two connected components of the complement of f(A)
in B is the same as the area of the corresponding components of the complement of
A in B. Assume also that f has a lift f̃ : R× [a1, a2]→ R× [b1, b2] of the form

θ′ = θ + h(θ, ρ), ρ′ = g(θ, ρ),

where h, g are continuous and 2π-periodic in θ. Then, if the boundary twist condition

h(θ, a1) · h(θ, a2) < 0 for any θ ∈ [0, 2π]

holds, f has at least two geometrically distinct fixed points.
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4.2. The successor map is area-preserving. Consider a sequence {εn}n>0 with
εn > 0 and εn ↓ 0, and for each n > 0 the second order differential equation

ü− 1

(u+ εn)α
= p(t), (9)

which is a translation on the u-axis of the original equation (1) with the singularity
placed at u = −εn. Every solution un of equation (9) is a translation of a solution
of equation (1), un(t) = u(t) − εn. By Lemma 3.1 every classical solution un with
initial conditions un(0) = u(0) − εn with u(0) > η and u̇n(0) = 0 has a finite
maximal interval of definition and reach the singularity u = −εn forwards and
backwards in time with finite velocity. In particular, there exist times t0n and t1n
in which un(t0n) = un(t1n) = 0 satisfying t0 < t0n < 0 < t1n < t1, where (t0, t1)
is the maximal interval of definition of the classical solution of equation (1) with
initial conditions u(0) > η, u̇(0) = 0. Continuous dependence on εn of un(t) is
deduced from the explicit formula un(t) = u(t) − εn. Let us define wn(t) as un(t)
for t ∈ (t0n, t1n) and identically zero for t ∈ (t0, t0n]∪ [t1n, t1). With all the previous
comments in mind the following lemma is straightforward.

Lemma 4.2. The sequences {wn}n>0 and {ẇn}n>0 tend respectively to u and u̇
uniformly on (t0, t1). Moreover, t0n → t0 and t1n → t1 as n→ +∞.

Let us now consider the sequence of successor mappings corresponding to functions
wn. That is, for each (t0, v0) ∈ R× (γ,+∞) we define

Sn(t0, v0) = (t1n,−ẇn(t1n)).

It is clear from Lemma 4.2 that {Sn}n>0 converges point-wise to S. A time reversion
argument also shows that {S−1n }n>0 converges point-wise to S−1. The extension of
the area-preserving property of {Sn}n>0 to S is now verbatim the case in [12], what
leads to the following statement.

Proposition 4.3. The successor mapping S is area-preserving.

4.3. Existence of bouncing periodic orbits. Now, given natural numbers m,n,
our objective is to find fixed points of the map

Sn(t0, v0)− (2mπ, 0),

that are identified as the initial conditions of 2mπ-periodic solution with exactly n
impacts in each period.

Our first main result is the following one.

Theorem 4.4. Assume that 0 < α < 1 and p(t) is a Lipschitz-continuous and 2π-
periodic function with negative values. Then, there exists m1 ∈ N such that for any
m > m1, equation (1) has at least two 2mπ-periodic solutions with exactly 1 impact
in the period interval [0, 2mπ).

The proof relies the version of Poincaré-Birkhoff Theorem presented in subsection
4.1 and the following key technical lemma.

Lemma 4.5.

lim
v0→+∞

S1(t0, v0)− t0 = +∞ uniformly in t0 ∈ [0, 2π].
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Proof. From the equation and (7),

ü(t) > p2

for all t ∈ (t0, t1). Then, an integration from t0 to t1 gives

u̇(t−1 )− v0 > p2(t1 − t0).

Now, considering that u̇(t−1 ) < 0, we have

v0 < −p2(t1 − t0),

and the conclusion is clear if we remember that p2 < 0 blue and S1(t0, v0) = t1. �

Proof of Theorem 4.4. By continuity, we can fix m1 such that

S1(t0, γ + 1)− t0 < 2m1π (10)

for any τ ∈ [0, 2π]. Now, for a given m > m1, by Lemma 4.5 there exists v+ > γ+ 1
such that

S1(t0, v+)− t0 > 2mπ

for any t0 ∈ [0, 2π]. Now, the result is a direct consequence of the Poincaré-Birkhoff
Theorem. �

One of the main differences with the attractive case studied in [4, 5] is that
the successive iterations of S are not necessarily well-defined in the repulsive case.
However, Lemma 3.4 proves the existence of γn such that the n-th iterate Sn(t0, v0)
is well-defined for all v0 > γn. With this observation in mind, we can prove the
following result.

Theorem 4.6. Assume that 0 < α < 1 and p(t) is a continuous and 2π-periodic
function with negative values. Then, for any natural number n > 2, there exists
mn ∈ N such that, for any m > mn, equation (1) has at least one 2mπ-periodic
solution with exactly n impacts in the period internal [0, 2mπ).

Proof. By the observation above, Sn(t0, v0) is well-defined for v0 > γn. Then we can
follow exactly the same argument as in the proof of Theorem 4.4, working now with
the first component of Sn(t0, v0). Again, Poincaré-Birkhoff Theorem provides two
fixed points of the successor map, the difference is that they may correspond to the
same bouncing solution. �

The previous results ensure the existence of sub-harmonic bouncing solutions. In
order to guarantee the existence of harmonic bouncing solution we need an accurate
statement.

Theorem 4.7. Assume that 0 < α 6 1/2 and p(t) is a continuous and 2π-periodic

function satisfying p(t) 6 p1 < 0. If
(
1
α

) α
1+α < −p1 then equation (1) has at least

two 2π-periodic solutions with exactly 1 impact in the period interval [0, 2π).

Proof. The proof is verbatim the one of Theorem 4.4 with the difference that in this
case we need to ensure that the inequality (10) is verified for m1 = 1. To do so we
first notice that, due to Lemma 3.1, for any (t0, v0) ∈ R × (γ,+∞) the quantity
S1(t0, v0)− t0 = t1 − t0 is bounded by the length of the interval of definition of the
solution of (1) with p(t) ≡ p1 (see (8)). Therefore it is enough to prove that the
integrable equation with p(t) ≡ p1 has a bouncing solution with period less than 2π.
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Equation (1) with p(t) ≡ p1 has a center located at ((−p1)−
1
α , 0) (see Section 2.2)

and the value of the period function at the center itself is given by

2π√
V ′′
(
(−p1)−

1
α

) =
2π√

α(−p1)
1+α
α

.

For 0 < α 6 1/2, Lemma 2.5 guarantees that the period function is either constant
or monotone decreasing inside the period annulus. Therefore, bouncing solutions of
equation (1) with p(t) ≡ p1 near the boundary of the period annulus have bouncing

period less or equal than 2π/

√
α(−p1)

1+α
α by a continuity argument (see Lemma 2.1).

The condition in the statement implies that the previous value is less than 2π. �

The fact that the period function for 1/2 < α < 1 is monotone increasing do not
allow to ensure the existence of harmonic bouncing solutions using the value of the
period at the center. In order to derive an analogous result for this range of α we need
the expression of the period at the outer boundary of the period annulus. However
the authors are not able to obtain its expression with their methods available.
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