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Abstract. In this paper we study planar polynomial Kolmogorov’s differential systems

Xµ

{
ẋ = xf(x, y;µ),

ẏ = yg(x, y;µ),

with the parameter µ varying in an open subset Λ ⊂ RN . Compactifying Xµ to the Poincaré disc, the
boundary of the first quadrant is an invariant triangle Γ, that we assume to be a hyperbolic polycycle
with exactly three saddle points at its vertices for all µ ∈ Λ. We are interested in the cyclicity of Γ
inside the family {Xµ}µ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb µ. In
our main result we define three functions that play the same role for the cyclicity of the polycycle as
the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic
Kolmogorov families, with N = 3 and N = 5, and in both cases we are able to determine the cyclicity of
the polycycle for all µ ∈ Λ, including those parameters for which the return map along Γ is the identity.

1 Introduction and main results

The present paper is motivated by the results obtained by Gasull, Mañosa and Mañosas [8] with regard to
the stability of an unbounded polycycle Γ in the Kolmogorov’s polynomial differential systems{

ẋ = xf(x, y),

ẏ = yg(x, y).

These systems are widely used in ecology to describe the interaction between two populations, see [19] for
instance. That being said, the stability of the polycycle is not the main issue to which this paper is addressed.
Indeed, assuming that the coefficients of the polynomials f and g depend analytically on a parameter µ,
we are interested in the cyclicity of the polycycle (see Definition 1.2 below), which roughly speaking is the
number of limit cycles that can bifurcate from Γ as we perturb µ. In our main result (Theorem A) we define
three functions, d1(µ), d2(µ) and d3(µ), that play the same role for the cyclicity of the polycycle as the first
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three Lyapunov quantities for the cyclicity of a focus. Recall that the displacement map can be analytically
extended to a focus and that the Lyapunov quantities are the coefficients of its Taylor’s series. On the
contrary the displacement map has no smooth extension to a polycycle. At best one can hope that it has
some asymptotic expansion. This is indeed the case for the polycycle that we study in the present paper
and in order to obtain it we strongly rely in our previous results [14, 15, 16] about the asymptotic expansion
of the Dulac map of an unfolding of hyperbolic saddles. The principal part of the asymptotic expansion of
the displacement map is given in a monomial scale containing a deformation of the logarithm, the so-called
Ecalle-Roussarie compensator, and the remainder is uniformly flat with respect to the parameters. The
functions di(µ) in Theorem A are essentially the coefficients of the first three monomials in the principal
part, which explains their relation with the cyclicity. For other results regarding the cyclicity of polycycles
and more general limit periodic sets the reader is referred to [5, 6, 11, 20] and references therein.

Most of the work on planar polynomial differential systems, including this paper, is related to the
questions surrounding Hilbert’s 16th problem (see for instance [10, 22, 23] and references therein) and its
various weakened versions. In this setting it is worth to mention that, using a compactness argument,
Roussarie [21] showed that to prove the existential part of Hilbert’s 16 problem in the family Pn of all
polynomial vector fields of degree 6 n it is sufficient to show that each limit periodic set in Pn has finite
cyclicity.

Definition 1.1. Let X be a vector field on R2 (or S2). A graphic Γ for X is a compact, non-empty
invariant subset which is a continuous image of S1 and consists of a finite number of isolated singular
points {p1, . . . , pm, pm+1 = p1} (not necessarily distinct) and compatibly oriented separatrices {s1, . . . , sm}
connecting them (i.e., such that the α-limit set of sj is pj and the ω-limit set of sj is pj+1). A graphic is
said to be hyperbolic if all its singular points are hyperbolic saddles. A polycyle is a graphic with a return
map defined on one of its sides. �

The polycycle that we aim to study is unbounded. In order to investigate the behaviour of the trajectories
of a polynomial vector field Y near infinity we can consider its Poincaré compactification p(Y ), see [2, §5] for
details, which is an analytically equivalent vector field defined on the sphere S2. The points at infinity of R2

are in bijective correspondence with the points of the equator of S2, that we denote by `∞. Furthermore
the trajectories of p(Y ) in S2 are symmetric with respect to the origin and so it suffices to draw its flow in
the closed northern hemisphere only, the so called Poincaré disc.

Definition 1.2. Let {Xµ}µ∈Λ be a family of vector fields on S2 and suppose that Γ is a polycyle for Xµ0
.

We say that Γ has finite cyclicity in the family {Xµ}µ∈Λ if there exist κ ∈ N, ε > 0 and δ > 0 such that
any Xµ with ‖µ−µ0‖ < δ has at most κ limit cycles γi with distH(Γ, γi) < ε. The minimum of such κ when
ε and δ go to zero is called the cyclicity of Γ in {Xµ}µ∈Λ and denoted by Cycl

(
(Γ, Xµ0

), Xµ

)
. �

In this paper we consider the family of vector fields {Xµ}µ∈Λ given by

Xµ := f(x, y;µ)x∂x + g(x, y;µ)y∂y (1)

where Λ is an open subset of RN and f and g are polynomials in x and y of degree n ∈ N with the coefficients
depending analytically on µ. The standing hypothesis on the family {Xµ}µ∈Λ are the following:

H1 f(z, 0;µ) > 0, g(0, z;µ) < 0 and
(
fn − gn

)
(1, z;µ) < 0 for all z > 0 and µ ∈ Λ.

H2 λ1(µ) :=
(

fn
gn−fn

)
(1, 0;µ), λ2(µ) :=

(
fn−gn
gn

)
(0, 1;µ) and λ3(µ) := −

(
g
f

)
(0, 0;µ), are well defined

and strictly positive for all µ ∈ Λ.

Here, and in what follows, fn and gn denote, respectively, the homogeneous part of degree n of f and g.
Conditions H1 and H2 guarantee that, after compactifying the polynomial vector field Xµ to the Poincaré
disc, the boundary of the first quadrant is a polycyle with three hyperbolic saddles, see Figure 1,
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Figure 1: Placement of the hyperbolic saddles and the polycycle Γ in
the Poincaré disc.

s1 := {y = 0} ∩ `∞, s2 := {x = 0} ∩ `∞ and s3 := (0, 0).

From now on we shall denote this polycyle by Γ, that we remark is a compact subset of the Poincaré disc.
The hyperbolicity ratios of the saddles at its vertices are precisely the ones given in H2. We also define:

L11(u) = exp

(∫ u

0

((
f − g
f

)
(1/z, 0) +

1

λ1

)
dz

z

)
L12(u) = exp

(∫ u

0

((
fn

fn − gn

)
(1, z) + λ1

)
dz

z

)

L21(u) = exp

(∫ u

0

((
gn

gn − fn

)
(z, 1) +

1

λ2

)
dz

z

)
L22(u) = exp

(∫ u

0

((
g − f
g

)
(0, 1/z) + λ2

)
dz

z

)

L31(u) = exp

(∫ u

0

((
g

f

)
(z, 0) + λ3

)
dz

z

)
L32(u) = exp

(∫ u

0

((
f

g

)
(0, z) +

1

λ3

)
dz

z

)
together with

M1(u) = −L11(u)

u
∂2

(
g

f

)
(1/u, 0) and M3(u) = L31(u) ∂2

(
g

f

)
(u, 0). (2)

We point out that all these functions depend on the parameter µ. This dependence is omitted for the sake
of shortness when there is no risk of confusion.

We can now state our main result, which is addressed to the cyclicity of the polycycle Γ inside the
polynomial family {Xµ}µ∈Λ. More formally, we should refer to the compactified family {p(Xµ)}µ∈Λ of
vector fields on S2 but for the simplicity in the exposition we commit an abuse of language by identifying
both families. It is clear that the number of limit cycles of p(Xµ) and Xµ is the same. In the statement
R( · ;µ) stands for the return map of the vector field Xµ around the polycycle Γ (see Figure 1) and we use
the notion of functional independence that is given in Definition 2.8.

Theorem A. Let us consider the family of Kolmogorov polynomial vector fields {Xµ}µ∈Λ given in (1) and
verifying the assumptions H1 and H2. Then, for any µ0 ∈ Λ, the following assertions hold with regard to
the cyclicity of the polycycle Γ inside the family:
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(a) If d1(µ) := 1− λ1λ2λ3 does not vanish at µ0 then Cycl
(
(Γ, Xµ0), Xµ

)
= 0.

(b) If d1 vanishes and is independent at µ0 and R( · ;µ0) 6≡ Id then Cycl
(
(Γ, Xµ0

), Xµ

)
> 1.

(c) If d2(µ) := log

((
L12

L21

)λ2
(
L31

L11

)λ1λ2
L22

L32

)
(1) does not vanish at µ0 then Cycl

(
(Γ, Xµ0

), Xµ

)
6 1.

(d) If d1 and d2 vanish and are independent at µ0 and R( · ;µ0) 6≡ Id then Cycl
(
(Γ, Xµ0), Xµ

)
> 2.

In case that λ1(µ0) < 1, λ2(µ0) > 1 and λ3(µ0) > 1 then the following assertions hold as well:

(e) If d3(µ) := M̂3(λ3, 1)L11(1)− M̂1

(
1
λ1
, 1
)
L31(1) does not vanish at µ0 then Cycl

(
(Γ, Xµ0

), Xµ

)
6 2.

(f) If d1, d2 and d3 vanish and are independent at µ0 and R( · ;µ0) 6≡ Id then Cycl
(
(Γ, Xµ0

), Xµ

)
> 3.

Let us make some remarks with regard to the regularity of the functions d1, d2 and d3 defined in the
statement. On account of the hypothesisH1 andH2 it is evident that d1 is analytic on the whole parameter
space Λ. On the other hand, d2 is defined in terms of the functions µ 7→ Lij(1), which in turn are given by
some (apparently) improper integrals. By applying the Weierstrass Division Theorem one can easily show
that each Lij(1) is an analytic strictly positive function, so that d2 is also analytic on Λ. Finally, d3 is given
by means of a sort of incomplete Mellin transform (which is defined in Proposition 2.5) of the functions M1

and M3 in (2). One can show that the hypothesis H1 and H2 imply that each Mi(u;µ) is analytic on
(−ε,+∞) × Λ for some ε > 0. Taking this into account, by applying (d) in Proposition 2.5 it follows that
d3 is a meromorphic function on Λ having poles only at those µ0 such that 1/λ1(µ0) ∈ N or λ3(µ0) ∈ N.

Also with regard to the statement of Theorem A, the assertions (e) and (f) hold under the assumptions
λ1(µ0) < 1, λ2(µ0) > 1 and λ3(µ0) > 1. However one can always reduce to this case provided that
λi(µ0) 6= 1 for i = 1, 2, 3 by means of a rescaling of time and a projective change of coordinates that
permute conveniently the three singular points of the polycycle.

The paper [8] constitutes an important previous contribution to the study of Kolmogorov polycycles that
should be referred. Indeed, following our notations and definitions, the authors prove (see [8, Theorem 1])
that if d1(µ0) = 0 then the return map of Xµ0 around the polycycle Γ is of the form

R(s;µ0) = ∆s+ o(s), (3)

cf. (b) in Theorem 2.6, and they also provide the explicit expression of the coefficient ∆. This coefficient
is given as the limit of a sum of three improper integrals, which computed separately diverge. An easy
manipulation of the integrals shows that these divergences cancel each other, yielding to the expression
of d2 given in Theorem A. It is important to remark that the expansion in (3) can not be used to obtain an
upper bound for Cycl

(
(Γ, Xµ0

), Xµ

)
because the remainder is not uniform with respect to the parameters.

It is possible however to use it to obtain lower bounds. In this direction the authors prove in [8, Corollary 5]
that if d1 vanishes and is independent at µ0 and d2(µ0) 6= 0 then Cycl

(
(Γ, Xµ0

), Xµ

)
> 1. Since d2(µ0) 6= 0

implies R( · ;µ0) 6≡ Id by Theorem 2.6, this lower bound follows by applying (b) in Theorem A.
The paper is organised in the following way. Section 2 is entirely devoted to prove Theorem A and for that

purpose we rely in our previous results about the asymptotic expansion of the Dulac map of a hyperbolic
saddle that we obtain in [14, 15, 16]. For this reason, before starting the proof of Theorem A we first
state these results and introduce the necessary definitions. The asymptotic expansion of the displacement
map near the polycycle is given in Theorem 2.6 and constitutes the fundamental tool in order to prove
Theorem A. As a by-product of this expansion we obtain a method to study the stability of the polycycle,
see Remark 2.7. Section 3 is addressed to the applications. The first one is Theorem 3.1, where we consider a
Kolmogorov’s cubic system depending on three parameters that was previously studied in [8]. The authors
in that paper show that there exist parameters for which the cyclicity of the polycycle is at least 1. In
the present paper we obtain the exact cyclicity of all the parameters in the family (that can be 0 or 1),
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including the case in which the return map along the polycycle is the identity. We also show that there
exists exactly one singularity in the first quadrant, which can be a focus or a center, and we compute its
cyclicity. Finally we prove that it is not possible a simultaneous bifurcation of limit cycles from the polycycle
and that singularity. We give our second application in Theorem 3.2, where we consider a Kolmogorov’s
cubic system depending on five parameters. In this case we also provide the exact cyclicity of Γ for all the
parameters in the family, which again can be 0 or 1.

2 Proof of Theorem A

In order to tackle the proof of Theorem A we will appeal to some previous results from [14, 15, 16] about the
asymptotic expansion of the Dulac map. For reader’s convenience we gather these results in Proposition 2.4.
To this end it is first necessary to introduce some new notation and definitions.

Setting ν̂ := (λ, ν) ∈ Ŵ := (0,+∞) ×W with W an open set of RN , we consider the family of vector
fields {Xν̂}ν̂∈Ŵ with

Xν̂(x1, x2) = x1P1(x1, x2; ν̂)∂x1
+ x2P2(x1, x2; ν̂)∂x2

(4)

where

• P1 and P2 belong to C ω(U ×Ŵ ) for some open set U of R2 containing the origin,

• P1(x1, 0; ν̂) > 0 and P2(0, x2; ν̂) < 0 for all (x1, 0), (0, x2) ∈ U and ν̂ ∈ Ŵ ,

• λ = −P2(0,0;ν)
P1(0,0;ν) .

Thus, for all ν̂ ∈ Ŵ , the origin is a hyperbolic saddle of Xν̂ with the separatrices lying in the axis. We
point out that here the hyperbolicity ratio of the saddle is an independent parameter, although in the
proof of Theorem A we will have λ = λ(ν). The reason for this is that the hyperbolicity ratio turns out
to be the ruling parameter in our results and, besides, having it uncoupled from the rest of parameters
simplifies the notation in the statements. Moreover, for i = 1, 2, we consider a C ω transverse section
σi : (−ε, ε)× Ŵ −→ Σi to Xν̂ at xi = 0 defined by

σi(s; ν̂) =
(
σi1(s; ν̂), σi2(s; ν̂)

)
such that σ1(0, ν̂) ∈ {(0, x2);x2 > 0} and σ2(0, ν̂) ∈ {(x1, 0);x1 > 0} for all ν̂ ∈ Ŵ . We denote the
Dulac map of Xν̂ from Σ1 to Σ2 by D( · ; ν̂), see Figure 2. The asymptotic expansion of D(s; ν̂) at s = 0
consists of a remainder and a principal part. The principal part is given in a monomial scale that contains a
deformation of the logarithm, the so-called Ecalle-Roussarie compensator, whereas the remainder has good
flatness properties with respect to the parameters. We next give precise definitions of these key notions.

Definition 2.1. The function defined for s > 0 and α ∈ R by means of

ω(s;α) =

{
s−α−1
α if α 6= 0,

− log s if α = 0,

is called the Ecalle-Roussarie compensator. �

Definition 2.2. Consider an open subset U ⊂ Ŵ ⊂ RN+1. We say that a function ψ(s; ν̂) belongs to the
class C∞s>0(U) if there exist an open neighbourhood Ω of

{(s, ν̂) ∈ RN+2; s = 0, ν̂ ∈ U} = {0} × U

in RN+2 such that (s, ν̂) 7→ ψ(s; ν̂) is C∞ on Ω ∩
(
(0,+∞)× U

)
. �
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σ1

Σ1

x2
σ1(s)

ϕ( · , σ1(s))

σ2(D(s))

Σ2

x1

σ2

0 D(s)

Figure 2: Definition of the Dulac map D( · ; ν̂), where ϕ(t, p; ν̂) is the
solution of Xν̂ passing through the point p ∈ U at time t = 0.

More formally, the definition of C∞s>0(U) must be thought in terms of germs with respect to relative
neighbourhoods of {0} × U in (0,+∞)× U . In doing so C∞s>0(U) becomes a ring.

We can now introduce the notion of flatness that we shall use in the sequel.

Definition 2.3. Consider an open subset U ⊂ Ŵ ⊂ RN+1. Given L ∈ R and ν̂0 ∈ U , we say that
a function ψ(s; ν̂) ∈ C∞s>0(U) is L-flat with respect to s at ν̂0, and we write ψ ∈ F∞L (ν̂0), if for each
ν̂ = (ν̂0, . . . , ν̂N+1) ∈ ZN+2

≥0 with |ν̂| = ν̂0 + · · · + ν̂N+1 6 K there exist a neighbourhood V of ν̂0 and
C, s0 > 0 such that ∣∣∣∣∣ ∂|ν̂|ψ(s; ν̂)

∂sν̂0∂ν̂ ν̂11 · · · ∂ν̂
ν̂N+1

N+1

∣∣∣∣∣ 6 CsL−ν̂0 for all s ∈ (0, s0) and ν̂ ∈ V .

If W is a (not necessarily open) subset of U then define F∞L (W ) :=
⋂
ν̂0∈W F

∞
L (ν̂0). �

Apart from the remainder and the monomial order, the most important ingredient for our purposes is
the explicit expression of the coefficients in the asymptotic expansion. In order to give them we introduce
next some additional notation, where for the sake of shortness the dependence on ν̂ = (λ, ν) is omitted. We
define the functions:

L1(u) := exp

∫ u

0

(
P1(0, z)

P2(0, z)
+

1

λ

)
dz

z
L2(u) := exp

∫ u

0

(
P2(z, 0)

P1(z, 0)
+ λ

)
dz

z

M1(u) := L1(u)∂1

(
P1

P2

)
(0, u) M2(u) := L2(u)∂2

(
P2

P1

)
(u, 0)

(5)

On the other hand, for shortness as well, we use the compact notation σijk for the kth derivative at s = 0
of the jth component of σi(s; ν̂), i.e.,

σijk(ν̂) := ∂ksσij(0; ν̂).

Taking this notation into account we also introduce the following real values, where once again we omit the
dependence on ν̂:

S1 :=
σ112

2σ111
− σ121

σ120

(
P1

P2

)
(0, σ120)− σ111

L1(σ120)
M̂1(1/λ, σ120)

S2 :=
σ222

2σ221
− σ211

σ210

(
P2

P1

)
(σ210, 0)− σ221

L2(σ210)
M̂2(λ, σ210).

(6)
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Here M̂i stands for a sort of incomplete Mellin transform of Mi that will be defined by Proposition 2.5
below. We can now state the following result, which gathers Theorem A and Theorem 4.1 in [16] and that
it will constitute the key tool in order to prove the main result in the present paper.

Proposition 2.4. Let D(s; ν̂) be the Dulac map of the hyperbolic saddle (4) from Σ1 and Σ2 and define

∆0(ν̂) =
σλ111σ120

Lλ1 (σ120)

L2(σ210)

σ221σλ210

, ∆1(ν̂) = ∆0λS1 and ∆2(ν̂) = −∆2
0S2,

where ν̂ = (λ, ν) ∈ Ŵ = (0,+∞)×W. Then ∆0 is analytic and strictly positive on Ŵ , ∆1 is meromorphic
on Ŵ with poles only at λ ∈ 1

N and ∆2 is meromorphic on Ŵ with poles only at λ ∈ N. Moreover the
following assertions hold:

(1) If λ0 < 1 then D(s; ν̂) = sλ
(
∆0(ν̂) + ∆2(ν̂)sλ + F∞` ({λ0} ×W )

)
for any ` ∈

[
λ0,min(2λ0, 1)

)
.

(2) If λ0 = 1 then D(s; ν̂) = sλ
(
∆0(ν̂) + ∆λ0(ω; ν̂)s+ F∞` ({λ0} ×W )

)
for any ` ∈ [1, 2), where

∆λ0(ω; ν̂) = ∆1(ν̂) + ∆2(ν̂)(1 + αω),

α = 1− λ and ω = ω(s;α).

(3) If λ0 > 1 then D(s; ν̂) = sλ
(
∆0(ν̂) + ∆1(ν̂)s+ F∞` ({λ0} ×W )

)
for any ` ∈

[
1,min(λ0, 2)

)
.

In particular D(s; ν̂) = sλ
(
∆0(ν̂) + F∞` ({λ0} ×W )

)
for any ` ∈

(
0,min(λ0, 1)

)
.

The flatness ` of the remainder can range in a certain interval depending on λ0. The left endpoint of
this interval is only given for completeness to guarantee that all the monomials in the principal part are
relevant (i.e., they cannot be included in the remainder). The important information about the flatness is
given by the right endpoint. A key tool in order to give a closed expression of the coefficients ∆i is the use
of a sort of incomplete Mellin transform, which is accurately defined in the next result. For a proof of this
result the reader is referred to [16, Appendix B].

Proposition 2.5. Let us consider an open interval I of R containing x = 0 and an open subset U of RM .

(a) Given f(x; υ) ∈ C∞(I × U), there exits a unique f̂(α, x; υ) ∈ C∞((R \ Z≥0)× I × U) such that

x∂xf̂(α, x; υ)− αf̂(α, x; υ) = f(x; υ).

(b) If x ∈ I \ {0} then ∂x(f̂(α, x; υ)|x|−α) = f(x; υ) |x|
−α

x and, taking any k ∈ Z≥0 with k > α,

f̂(α, x; υ) =

k−1∑
i=0

∂ixf(0; υ)

i!(i− α)
xi + |x|α

∫ x

0

(
f(s; υ)− T k−1

0 f(s; υ)
)
|s|−α ds

s
,

where T k0 f(x; υ) =
∑k
i=0

1
i!∂

i
xf(0; υ)xi is the k-th degree Taylor polynomial of f(x; υ) at x = 0.

(c) For each (i0, x0, υ0) ∈ Z≥0× I×W the function (α, x, υ) 7→ (i0−α)f̂(α, x; υ) extends C∞ at (i0, x0, υ0)
and, moreover, it tends to 1

i0!∂
i0
x f(0; υ0)xi00 as (α, x, υ)→ (i0, x0, υ0).

(d) If f(x; υ) is analytic on I × U then f̂(α, x; υ) is analytic on (R \ Z≥0) × I × U . Finally, for each
(α0, x0, υ0) ∈ Z≥0×I×U the function (α, x, υ) 7→ (α0−α)f̂(α, x; υ) extends analytically to (α0, x0, υ0).

7



Σ1

Σ3

Σ2

`∞

D1

D3

D2

s1

s2

s3

Figure 3: Auxiliary Dulac maps for the definition of D = D2 ◦D1 −D3

in Theorem 2.6. The return map in Theorem A, with respect to the
transverse section Σ1, would be R = D−1

3 ◦D2 ◦D1 = D−1
3 ◦D + Id.

On account of this result for each Mi(u; ν̂) in (5) we have that (α, u; ν̂) 7→ M̂i(α, u; ν̂) is a well defined
meromorphic function with poles only at α ∈ Z≥0. Accordingly, see (6), M̂1(1/λ, σ120) and M̂2(λ, σ210) are
the values (depending on ν̂) that we obtain by taking M̂1(α, u; ν̂) with α = 1/λ and u = σ120(ν̂) and by
taking M̂2(α, u; ν̂) with α = λ and u = σ210(ν̂), respectively.

At this point we get back to the setting treated in the present paper and from now on we recover the
original notation for the parameters in the family under consideration, see (1). In order to study the Dulac
maps of the hyperbolic saddles at the vertices of the polycycle Γ we take three local transverse sections Σ1,
Σ2, and Σ3 parametrised, respectively, by s 7→ (1, s), s 7→ (1/s, 1/s) and s 7→ (s, 1) with s > 0. We define
D1(s;µ) to be the Dulac map of Xµ from Σ1 to Σ2, D2(s;µ) to be the Dulac map of Xµ from Σ2 to Σ3

and, finally, D3(s;µ) to be the Dulac map of −Xµ from Σ1 to Σ3, see Figure 3 x It is then clear that the
limit cycles of Xµ near Γ are in one to one correspondence with the isolated positive zeroes of

D(s;µ) :=
(
D2 ◦D1 −D3

)
(s;µ)

near s = 0. The proof of Theorem A strongly relies in our next result, where we get the asymptotic expansion
of D(s;µ) at s = 0 and we compute its coefficients. In its statement di(µ), for i = 1, 2, 3, are the functions
defined in Theorem A and R{µ}µ0

stands for the local ring of convergent power series at µ0.

Theorem 2.6. Let us fix any µ0 ∈ Λ and set λ0
i := λi(µ0) for i = 1, 2, 3.

(a) If λ0
1λ

0
2λ

0
3 6= 1 then, for any `1 ∈

(
min(λ0

1λ
0
2, 1/λ

0
3),min(λ0

1 + λ0
1λ

0
2, 1 + λ0

1λ
0
2, 2λ

0
1λ

0
2, 1 + 1/λ0

3, 2/λ
0
3)
)
,

D(s;µ) = a1(µ)sλ1λ2 − a2(µ)s1/λ3 + F∞`1 (µ0),

where a1 and a2 are analytic and strictly positive functions on Λ.

(b) If λ0
1λ

0
2λ

0
3 = 1 then, for any `2 ∈ (0,min(1, λ0

1, λ
0
1λ

0
2)),

D(s;µ) =
(
b1(µ)ω

(
s;α(µ)

)
+ b2(µ) + F∞`2 (µ0)

)
s1/λ3 ,
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where α = 1/λ3 − λ1λ2, b1 = αa1 and b2 = a1 − a2. Moreover the equalities

(b1) = (d1) and (b1, b2) = (d1, d2)

between ideals over the ring R{µ}µ0
are verified. Assuming λ0

1 > 1, λ0
2 > 1 and λ0

3 < 1 additionally
then, for any `3 ∈

(
1,min(2, λ0

1, 1/λ
0
3)
)
,

D(s;µ) =
(
b1(µ)ω

(
s;α(µ)

)
+ b2(µ) + b3(µ)s+ F∞`3 (µ0)

)
s1/λ3U(s;µ),

where b3 is an analytic function at µ0 verifying that

(b1, b2, b3) = (d1, d2, d3)

over the ring R{µ}µ0 and U is an analytic function such that U(0;µ0) = 1.

Proof. In order to study the Dulac map D1 from Σ1 to Σ2 we compactify Xµ by means of the coordinate
change {x1 = y

x , x2 = 1
x}. One can easily verify that the new vector field is orbitally conjugated to (4) par-

ticularised with P1(x1, x2) = xn2
(
f − g)( 1

x2
, x1

x2
) and P2(x1, x2) = xn2f( 1

x2
, x1

x2
), whereas in these coordinates

the transverse sections Σ1 and Σ2 are parametrised by σ1(s) = (s, 1) and σ2(s) = (1, s), respectively. The
hyperbolicity ratio of the saddle at the origin is λ1 = −

(
P2

P1

)
(0, 0) =

(
fn

gn−fn

)
(1, 0). Therefore, by applying

Proposition 2.4 we can assert that

D1(s) = ∆10s
λ1
(
1 + F∞`1 (µ0)

)
, with ∆10 :=

(
L12L

−λ1
11

)
(1) (7)

and any 0 < `1 < min(1, λ0
1). Recall here that λ0

i = λi(µ0) for i = 1, 2, 3 by definition.
Next, to analyse the Dulac mapD2 from Σ2 to Σ3 we compactifyXµ performing the change of coordinates

given by {x1 = 1
y , x2 = x

y }. One can check that the new vector field is orbitally conjugated to (4) with
P1(x1, x2) = xn1 g(x2

x1
, 1
x1

) and P2(x1, x2) = xn1
(
g − f)(x2

x1
, 1
x1

) and that in these coordinates the transverse
sections Σ2 and Σ3 are parametrised by σ1(s) = (s, 1) and σ2(s) = (1, s), respectively. The hyperbolicity
ratio of the saddle at the origin is λ2 = −

(
P2

P1

)
(0, 0) =

(
fn−gn
gn

)
(0, 1). Thus, by Proposition 2.4 again,

D2(s) = ∆20s
λ2
(
1 + F∞`2 (µ0)

)
, with ∆20 :=

(
L22L

−λ2
21

)
(1) (8)

and any 0 < `2 < min(1, λ0
2).

Finally, to study the Dulac map D3 of from Σ1 to Σ3 we make the reflection {x1 = y, x2 = x}, which
brings −Xµ to (4) with P1(x1, x2) = −g(x2, x1) and P2(x1, x2) = −f(x2, x1). In these coordinates the
transverse sections Σ1 and Σ3 are parametrised by σ1(s) = (s, 1) and σ2(s) = (1, s), respectively, and the
hyperbolicity ratio of the saddle is 1

λ3
= −

(
P2

P1

)
(0, 0) = −

(
f
g

)
(0, 0). Hence by Proposition 2.4 once again,

D3(s) = ∆30s
1/λ3

(
1 + F∞`3 (µ0)

)
, with ∆30 :=

(
L32L

−1/λ3

31

)
(1) (9)

and any 0 < `3 < min(1, 1/λ0
3). Consequently, from (7), (8) and (9) we get that

D(s) =
(
D2 ◦D1 −D3

)
(s) = ∆20∆λ2

10s
λ1λ2

(
1 + F∞`1 (µ0)

)λ2
(
1 + F∞`4 (µ0)

)
−∆30s

1/λ3
(
1 + F∞`3 (µ0)

)
= ∆20∆λ2

10s
λ1λ2

(
1 + F∞`1 (µ0)

)(
1 + F∞`4 (µ0)

)
−∆30s

1/λ3
(
1 + F∞`3 (µ0)

)
= ∆20∆λ2

10s
λ1λ2 −∆30s

1/λ3 + F∞`5 (µ0),

where, by [15, Lemma A.2], we can take `4 and `5 to be any numbers such that 0 < `4 < min(λ0
1, λ

0
1λ

0
2)

and min(λ0
1λ

0
2, 1/λ

0
3)) < `5 < min(λ0

1 + λ0
1λ

0
2, 1 + λ0

1λ
0
2, 2λ

0
1λ

0
2, 1 + 1/λ0

3, 2/λ
0
3), respectively. Thus, setting

a1 := ∆20∆λ2
10 and a2 := ∆30, we obtain

D(s) = a1s
λ1λ2 − a2s

1/λ3 + F∞`5 (µ0) (10)
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and this proves (a) because each ∆i0 is a strictly positive analytic function by Proposition 2.4.
Let us proceed next with the proof of the assertions in (b), thus from now on we assume that λ0

1λ
0
2λ

0
3 = 1.

Then, setting α = 1/λ3 − λ1λ2 and taking any `6 ∈ (0,min(1, λ0
1, λ

0
1λ

0
2)), from the above expression we get

D(s) = s1/λ3
(
a1s

λ1λ2−1/λ3 − a2 + F∞`6 (µ0)
)

= s1/λ3
(
a1(1 + αω(s;α))− a2 + F∞`6 (µ0)

)
= s1/λ3

(
b1ω(s;α) + b2 + F∞`6 (µ0)

)
,

where b1 := αa1 and b2 := a1 − a2. Here we also take Definition 2.1 into account. Since a1 is an analytic
non-vanishing function at µ0 and d1 = λ3α, we obtain the equality (b1) = (d1) between ideals over the local
ring R{µ}µ0

. In order to show that (b1, b2) = (d1, d2) holds as well we note that, from (7), (8) and (9) again,

b2(µ) = a1 − a2 = ∆20∆λ2
10 −∆30

= (L22L
−λ2
21 Lλ2

12L
−λ1λ2
11 − L32L

−1/λ3

31 )
∣∣
u=1

= L32L
−1/λ3

31

(
L22

L32

L
1/λ3

31

Lλ1λ2
11

Lλ2
12

Lλ2
21

− 1

)∣∣∣
u=1

= L32L
−1/λ3

31

(
Lα31

(
L22

L32

Lλ1λ2
31

Lλ1λ2
11

Lλ2
12

Lλ2
21

− 1

)
+ (Lα31 − 1)

)∣∣∣
u=1

= κ1(µ)d2(µ) + α(µ)κ2(µ),

where κ1 = L32

L
1/λ3
31

∣∣
u=1

ed2−1
d2

and κ2 = L32

L
1/λ3
31

Lα31−1
α

∣∣
u=1

are analytic functions at µ0 because so it is each Lij
by [16, Lemma 2.3]. Thus, on account of d1 = λ3α, we get that b2 = κ1d2 + κ3d1. Hence (b1, b2) = (d1, d2)
over the ring R{µ}µ0

since κ1(µ0) > 0 and we have already shown that (b1) = (d1).

So far we have proved the first assertion in (b). To show the second one, besides λ0
1λ

0
2λ

0
3 = 1, we assume

λ0
1 > 1, λ0

2 > 1 and λ0
3 < 1. On account of this we can apply point (3) in Proposition 2.4 to conclude that

D1(s) = sλ1
(
∆10 + ∆11s+ F∞`7 (µ0)

)
for any `7 ∈

[
1,min(λ0

1, 2)
)
, (11)

D2(s) = sλ2
(
∆20 + ∆21s+ F∞`8 (µ0)

)
for any `8 ∈

[
1,min(λ0

2, 2)
)
, (12)

and

D3(s) = s1/λ3
(
∆30 + ∆31s+ F∞`9 (µ0)

)
for any `9 ∈

[
1,min(1/λ0

3, 2)
)
. (13)

Here the first order coefficients ∆10, ∆20 and ∆30 are the ones already defined in (7), (8) and (9), respectively.
With regard to the second order coefficients, only the ones of D1 and D3 are relevant for our purposes, which
are given by

∆11 := −λ1∆10M̂1(1/λ1, 1)

L11(1)
and ∆31 := −∆30M̂3(λ3, 1)

λ3L31(1)
, (14)

respectively. In each case, on account of (2), this follows easily from the formula ∆1 = λ∆0S1 given in
Proposition 2.4 and taking S1 in (6) particularised to σ1(s) = (s, 1).

From (11) and (12), by applying [15, Lemma A.2] we can assert that(
D2 ◦D1

)
(s) = sλ1λ2

(
∆10 + ∆11s+ F∞`7

)λ2
(
∆20 + ∆21s

λ1
(
∆10 + ∆11s+ F∞`7

)
+ F∞`10

)
= sλ1λ2

(
∆λ2

10 + λ2∆λ2−1
10 ∆11s+ F∞`7

)(
∆20 + ∆21s

λ1
(
∆10 + ∆11s

)
+ F∞`11 + F∞`10

)
= sλ1λ2

(
∆λ2

10 + λ2∆λ2−1
10 ∆11s+ F∞`7

)(
∆20 + ∆10∆21s

λ1 + ∆11∆21s
λ1+1 + F∞`12

)
10



for any `10 ∈ [λ0
1, λ

0
1 min(λ0

2, 2)
)
in the first equality, any `11 ∈

[
λ0

1 + 1, λ0
1 + min(λ0

1, 2)
)
in the second one

and any `12 ∈
[
λ0

1 + 1,min(2λ0
1, λ

0
1 + 2, λ0

1λ
0
2)
)
in the third one. Furthermore in the second equality we use

that, for any η = η(µ),

(1 + as+ F`)η = (1 + as)η + F` = 1 + aηs+ F2−ε + F`, (15)

for any ε > 0, which in turn follows noting that

(1 + as+ F`)η − (1 + as)η = (1 + as)η
(
(1 + F`

1+as )η − 1
)

= (1 + as)η
(
(1 + F`)η − 1

)
= (1 + as)ηF` = F`.

Consequently (
D2 ◦D1

)
(s) = sλ1λ2

(
∆20∆λ2

10 + λ2∆11∆20∆λ2−1
10 s+ F∞`7

)
,

where we use again [15, Lemma A.2] taking λ0
1 > 1 and λ0

2 > 1 into account. Hence, from (13) and plug in
s−α = 1 + αω(s;α) as before, we get

D(s) =
(
D2 ◦D1 −D3

)
(s)

= s1/λ3

(
s−α

(
∆20∆λ2

10 + λ2∆11∆20∆λ2−1
10 s+ F∞`7

)
−∆30 −∆31s−F∞`9

)
= s1/λ3

(
(1 + αω(s;α))∆20∆λ2

10U(s)−∆30 −∆31s−F∞`9
)
,

where we define U(s) = 1 + λ2∆11∆−1
10 s + F∞`7 . The application of the formula given in (15) with η = −1

shows that U(s)−1 = 1− λ2∆11∆−1
10 s+ F`7 . Thus one can easily verify that the above expression yields to

D(s) = s1/λ3U(s)
(
b1ω(s;α) + b2 + b3s+ F∞`13

)
with `13 ∈ [1,min(λ0

1, 1/λ
0
3, 2)) and b3 := λ2∆11∆30∆−1

10 −∆31. Let us recall here that b1 = αa1 = α∆20∆λ2
10

and b2 = a1 − a2 = ∆20∆λ2
10 −∆30, where a1 and a2 are the analytic and strictly positive functions in (10).

On account of the assumptions λ0
1 > 1 and λ0

3 < 1 we have λ1(µ) /∈ 1
N and λ3(µ) /∈ N for µ ≈ µ0, which

imply respectively that ∆11 and ∆31 are analytic at µ0 by Proposition 2.4. Consequently b3 is an analytic
function at µ0. That being said we claim that the equality (b1, b2, b3) = (d1, d2, d3) between ideals over the
local ring R{µ}µ0

is true. In order to prove this, for the sake of shortness in the next computation we follow
the convention that κ stands for an analytic function at µ0 and κ̂ stands for an analytic strictly positive
function at µ0. Some easy computations following this convention yield

b3 = ∆−1
10 (λ2∆11∆30 −∆31∆10) = ∆−1

10 (λ2∆11∆30 −∆31∆10)

= −∆30

(
λ2λ1

M̂1(1/λ1,1)
L11(1) − 1

λ3

M̂3(λ3,1)
L31(1)

)
= −κ̂

(
λ1λ2λ3M̂1

(
1
λ1
, 1
)
L31(1)− M̂3(λ3, 1)L11(1)

)
= −κ̂

(
(1− d1)M̂1

(
1
λ1
, 1
)
L31(1)− M̂3(λ3, 1)L11(1)

)
= κ̂

(
M̂3(λ3, 1)L11(1)− M̂1

(
1
λ1
, 1
)
L31(1)

)
+ κd1.

where in the third and fifth equalities we use (14) and d1 := 1− λ1λ2λ3, respectively. Hence b3 = κ̂d3 + κd1

since d3 := M̂3(λ3, 1)L11(1)− M̂1( 1
λ1
, 1)L31(1). On account of (b1) = (d1) and (b1, b2) = (d1, d2), this shows

the validity of the claim and completes the proof of the result.

Remark 2.7. There are two important observations to be made about Theorem 2.6:

(a) The statement claims that the equalities (b1) = (d1), (b1, b2) = (d1, d2) and (b1, b2, b3) = (d1, d2, d3)
between ideals over the local ring R{µ}µ? are satisfied. As a matter of fact, in the proof we show a
stronger property, namely that the following holds: d1

d2

d3

 =

 κ1 0 0
∗ κ2 0
∗ ∗ κ3

 b1
b2
b3

 ,

where all the entries in the matrix are analytic functions on Λ and each κi is strictly positive.
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(b) From the dynamical point of view it is interesting to point out that the asymptotic expansion of
the displacement map D(s;µ0) given in Theorem 2.6 provides a method to study the stability of the
polycycle Γ. Indeed, taking also the previous observation into account, it shows that

1. if d1(µ0) < 0 (respectively, > 0) then Γ is asymptotically stable (respectively, unstable),
2. if d1(µ0) = 0 and d2(µ0) < 0 (respectively, > 0) then Γ is asymptotically stable (respectively,

unstable), and
3. if d1(µ0) = d2(µ0) = 0 and d3(µ0) < 0 (respectively, > 0) then Γ is asymptotically stable (respec-

tively, unstable).

Of course this is relevant because we have an explicit expression of these functions by Theorem A. In
this regard let us note that the first assertion is well known since d1(µ0) < 0 is equivalent to require
that λ0

1λ
0
2λ

0
3 > 1, while the second assertion was already proved by Gasull et al. in [8], see Theorem 1.

On the contrary the third assertion constitutes a new result to the best of our knowledge.

�

We give at this point the precise definition of independence of functions that we use in the present paper.

Definition 2.8. Consider the functions gi : Λ −→ R for i = 1, 2, . . . , k. The real variety V (g1, g2, . . . , gk)
is defined to be the set of µ ∈ Λ such that gi(µ) = 0 for i = 1, 2, . . . , k. We say that g1, g2, . . . , gk are
independent at µ? ∈ V (g1, g2, . . . , gk) if the following conditions are satisfied:

(1) Every neighbourhood of µ? contains two points µ1, µ2 ∈ V (g1, . . . , gk−1) such that gk(µ1)gk(µ2) < 0 (if
k = 1 then we set V (g1, . . . , gk−1) = V (0) = Λ for this to hold).

(2) The varieties V (g1, . . . , gi), 2 6 i 6 k− 1, are such that if µ0 ∈ V (g1, . . . , gi) then every neighbourhood
of µ0 contains two points µ1, µ2 ∈ V (g1, . . . , gi−1) such that gi(µ1)gi(µ2) < 0.

(3) If µ0 ∈ V (g1) then every neighbourhood of µ0 contains two points µ1, µ2 such that g1(µ1)g1(µ2) < 0.

It is clear that if gi ∈ C 1(Λ) for i = 1, 2, . . . , k and the gradients ∇g1(µ?),∇g2(µ?) . . . ,∇gk(µ?) are linearly
independent vectors of RN+1 then there exists a neighbourhood U? of µ? such that the restrictions of
g1, g2, . . . , gk to U? are independent at µ?. �

Lemma 2.9. Suppose that the equalities (c1, . . . , ck) = (d1, . . . , dk) between ideals over the local ring R{µ}µ?
hold for k = 1, 2, . . . , n, where µ? ∈ V (c1, . . . , cn) = V (d1, . . . , dn). Then c1, . . . , cn are independent at µ? if,
and only if, d1, . . . , dn are independent at µ?.

Proof. Let us assume for instance that c1, . . . , cn are independent at µ? and prove that then d1, . . . , dn are
also independent. To this aim we note that the equalities (c1, . . . , ck) = (d1, . . . , dk) for k = 1, 2, . . . , n imply
the existence of two triangular matrices A = (aij) and B = (bij) with coefficients in R{µ}µ? such that d1

...
dn

 =


a11 0 · · · 0
∗ a22 · · · 0
...

...
. . .

...
∗ · · · ∗ ann


 c1

...
cn

 and

 c1
...
cn

 =


b11 0 · · · 0
∗ b22 · · · 0
...

...
. . .

...
∗ · · · ∗ bnn


 d1

...
dn

 .

Clearly R = (rij) := BA is also a triangular matrix with coefficients in the local ring R{µ}µ? and c1
...
cn

 =


r11 0 · · · 0
∗ r22 · · · 0
...

...
. . .

...
∗ · · · ∗ rnn


 c1

...
cn

 .
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We claim that, since c1, . . . , cn are independent at µ?, then rkk(µ?) = 1 for all k = 1, 2, . . . , n. The fact
that this is true for k = 1 follows easily by continuity. Let us prove by contradiction that this is also true
for k > 2. So assume that rkk(µ?) 6= 1 for some k ∈ {2, . . . , n}. Then the equality ck = rk1c1 + . . . + rkkck
implies that ck = α1c1 + . . .+ αk−1ck−1 where each αi := rki

1−rkk is an analytic function at µ?. This clearly
contradicts the assumption that c1, . . . , cn are independent at µ? (see Definition 2.8). Hence the claim is
true and, consequently, det(R) = det(A)det(B) = 1 at µ = µ?. This shows, in particular, that A is an
invertible matrix in the local ring R{µ}µ? and so there exists a neighbourhood U of µ? such that akk(µ) 6= 0
for all µ ∈ U and k = 1, 2, . . . , n. On account of this, the fact that d1, . . . , dn are independent at µ? follows
easily noting that if we take any two points µ1, µ2 ∈ U ∩ V (c1, . . . , ci−1) = U ∩ V (d1, . . . , di−1) verifying
ci(µ1)ci(µ2) < 0 then we have that di(µ1)di(µ2) = aii(µ1)aii(µ2)ci(µ1)ci(µ2) < 0. This completes the proof
of the result.

Proof of Theorem A. Let us fix any µ0 ∈ Λ and set λ0
i := λi(µ0) for i = 1, 2, 3. Recall that the limit

cycles of Xµ near Γ are in one to one correspondence with the isolated positive zeros of

D(s;µ) =
(
D2 ◦D1 −D3

)
(s;µ)

near s = 0. If d1(µ0) = 1 − λ0
1λ

0
2λ

0
3 is not zero then by applying (a) in Theorem 2.6 we have that, for any

`1 ∈
(

min(λ0
1λ

0
2, 1/λ

0
3),min(λ0

1 + λ0
1λ

0
2, 1 + λ0

1λ
0
2, 2λ

0
1λ

0
2, 1 + 1/λ0

3, 2/λ
0
3)
)
,

D(s;µ) = a1(µ)sλ1λ2 + a2(µ)s1/λ3 + F∞`1 (µ0),

where a1 and a2 are analytic and strictly positive functions on Λ. Thus

lim
(s,µ)→(0,µ0)

s−λ1λ2D(s;µ) = a1(µ0) in case that λ0
1λ

0
2 < λ0

3

and

lim
(s,µ)→(0,µ0)

s−1/λ3D(s;µ) = a2(µ0) in case that λ0
1λ

0
2 > λ0

3.

Since ai(µ0) 6= 0 for i = 1, 2, this implies the existence of an open neighbourhood U of µ0 and ε > 0 small
enough such that D(s;µ) 6= 0 for all µ ∈ U and s ∈ (0, ε) when λ0

1λ
0
2λ

0
3 6= 1. Hence Cycl

(
(Γ, Xµ0), Xµ

)
= 0

and the assertion in (a) is true.
In order to prove (b) we note that if d1(µ0) = 1− λ0

1λ
0
2λ

0
3 is equal to zero then, by (b) in Theorem 2.6,

we can assert that, for any `2 ∈ (0,min(1, λ0
1, λ

0
1λ

0
2)),

s−1/λ3D(s;µ) = b1(µ)ω
(
s;α(µ)

)
+ b2(µ) + F∞`2 (µ0), (16)

where α = 1/λ3−λ1λ2 and b1 and b2 are analytic functions at µ0 such that (b1) = (d1) and (b1, b2) = (d1, d2)
over the ring R{µ}µ0

. The assumptions in this case imply that D(s;µ0) 6≡ 0, b1(µ0) = 0 and, thanks
to Lemma 2.9, that b1 is independent at µ0. Thus, given any ε > 0, there exists s1 ∈ (0, ε) such that
D(s1;µ0) 6= 0. Let us assume for instance that D(s1;µ0) > 0, the other case follows verbatim. Then, thanks
to (1) in Definition 2.8, there exists µ1 ≈ µ0 with b1(µ1) < 0 and, by continuity, such that D(s1;µ1) > 0.
Moreover by applying Lemmas A.3 and A.4 in [14],

Z1(s;µ) :=
s−1/λ3D(s;µ)

ω
(
s;α(µ)

) = b1(µ) +
b2(µ)

ω
(
s;α(µ)

) + F∞`2−δ(µ0)→ κ(µ) as s→ 0, (17)

where
κ(µ) := b1(µ)− b2(µ) min(α(µ), 0)).

Here we use that 1/ω(s;α(µ)) ∈ F∞−δ(µ0) for any δ > 0 and that lims→0 1/ω(s;α) = max(−α, 0) by
assertions (a) and (b) in [14, Lemma A.4], respectively. Note on the other hand that, by (b) in Theorem 2.6,
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b1 = αa1 and b2 = a1 − a2, where each ai is an analytic strictly positive function. Thus κ(µ) = α(µ)a2(µ)
if α(µ) < 0 and κ(µ) = α(µ)a1(µ) if α(µ) > 0. Therefore, since b1 = αa1, we can write

κ = b1η with η > 0. (18)

Hence, on account of b1(µ1) < 0, we can assert that κ(µ1) < 0, which in turn, from (17), guarantees the
existence of some s2 ∈ (0, s1) such that Z1(s2;µ1) < 0. Thus D(s1;µ1)D(s2;µ1) < 0 and, by continuity,
D(ŝ;µ1) = 0 for some ŝ ∈ (s2, s1) ⊂ (0, ε). This shows that Cycl

(
(Γ, Xµ0), Xµ

)
> 1 as desired.

Let us prove (c) next, i.e., that if d2(µ0) 6= 0 then Cycl
(
(Γ, Xµ0

), Xµ

)
6 1. Note first that to this end we

can also assume that d1(µ0) = 0, otherwise Cycl
(
(Γ, Xµ0), Xµ

)
= 0. Consequently the expression in (16) is

valid. That being said, the proof will follow by applying the well-known derivation-division algorithm. In
doing so, from (17) and the fact that ∂sω(s;α) = −s−α−1,

∂sZ1(s;µ) =
b2(µ)

sα(µ)+1ω2
(
s;α(µ)

) + F∞`2−1−δ(µ0),

where the flatness of the remainder follows from (f) in Lemma A.3 of [14]. Therefore

sα(µ)+1ω2
(
s;α(µ)

)
∂sZ1(s;µ) = b2(µ) + F∞`2−4δ(µ0)→ b2(µ0) as (s, µ)→ (0, µ0).

Recall at this point that (b1) = (d1) and (b1, b2) = (d1, d2) over the local ring R{µ}µ0
by Theorem 2.6. Thus,

the assumptions d1(µ0) = 0 and d2(µ0) 6= 0 imply that b2(µ0) 6= 0. Accordingly, on account of the above
limit and by Bolzano’s Theorem, we obtain ε > 0 such that if ‖µ− µ0‖ < ε then Z1( · ;µ), and so D( · ;µ),
has at most one zero for s ∈ (0, ε), multiplicities taking into account. Hence Cycl

(
(Γ, Xµ0), Xµ

)
6 1 and (c)

follows.
Let us turn next to the proof of (d), in which the assumptions are R( · ;µ0) 6≡ Id and that d1 and d2

vanish and are independent at µ0. Then D( · ;µ0) 6≡ 0 and, due to (b1) = (d1) and (b1, b2) = (d1, d2) once
again, b1 and b2 vanish and are independent at µ0 by Lemma 2.9. Thus, given any ε > 0, there exists
s1 ∈ (0, ε) such that, for instance, D(s1;µ0) < 0. Then, by continuity and condition (1) in Definition 2.8,
there exists µ1 ≈ µ0 such that b2(µ1) > 0, b1(µ1) = 0 and D(s1;µ1) < 0. Hence, from (16),

s−1/λ3D(s;µ1) = b2(µ1) + F∞`2 (µ0)→ b2(µ1) as s→ 0,

which shows the existence of s2 ∈ (0, s1) such that D(s2;µ1) > 0. For the same reasons we can choose
µ2 ≈ µ1 satisfying D(s1;µ2) < 0 and D(s2;µ2) > 0 together with b1(µ2) < 0. Then, from (17) and (18),
lims→0 Z1(s;µ2) = b1(µ2)η(µ2) < 0 and so there exists s3 ∈ (0, s2) verifying that D(s3;µ2) < 0. By
continuity there exist ŝ1, ŝ2 ∈ (0, ε) with D(ŝ1;µ2) = D(ŝ2;µ2) = 0. Accordingly Cycl

(
(Γ, Xµ0

), Xµ

)
> 2.

From now on, in order to prove (e) and (f), we assume λ0
1 < 1, λ0

2 > 1 and λ0
3 > 1. Then by applying

Theorem 2.6, for any `3 ∈
(
1,min(2, λ0

1, 1/λ
0
3)
)
,

D(s;µ) =
(
b1(µ)ω

(
s;α(µ)

)
+ b2(µ) + b3(µ)s+ F∞`3 (µ0)

)
s1/λ3U(s;µ), (19)

where b3 is an analytic function at µ0 verifying that (b1, b2, b3) = (d1, d2, d3) over the ring R{µ}µ0 and U is
an analytic function such that U(0;µ0) = 1. Hence

Z2(s;µ) :=
D(s;µ)

s1/λ3ω(s;α(µ))U(s)
= b1(µ) + b2(µ)

1

ω(s;α(µ))
+ b3(µ)

s

ω(s;α(µ))
+ F∞`3−δ(µ0), (20)

where we use once again that 1/ω(s;α(µ)) ∈ F∞−δ(µ0) for any δ > 0. Note furthermore that, for µ ≈ µ0, the
positive zeros of D( · ;µ) and Z2( · ;µ) near s = 0 are in one to one correspondence because 1

s1/λ3ω(s;α(µ))

tends to +∞ as (s, µ)→ (0, µ0). That being stablished we begin first with the proof of assertion (e) and to
this aim, besides d3(µ0) 6= 0, we can also suppose d1(µ0) = d2(µ0) = 0, otherwise Cycl

(
(Γ, Xµ0

), Xµ

)
6 1
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by (a) or (b), which already have been proved. In this case, since (b1) = (d1), (b1, b2) = (d1, d2) and
(b1, b2, b3) = (d1, d2, d3), it turns out that b3(µ0) 6= 0. As in the proof of (c), we will apply to steps of the
derivation-division algorithm in (20). In doing so we obtain that

Z3(s;µ) := sα(µ)+1ω2(s;α(µ))∂sZ2(s;µ) = b2(µ) + b3(µ)
(
s+ sα(µ)+1ω(s;α(µ))

)
+ F∞`3−4δ(µ0),

where the flatness of the remainder follows by applying Lemmas A.3 and A.4 in [14] as before and we use
that ∂sω(s;α) = −s−α−1. Note also that the positive zeros of Z3( · ;µ) and ∂sZ2( · ;µ) near s = 0 are in one
to one correspondence for µ ≈ µ0 because ω(s;α(µ)) tends to +∞ as (s, µ)→ (0, µ0). Finally

∂sZ3(s;µ)

sα(µ)ω(s;α(µ))
= (α(µ) + 1)b3(µ) + F∞`3−1−6δ(µ0)→ b3(µ0) 6= 0 as (s, µ)→ (0, µ0).

By applying twice Bolzano’s Theorem, we can assert the existence of some ε > 0 such that if ‖µ− µ0‖ < ε
then Z2( · ;µ), and so D( · ;µ), has at most two zeros for s ∈ (0, ε), multiplicities taking into account. Hence
Cycl

(
(Γ, Xµ0), Xµ

)
6 2, which proves (e).

Finally, in order to prove (f) we suppose that R( · ;µ0) 6≡ Id and that d1, d2 and d3 vanish and are
independent at µ0. Consequently D( · ;µ0) 6≡ 0 and, due to the equality between the corresponding ideals
over the local ring, b1, b2 and b3 vanish and are independent at µ0 by Lemma 2.9. Thus, given any ε > 0,
there exists s1 ∈ (0, ε) such that, for instance, D(s1;µ0) < 0. Then, by continuity and condition (1) in
Definition 2.8, there exists µ1 ≈ µ0 such that b3(µ1) > 0, b1(µ1) = b2(µ1) = 0 and D(s1;µ1) < 0. Hence,
from (19),

D(s;µ1)

s1+1/λ3U(s;µ)
= b3(µ1) + F∞`3−1(µ0)→ b3(µ1) > 0 as s→ 0,

which shows the existence of s2 ∈ (0, s1) such that D(s2;µ1) > 0. For the same reasons we can choose
µ2 ≈ µ1 satisfying D(s1;µ2) < 0 and D(s2;µ2) > 0 together with b1(µ2) = 0 and b2(µ2) < 0. Accordingly,
from (19) again,

D(s;µ2)

s1/λ3U(s;µ)
= b2(µ2) + b3(µ2)s+ F∞`3−1(µ0)→ b2(µ2) < 0 as s→ 0,

which shows the existence of s3 ∈ (0, s2) such that D(s3;µ2) < 0. In the final step we take µ3 ≈ µ2 satisfying
D(s1;µ3) < 0 and D(s2;µ3) > 0 and D(s3;µ3) < 0 together with b1(µ3) > 0. Then, from (17) and (18),
lims→0 s

−1/λ3Z1(s;µ3) = b1(µ3)η(µ3) > 0 and so there exists s4 ∈ (0, s3) such that D(s3;µ3) > 0. By
continuity there exist ŝ1, ŝ2, ŝ3 ∈ (0, ε) with D(ŝi;µ3) = 0 for i = 1, 2, 3. Hence Cycl

(
(Γ, Xµ0), Xµ

)
> 3 and

this completes the proof of the result.

3 Applications

We begin this section by revisiting in Theorem 3.1 a family of Kolmogorov differential systems that was first
studied in [8], where the authors (following the notation in our statement) prove that if µ0 = (a0, p0, q0)
verifies p0 + q0 = 0 and a0 6= 0 then Cycl

(
(Γ, Xµ0

), Xµ

)
> 1, cf. assertion (b).

Theorem 3.1. Consider the family of Kolmogorov differential systems

Xµ

{
ẋ = x(1 + x+ x2 + axy + py2),

ẏ = y(−1− y + qx2 + axy − y2),

where µ = (a, p, q) ∈ R3 with p < −1 and q > 1 and let us fix any µ0 = (a0, p0, q0). Then, compactifying Xµ

to the Poincaré disc, the boundary of the first quadrant is a polycycle Γ such that:

(a) Cycl
(
(Γ, Xµ0

), Xµ

)
= 0 if p0 + q0 6= 0.
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(b) Cycl
(
(Γ, Xµ0), Xµ

)
= 1 if p0 + q0 = 0 and a0 6= 0.

(c) The return map of Xµ0
along Γ is the identity if, and only if, a0 = p0 + q0 = 0. In this case Γ is the

outer boundary of the period annulus of a center at (x0, y0) with x0 = y0 = − 1+
√
−3−4p0

2(1+p0) that foliates
the first quadrant and, moreover, Cycl

(
(Γ, Xµ0

), Xµ

)
= 1.

On the other hand the vector field Xµ has a unique singularity Qµ = (υ1, υ2) in the first quadrant, which is
either a focus or a center, and has trace equal to τ(µ) = υ1 + 2υ2

1 + 2aυ1υ2 − υ2 − 2υ2
2. Furthermore the

following holds:

(d) If τ(µ0) 6= 0 then Cycl
(
(Qµ0

, Xµ0
), Xµ

)
= 0 and a sufficient condition for τ(µ0) 6= 0 to hold is that

p0 + q0 = 0 and a0 6= 0.

(e) If τ(µ0) = 0 and p0 + q0 6= 0 then Qµ0
is a weak focus of order 1 and Cycl

(
(Qµ0

, Xµ0
), Xµ

)
= 1.

(f) If τ(µ0) = 0 and p0 + q0 = 0 then a0 = 0. In addition Qµ0
is a center if, and only if, p0 + q0 = a0 = 0

and, in this case, Cycl
(
(Qµ0

, Xµ0
), Xµ

)
= 1.

Finally it is not possible a simultaneous bifurcation of limit cycles from Γ and Qµ.

Proof. The assertions in (a) and (b) follow directly by applying Theorem A. Indeed, in this case, following
the notation in (1), f(x, y) = 1 + x+ x2 + axy + py2 and g(x, y) = −1− y + qx2 + axy − y2, so that

f2(x, y) = x2 + axy + py2 and g2(x, y) = qx2 + axy − y2.

Taking this into account, together with p < −1 and q > 1, one can easily check that the assumptions H1
and H2 are verified. As a matter of fact the first assumption holds not only for z > 0 but for all z ∈ R,
and this implies that the boundary of each quadrant is a monodromic polycycle for the compactified vector
field. Hence, by the Poincaré-Bendixson theorem (see [22] for instance), there exists at least one singularity
of Xµ inside each one of the four quadrants. Due to deg(f) = deg(g) = 2, by Bézout’s theorem there exists
exactly one in each quadrant. From now on we denote the singularity of Xµ in the first quadrant by Qµ.
That being said, the hyperbolicity ratios of the saddles at Γ are λ1 = 1

q−1 , λ2 = −(p + 1) and λ3 = 1.

Consequently the first assertion follows from (a) in Theorem A because

d1(µ) = 1− λ1λ2λ3 =
p+ q

q − 1
. (21)

The second assertion will follow by applying (b) and (c) in Theorem A. To show this we first recall that

d2(µ) = λ2 log

(
L12

L21

)
(1) + log

(
L22

L32

)
(1) + λ1λ2 log

(
L31

L11

)
(1)

and this leads us to the computation of the following improper integrals:

∆1(µ) := log

(
L12

L21

)
(1) =

∫ 1

0

((
f2

f2 − g2

)
(1, z) + λ1 −

(
g2

g2 − f2

)
(z, 1)− 1

λ2

)
dz

z

∆2(µ) := log

(
L22

L32

)
(1) =

∫ 1

0

((
g − f
g

)
(0, 1/z) + λ2 −

(
f

g

)
(0, z)− 1

λ3

)
dz

z

∆3(µ) := log

(
L31

L11

)
(1) =

∫ 1

0

((
g

f

)
(z, 0) + λ3 −

(
f − g
f

)
(1/z, 0)− 1

λ1

)
dz

z
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These expressions have to be computed assuming that p+ q = 0, i.e., λ1λ2 = 1. In doing so we obtain that

∆1(a, p,−p) =
2a

1− q

∫ 1

0

zdz

z2 + 1
=

aπ

2(p+ 1)

and

∆2(a, p,−p) = −∆3(a, p,−p) = −(p+ 1)

∫ 1

0

zdz

z2 + z + 1
= − (p+ 1)π

3
√

3
.

Therefore d2(a, p,−p) = −aπ2 is zero if, and only if, a = 0. Taking this into account, the combination of (b)
and (c) in Theorem A shows that Cycl

(
(Γ, Xµ0

), Xµ

)
= 1 for any µ0 = (a0, p0,−p0) with a0 6= 0, as desired.

It is important to remark for the forthcoming analysis that by applying the Weierstrass Division Theorem
(see for instance [9, 12]) we can assert that

d2(µ) = −aπ
2

+ (p+ q)h(µ) (22)

for some analytic function h.
Next we proceed with the proof of (c).To this aim we fix any µ0 = (a0, p0, q0) and apply Theorem 2.6,

which gives the asymptotic expansion of D(s;µ) at s = 0 for µ ≈ µ0. This result, taking (21) and (22) into
account, shows that if D(s;µ0) ≡ 0 then a0 = p0 + q0 = 0. In order to prove the converse observe that if
µ0 = (0, p0,−p0) then the vector field Xµ0 writes as{

ẋ = x(1 + x+ x2 + p0y
2),

ẏ = −y(1 + y + p0x
2 + y2).

One can easily check that Qµ0 , the only singularity of Xµ0 in the first quadrant, is a weak focus at the point
(x0, y0) with x0 = y0 = − 1+

√
−3−4p0

2(1+p0) . Furthermore, setting σ(x, y) = (y, x), it turns out that σ?Xµ0
= −Xµ0

and so the vector field is reversible with respect to the straight line y = x. Hence Qµ0
is a center and a

straightforward application of the Poincaré-Bendixson theorem shows that its period annulus fills the first
quadrant, which in particular implies that D(s;µ0) ≡ 0.

So far we have proved that the return map of Xµ0
along Γ is the identity if, and only if, µ0 = (0, p0,−p0).

Our next task is to show that, in this case, Cycl
(
(Γ, Xµ0

), Xµ

)
= 1. With this aim in view we apply (b) in

Theorem 2.6, which shows that if µ ≈ µ0 then

D(s;µ) =
(
b1(µ)ω

(
s;α(µ)

)
+ b2(µ) + r(s;µ)

)
s1/λ3 , (23)

where α = 1/λ3 − λ1λ2, r ∈ F∞` (µ0) with ` ∈
(
0,min(1, −1

p+1 )
)
and, in addition,

(b1) = (d1) and (b1, b2) = (d1, d2)

over the local ring R{µ}µ0
. Consequently if µ = (a, p, q) satisfies a = p + q = 0 then b1(µ) = b2(µ) = 0

and r(s;µ) ≡ 0. Furthermore, since the vectors ∇d1(µ0) and ∇d2(µ0) are linearly independent, see (21)
and (22), the above equalities between ideals show that this is also the case of ∇b1(µ0) and ∇b2(µ0). We
can thus take (η1, η2, η3) /∈ 〈∇b1(µ0),∇b2(µ0)〉 and define b3(µ) := η1a + η2(p − p0) + η3(q + p0) so that
ν = Ψ(µ) :=

(
b1(µ), b2(µ), b3(µ)

)
is a local analytical change of coordinates in a neighbourhood of µ = µ0.

Note that Ψ maps µ0 to 03 := (0, 0, 0) and {a = p+ q = 0} to {ν1 = ν2 = 0} and in addition

R1(s; ν) := s−1/λ3D(s;µ)
∣∣∣
µ=Ψ−1(ν)

= ν1 ω(s; α̂) + ν2 + r̂(s; ν),

where α̂ = α̂(ν) := α
(
Ψ−1(ν)

)
and r̂(s; ν) := r

(
s; Ψ−1(ν)

)
∈ F∞` (03). The key point is that r̂(s; 0, 0, ν3) ≡ 0

implies, thanks to [17, Lemma 4.1], that r̂(s; ν) = ν1h1(s; ν) + ν2h2(s; ν) with hi ∈ F∞` (03). Accordingly

R1(s; ν) = ν1

(
ω(s; α̂) + h1(s; ν)

)
+ ν2

(
1 + h2(s; ν)

)
. (24)
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Observe that if s → 0+ and ν → (0, 0, 0) then the factor multiplying ν1 tends to +∞, whereas the factor
multiplying ν2 tends to 1. Here we use Definition 2.3 and that lim(s,α)→(0,0) ω(s;α) = +∞. We claim that
there exists s0 > 0 and an open neighbourhood U of ν = (0, 0, 0) such that

R2(s; ν) :=
R1(s; ν)

ω(s; α̂) + h1(s; ν)
= ν1 + ν2

1 + h2(s; ν)

ω(s; α̂) + h1(s; ν)

has at most one zero on (0, s0), counted with multiplicities, for all ν = (ν1, ν2, ν3) ∈ U with ν2
1 + ν2

2 6= 0.
This will imply that Cycl

(
(Γ, Xµ0), Xµ

)
6 1 because R2(s; 0, 0, ν3) ≡ 0, so that it has not any isolated zero.

The claim is clear in case that ν2 = 0. To tackle the case ν2 6= 0 we compute the derivative with respect
to s to obtain that

R′2(s; ν) = ν2∂s

(
1 + F∞`

ω(s; α̂) + F∞`

)
= ν2∂s

(
1 + F∞`

ω(s; α̂)(1 + F∞`−ε)

)

= ν2∂s

(
1 + F∞`−ε
ω(s; α̂)

)
=

ν2

sα̂+1ω2(s; α̂)
(1 + F∞`−ε) +

ν2

ω(s; α̂)
F∞`−ε−1

=
ν2

sα̂+1ω2(s; α̂)

(
1 + F∞`−ε + sα̂+1ω(s; α̂)F∞`−ε−1

)
=

ν2

sα̂+1ω2(s; α̂)

(
1 + F∞`−3ε

)
.

Here, in the second equality we apply first assertion (c) of Lemma A.4 in [14] to get that 1/ω(s; α̂) ∈ F∞−ε(03)
for all ε > 0 small enough, due to α̂(03) = 0, and use next that F∞−εF∞` ⊂ F∞`−ε from (g) of Lemma A.3
in [14] . In the third equality, on account of 1

1+s − 1 ∈ F∞1 and by (h) of Lemma A.3 in [14] , we use
first the inclusion 1

1+F∞`−ε
⊂ 1 + F∞`−ε. Then, by using (d) and (g) of Lemma A.3 in [14] , we expand

the numerator to get that (1 + F∞` )(1 + F∞`−ε) ⊂ 1 + F∞`−ε. Next, in the fourth equality we use that
∂sω(s;α) = s−α−1 and assertion (f) of Lemma A.3 in [14] to deduce that ∂sF∞`−ε ⊂ F∞`−ε−1. Finally in
the last equality we apply (c) of Lemma A.4 in [14] to get that sα̂+1ω(s; α̂) ∈ F∞1−2ε and we use again that
F∞1−2εF∞`−ε−1 ⊂ F∞`−3ε. On account of Definition 2.3 we can assert the existence of some s0 ∈ (0, 1) and a
neighbourhood U of ν = (0, 0, 0) such that R′2(s; ν) 6= 0 for all s ∈ (0, s0) and ν ∈ U with ν2 6= 0. Hence the
application of Rolle’s theorem shows that the claim is true for ν2 6= 0 as well. So far we have proved that
Cycl

(
(Γ, Xµ0), Xµ

)
6 1. The fact that this upper bound is attained follows by applying the assertion in (b)

taking µ0 = (a0, p0,−p0) with a0 ≈ 0 but different from zero. This completes the proof of (c).
Let us turn now to the proof of the assertions regarding the singularity of Xµ at Qµ. The approach

here is rather standard and the technical difficulty is that we do not dispose of a feasible expression of
the coordinates of Qµ. To overcome this problem we shall parametrise the family of vector fields more
conveniently. For reader’s convenience we summarise the chain of reparametrisations that we shall perform:

µ = (a, p, q)→ (a, p, ε)→ (υ1, υ2, ε)→ (υ1, υ2, τ)→ µ̂ = (ρ, σ, τ).

For the first one we simply introduce ε = p + q. In the second one we take the coordinates of the singular
point Qµ = (υ1, υ2) as new parameters, i.e., we isolate a and p from{

1 + υ1 + υ2
1 + aυ1υ2 + pυ2

2 = 0,

1 + υ2 + (p− ε)υ2
1 − aυ1υ2 + υ2

2 = 0,
(25)

to obtain

a = −υ
2
1υ

2
2ε+ υ4

1 − υ4
2 + υ3

1 − υ3
2 + υ2

1 − υ2
2

υ1υ2 (υ2
1 + υ2

2)
and p =

υ2
1ε− υ2

1 − υ2
2 − υ1 − υ2 − 2

υ2
1 + υ2

2

.

In this respect we point out that υ1 and υ2 are strictly positive because Qµ is inside the first quadrant for
all admissible µ. More important, the map ϕ : (a, p, ε) 7→ (υ1, υ2, ε) is smooth and, taking (25) into account,
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injective. The smoothness follows by the Inverse Function Theorem since one can check that the determinant
of the Jacobian of (υ1, υ2, ε) 7→ (a, p, ε) is non-zero at the image by ϕ of any admissible parameter. Then
one can check that the trace of the Jacobian of the vector field at (x, y) = (υ1, υ2) is

xfx(x, y) + ygy(x, y)
∣∣
(x,y)=(υ1,υ2)

= υ1 + 2υ2
1 + 2aυ1υ2 − υ2 − 2υ2

2

∣∣∣
a=a(υ1,υ2,ε)

= −2ευ2
1υ

2
2 + (υ1 − υ2)(υ1 + 2 + υ2)(υ1 + υ2)

υ2
2 + υ2

1

,

and we introduce τ = τ(υ1, υ2, ε) isolating ε from

2ευ2
1υ

2
2 + (υ1 − υ2)(υ1 + 2 + υ2)(υ1 + υ2) = τ. (26)

In other words, τ is (up to a non-vanishing factor) the trace of the vector field. Finally, for convenience, we
define ρ = υ1−υ2

2 and σ = υ1+υ2
2 . Observe then that {p+ q = a = 0} becomes {ρ = τ = 0}. In what follows,

setting µ̂ = (ρ, σ, τ) for shortness, we denote the vector field by Xµ̂. Let us also remark that the map µ 7→ µ̂
is smooth and injective as a consequence of the previous discussion.

At this point we claim that Qµ is either a focus or a center. To show this we will check that the
discriminant Dµ of the characteristic polynomial of the Jacobian matrix of Xµ at Qµ is strictly negative for
all admissible parameter. Indeed, one can verify that Dµ expressed in terms of (υ1, υ2, ε) can be written as

Dµ =
4(υ1υ2)4ε2 +A1(υ1, υ2)ε+A0(υ1, υ2)

(υ2
1 + υ2

2)2
,

where Ai are polynomials of degree 7. Thus Dµ = 0 gives two roots ε = ε̂i(υ1, υ2), for i = 1, 2, that one can
check to be well-defined continuous functions on V := {(υ1, υ2) ∈ R2 : υ1 > 0, υ2 > 0}. To see the claim we
first prove that, for i = 1, 2,

(p+ 1)(q − 1)
∣∣
ε=ε̂i

> 0 for all (υ1, υ2) ∈ V. (27)

This implies that Dµ can not vanish at an admissible parameter due to the assumptions p < −1 and q > 1.
In this regard we note that the product (p+ 1)(q − 1) expressed in terms of (υ1, υ2, ε) is given by

(p+ 1)(q − 1) =
(υ1υ2)2ε2 +B1(υ1, υ2)ε+B0(υ1, υ2)

(υ2
1 + υ2

2)2
,

where deg(B1) = 3 and deg(B0) = 2. A computation shows that the resultant (see [4, Chapter 3] for
instance) between the numerators of Dµ and (p+ 1)(q − 1) with respect to ε is a polynomial in υ1 and υ2

with all the coefficients being natural numbers. Consequently the resultant does not vanish on V and,
accordingly, (p + 1)(q − 1)|ε=ε̂i 6= 0 for all (υ1, υ2) ∈ V. Thus, since V is arc-connected and the function
(υ1, υ2) 7→ (p + 1)(q − 1)|ε=ε̂i is continuous on V , it suffices to verify (27) at some particular choice of
parameter. For instance, taking υ1 = υ2 = 1 we obtain that (p+ 1)(q − 1)|ε=ε̂i = 92 for i = 1, 2. Therefore
Dµ 6= 0 at any admissible parameter. Thus, exactly as before, since µ 7→ Dµ is continuous and the set of
admissible parameters is arc-connected, the claim will follow once we verify its validity at some particular
parameter. For instance the choice µ = (0,−2, 2) yields Dµ = − 67+25

√
5

2 < 0.

We proceed now with the study of the cyclicity of Qµ. The fact that Cycl
(
(Qµ0

, Xµ0
), Xµ

)
= 0 when

τ(µ0) 6= 0 is well-known. On the other hand, if p+ q = 0 then ε = 0 and

τ(υ1, υ2, 0) = (υ1 − υ2)(υ1 + 2 + υ2)(υ1 + υ2),

which vanishes at an admissible parameter if, and only if, υ1 = υ2. For this to happen, see (25) with ε = 0,
it is necessary that a = 0. This proves the validity of (d).
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We shall next solve the center-focus problem in the family. With this aim in view, taking a local
transversal section at Qµ we consider the displacement map D(s; µ̂), which extends analytically to s = 0,
so that we can compute its Taylor’s expansion

D(s; µ̂) = η1(µ̂)s+ η2(µ̂)s2 + η3(µ̂)s3 + sR(s; µ̂), (28)

where the remainder R is o(s2). Recall that the trace of Xµ̂ at Qµ̂ is equal to τu1(µ̂), where u1 is a
unity. The coefficients ηi are called the Lyapunov quantities of the focus. We have in particular (see for
instance [18, p. 94]) that η1(µ̂) = eτu1(µ̂) − 1 = τu2(µ̂), where u2 is again a unity. Since the first nonzero
coefficient of the expansion is the coefficient of an odd power of s, see [18, p. 94] again, we get that
η2(µ̂) = τ`1(µ̂) for some analytic function `1. In order to obtain η3 we shall appeal to the well-known
relation between the Lyapunov and focus quantities which, following the notation in [18, Theorem 6.2.3], we
denote by gii. The first ones are the coefficients in the Taylor’s expansion of the displacement map that we
already introduced, while the second ones are the obstructions for the existence of a first integral. It occurs
that η2i+1 − πgii ∈ (g11, . . . , gi−1,i−1) and, more important for our purposes, that η3 = πg11. On account of
this we can compute g11 instead of η3, which is easier to obtain, and in doing so (see [3, p. 29]) we get that

η3(µ̂)
∣∣
τ=0

= π
2ρ (ρ− σ) (σ + 1)

(
4 + 34σ + 29σ2 + 8σ3 − 3ρ2

)
3 (ρ+ σ)

3
(ρ+ 2σ + 2σ2 + 2ρ2 + 2)

2 .

In this respect we claim that η3(µ̂)
∣∣
τ=0

= ρh(ρ, σ) with h(ρ, σ) 6= 0 in case that |ρ| < σ, which corresponds
to the admissible values υ1, υ2 > 0 due to ρ = υ1−υ2

2 and σ = υ1+υ2
2 . Indeed, it is clear that the factor

(ρ−σ)(σ+ 1) does not vanish inside the admissible set, while the other one does not vanish neither because

4 + 34σ + 29σ2 + 8σ3 − 3ρ2 > 4 + 34σ + 26σ2 + 8σ3 > 0,

where the first inequality follows using that |ρ| < σ and the second one the fact that σ > 0. Hence the
claim is true. Therefore, if Qµ is a center then τ = ρ = 0, and the assertion in (c) shows that these two
conditions are also sufficient because {p+ q = a = 0} = {τ = ρ = 0}. Observe moreover that we can write
η3(µ̂) = τ`2(µ̂) + ρh(ρ, σ) for some analytic function `2. On the other hand, due to R(s; µ̂)|ρ=τ=0 ≡ 0, we
can also write R = τR1 + ρR2 with Ri ∈ o(s2) and, accordingly,

D(s;µ) = τs
(
u2 + `1s+ `2s

2 +R1) + ρs
(
hs2 +R2

)
. (29)

Note that if τ(µ) = 0 and ε = p + q 6= 0 then ρ = υ1−υ2
2 must be different from zero because otherwise,

from (26), we would get that ε = 0. Consequently, due to h(ρ, σ) 6= 0 for all admissible ρ and σ, the equality
in (29) implies Cycl

(
(Qµ0

, Xµ0
), Xµ

)
6 1 in case that τ(µ0) = 0 and p0 + q0 6= 0. The fact that this upper

bound is attained follows by means of an easy perturbative argument using that ∂ετ(µ) = −2υ2
1υ

2
2 6= 0.

This proves the validity of the assertion in (e).

In order to prove (f) note that if τ(µ) = 0 and ε = p + q = 0 then, from (26), ρ = υ1−υ2
2 = 0. Hence,

from (25), 2aυ1υ2 = 0, which implies a = 0 and shows the first assertion. That being stablished, we have
already proved that Qµ0 is a center if, and only if p0 + q0 = a0 = 0. We show next that, in this case,
Cycl

(
(Qµ0

, Xµ0
), Xµ

)
6 1. Indeed, since u2 is a unity we can consider

D1(s; µ̂) :=
D(s; µ̂)

s(u2 + `1s+ `2s2 +R1)
= τ + ρ

hs2 +R2

u2 + `1s+ `2s2 +R1
.

The upper bound for the cyclicity of Qµ0 in the center case will follow once we prove that there exist s0 > 0
and an open neighbourhood U of (ρ, σ, τ) = (0, σ̂, 0) such that D1(s; µ̂) has at most one zero on (0, s0),
counted with multiplicities, for all µ̂ ∈ U with ρ2 +τ2 6= 0. Recall in this regard that D1(s; µ̂)|ρ=τ=0 ≡ 0 and
that, on account of (c), σ̂ = − 1+

√
−3−4p0

2(1+p0) > 0 is the first component of Qµ0 . The idea to show this is exactly
the same as in the proof of (c) but with less technicalities because the involved functions are analytic at
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s = 0. The desired property is evident when ρ = 0. In case that ρ 6= 0 we compute the derivative of D1 with
respect to s to obtain

∂sD1(s; µ̂) = ρs
(
2h/u2 + o(1)

)
.

Since h(ρ, σ) 6= 0 in case that |ρ| < σ and u2 = u2(µ̂) is a unity, the existence of the desired s0 > 0 and the
open neighbourhood U follows by Rolle’s theorem. So far we have proved that Cycl

(
(Qµ0

, Xµ0
), Xµ

)
6 1 if

p0 + q0 = a0 = 0. The fact that this upper bound is attained follows noting that we can take µ = (a, p, q)
with τ(µ) = 0 and p+ q 6= 0 arbitrarily close to µ0 = (0, p0,−p0) and apply then the assertion in (e). This
proves (f).

Let us turn now to the proof of the last assertion in the statement. Observe in this respect that the
combination of (a) and (b) together with (d) and (e) shows that a simultaneous bifurcation of limit cycles
from Γ and Qµ can only occur if we perturb some µ? = (a?, p?, q?) with a? = p? + q? = 0. We shall prove by
contradiction that this is neither possible. So assume that for each n ∈ N there exist µn = (an, pn, qn) and
two limit cycles γn and γ′n of the vector field Xµn in the first quadrant such that the Hausdorff distances
dH(γn,Γ) and dH(γ′n, Qµn) tend to zero and µn tends to µ? as n → +∞. Let us consider the asymptotic
expansion of the displacement map of Xµ at the polycycle Γ that we compute in (23) and denote it by
Dp(s;µ). We also consider its Taylor’s expansion near the focus Qµ given in (29) and denote it by Dc(s

′;µ).
Then the assumption implies the existence of two sequences sn → 0+ and s′n → 0+ such that Dp(sn;µn) = 0
and Dc(s

′
n;µn) = 0 for all n ∈ N. We claim that the first equality implies that

lim
n→+∞

pn + qn
an

= 0. (30)

Indeed, from (24) we have that

R1(sn; ν)
∣∣
ν=Ψ(µn)

= b1(µn)
(
ω(sn;α(µn)) + h1(sn; ν)

)
+ b2(µn)

(
1 + h2(s; ν)

)∣∣
ν=Ψ(µn)

= 0 for all n ∈ N.

Thus, due to limn→+∞ ω(sn;α(µn)) = +∞ and hi ∈ F∞` (03), we obtain that b2(µn)
b1(µn) → −∞ as n → +∞.

Moreover, since (b1) = (d1) and (b1, b2) = (d1, d2) with ∇d1 and ∇d2 independent at µ = µ?, we can write

b2
b1

=
κ1d1 + κ̂2d2

κ̂3d1

with κ̂i(µ?) 6= 0 and, consequently, limn→+∞
d2(µn)
d1(µn) =∞. This, on account of (21) and (22), gives the limit

in (30) and so the claim is true. Recall on the other hand that in order to study the displacement map near
the focus Qµ we use a more convenient parametrisation given by µ̂ := (ρ, σ, τ) = φ(µ). That being said,
setting (ρn, σn, τn) := φ(an, pn, qn), similarly as we argue before, the fact that Dc(s

′
n;µn) = 0 for all n ∈ N

implies from (29) that
lim

n→+∞

τn
ρn

= 0. (31)

Let us remark that here we also take into account that u2 is a unity. We next arrive to contradiction showing
that (30) and (31) cannot hold simultaneously. Indeed, one can verify that, setting σ? = − 1+

√
−3−4p?

2(1+p?) ,

pn + qn
an

∣∣∣∣
µn=φ−1(µ̂n)

= 4
ρ2
n + σ2

n

ρ2
n − σ2

n

τn + ρnσn(σn + 2)

2τn − ρn(2σn + 1)(ρ2
n + σ2

n)

= 4
ρ2
n + σ2

n

ρ2
n − σ2

n

τn/ρn + σn(σn + 2)

2τn/ρn − (2σn + 1)(ρ2
n + σ2

n)
→ 4(σ? + 2)

σ?(2σ? + 1)
6= 0 as n→ +∞.

Here, in addition to (31), we use that if p + q and a tend to zero then ρ → 0 and σ → σ?, where σ? is
precisely the first component of the center at Qµ? (which is in the diagonal of the first quadrant). This
shows that (30) and (31) cannot occur simultaneously, which yields to the desired contradiction and finishes
the proof of the result.
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The following is our second example of application of Theorem A. In this case the family of Kolmogorov’s
systems is five-parametric and to the best of our knowledge it has not been studied previously.

Theorem 3.2. Consider the family of Kolmogorov differential systems

Xµ

{
ẋ = x(c+ x2 + axy − (p+ 1)y2),

ẏ = y(−1 + (q + 1)x2 + (a− b)xy − y2),

where µ = (a, b, c, p, q) ∈ R5 with c > 0, p > 0, q > 0 and b < 2
√
pq and let us fix any µ0 = (a0, b0, c0, p0, q0).

Then there exists a unique singular point Qµ in the first quadrant, which is either a center, a focus or a
node. Moreover, compactifying Xµ to the Poincaré disc, the boundary of the first quadrant is a polycycle Γ
such that:

(a) Cycl
(
(Γ, Xµ0), Xµ

)
= 0 if p0 − c0q0 6= 0.

(b) Cycl
(
(Γ, Xµ0

), Xµ

)
= 1 if p0 − c0q0 = 0 and 2c0q0a0 − (c0q0 − c0 + 1)b0 6= 0.

(c) The return map of Xµ0
along Γ is the identity if, and only if, p0−c0q0 = 2c0q0a0−(c0q0−c0 +1)b0 = 0.

In this case Qµ0 is a center with first integral

H(x, y) =
q0(x2 + c0(y2 + 1))− b0xy

(xyc0)
2

c0q0+c0+1

,

which foliates the first quadrant. Moreover Γ is the outer boundary of its period annulus and, in addition,
Cycl

(
(Γ, Xµ0

), Xµ

)
= 1.

Remark 3.3. In contrast to the family of Kolmogorov’s cubic systems studied in Theorem 3.1, for the family
in Theorem 3.2 there exist parameters µ0 with d1(µ0) = 0 and d2(µ0) 6= 0, so that Cycl

(
(Γ, Xµ0

), Xµ

)
= 1,

and satisfying additionally that the unique singular point Qµ0
in the first quadrant is a non-degenerate node.

Hence, for appropiate µ ≈ µ0 we will have a limit cycle γµ with a non-monodromic singular point Qµ as
unique singularity in its interior. For instance, the choice µ0 = (−800.01,−900.99999, 1000, 1, 0.001) leads
to this phenomenon with Qµ0 = (0.1, 10). A similar occurrence is observed in [2, p. 203] to take place in
the family of cubic Lienard systems studied in [7]. �

Proof of Theorem 3.2. In this case, following the notation in (1), we have that

f(x, y;µ) := c+ x2 + axy − (p+ 1)y2 and g(x, y;µ) := −1 + (q + 1)x2 + (a− b)xy − y2.

Since f(z, 0;µ) = c+ z2, g(0, z;µ) = −1− z2 and (f2 − g2)(1, z;µ) = −q + bz − pz2, one can check that the
hypothesis H1 and H2 are satisfied for the admissible parameters, i.e., c > 0, p > 0, q > 0 and b < 2

√
pq.

Moreover the hyperbolicity ratios are

λ1 = 1/q, λ2 = p and λ3 = 1/c. (32)

Then Γ is a polycycle and by applying the Poincaré-Bendixson theorem we deduce the existence of at least
one singular point of Xµ in the first quadrant. We claim that there exists exactly one. In order to show
this we suppose that (υ1, υ2) is a singular point of Xµ in the first quadrant and solve f(υ1, υ2;µ) = 0 and
g(υ1, υ2;µ) = 0 for a and b as a function of c, p, q, υ1 and υ2. In doing so we obtain that

a =
pυ2

2 − υ2
1 + υ2

2 − c
υ1υ2

and b =
pυ2

2 + qυ2
1 − c− 1

υ1υ2
.

The substitution of these values in f + cg, which is homogeneous of degree 2 in x and y, yields

(
f + cg

)
(x, y;µ)

∣∣
y=rx

=
x2(υ2 − rυ1)

(
rυ2(c+ p+ 1) + υ1(cq + c+ 1)

)
υ1υ2

.
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It is clear then that the vanishing of the above numerator provides the possible values of r such that Xµ

has a singular point at the straight-line y = rx, namely,

r1 =
υ2

υ1
> 0 and r2 = −υ1(cq + c+ 1)

υ2(c+ p+ 1)
< 0.

Since x 7→ f(x, r1x) = c+x2(1+ar1−(p+1)r2
1) vanishes at x = υ1 > 0, it must have another real zero, which

has to be negative. ThereforeXµ has exactly one singular point in the first quadrant and exactly one singular
point in the third quadrant, showing in particular the validity of the claim. An easy computation shows
that the determinant of the Jacobian of Xµ at Qµ = (υ1, υ2) is equal to 2υ2

1(cq+ c+ 1) + 2υ2
2(p+ c+ 1) > 0,

so that it can be a center, a focus or a node.
So far we have proved that the first assertion in the statement is true. Let us turn to the proof of the

assertions in (a), (b) and (c). The first one follows from (a) in Theorem A because

d1(µ) = 1− λ1λ2λ3 =
cq − p
cq

. (33)

The second assertion will follow by applying (b) and (c) in Theorem A. In this regard let us recall that

d2(µ) = λ2 log

(
L12

L21

)
(1) + log

(
L22

L32

)
(1) + λ1λ2 log

(
L31

L11

)
(1). (34)

On account of the definition of each Lij , see (2), we easily obtain that

logL11(1) =
1 + c(q + 1)

2c
log(c+ 1),

logL31(1) =
1 + c(q + 1)

2c
log (1/c+ 1) , (35)

logL22(1) = logL32(1) =
log 2

2
(p+ c+ 1).

Moreover

logL12(1) =
1

q

∫ 1

0

mz + n

−pz2 + bz − q
dz and logL21(1) =

1

p

∫ 1

0

mz + n′

−qz2 + bz − p
dz,

where
m := −(pq + p+ q), n := qa+ b and n′ := p(b− a) + b. (36)

The explicit integration of these functions leads to several cases depending on the parameters. To avoid this
we note that

mz + n

−pz2 + bz − q
= −m

2p

−2pz + b

−pz2 + bz − q
+

1

2p

mb+ 2np

−pz2 + bz − q
,

so that

logL12(1) = − m

2pq
log

(
p+ q − b

q

)
+
mb+ 2np

2pq

∫ 1

0

dz

−pz2 + bz − q
.

It is clear that the same formula holds for logL21(1) replacing p, q and n by q, p and n′, respectively. On
account of this and the fact that, from (36), mb+ 2n′q = −mb− 2np, we get

log

(
L12

L21

)
(1) = logL12(1)− logL21(1) = − m

2pq
log

(
p

q

)
+ (mb+ 2np)Φ(µ), (37)

where

Φ(µ) :=
1

2pq

∫ 1

0

(
1

−pz2 + bz − q
+

1

−qz2 + bz − p

)
dz.
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Notice, and this is the key point in the forthcoming arguments, that Φ is a non-vanishing function because,
thanks to property H1, Φ(µ) < 0 at any admissible parameter µ. On the other hand, from (35),

log

(
L31

L11

)
(1) = − (1 + c+ cq)

2c
log c and log

(
L22

L32

)
(1) = 0. (38)

Accordingly the substitution of (37) and (38) in (34) yields

d2(µ) = −m
2q

log

(
p

q

)
+ p(mb+ 2np)Φ(µ)− p(1 + c+ cq)

2qc
log c

=
pq + p+ q

2q
log

(
p

q

)
+ p
(
2pqa− (pq − p+ q)b

)
Φ(µ)− p(1 + c+ cq)

2qc
log c,

where in the first equality we set the values of the hyperbolicity ratios given in (32) and in the second one
the expressions of m and n defined in (36). Observe at this point, see (33), that d1(µ) = 0 if, and only if,
p = cq. Moreover the two logarithmic summands in the above expression of d2(µ) cancel each other after
the substitution p = cq, so that

d2(µ)
∣∣
p=cq

= cq2
(
2cqa− (cq − c+ 1)b

)
Φ(a, b, c, cq, q).

Thus, by the Weierstrass Division Theorem (see [9, 12]), there exists an analytic function κ1 such that

d2(µ) = d1(µ)κ1(µ) +
(
2cqa− (cq − c+ 1)b

)
κ2(µ), (39)

where κ2(µ) := cq2Φ(µ) is a unity in the admissible set. This expression shows that if we take an admissible
parameter µ0 = (a0, b0, c0, p0, q0) such that p0−c0q0 = 0 and 2c0q0a0−(c0q0−c0 +1)b0 6= 0 then d2(µ0) 6= 0,
which by (c) in Theorem A implies that Cycl

(
(Γ, Xµ0

), Xµ

)
6 1. The fact that Cycl

(
(Γ, Xµ0

), Xµ

)
= 1

follows by applying (b) in Theorem A because ∇d1(µ0) is not the zero vector, see (33). This proves the
validity of the assertion in (b).

To show (c) we take any µ0 = (a0, b0, c0, p0, q0) satisfying p0 − c0q0 = 2c0q0a0 − (c0q0 − c0 + 1)b0 = 0.
Then one can verify that the function

H(x, y) =
q0(x2 + c0(y2 + 1))− b0xy

(xyc0)
2

c0q0+c0+1

is a first integral of Xµ0 , which is clearly analytic on the whole first quadrant. (For reader’s convenience let
us mention that we found this first integral looking for an integrating factor of the form xrys with r, s ∈ R.)
Thus, since the determinant of the Jacobian ofXµ0

at Qµ0
is strictly positive, we can assert that it is a center.

A straightforward application of the Poincaré-Bendixson theorem shows that Γ is the outer boundary of its
period annulus, which fills the first quadrant. This proves that if p0− c0q0 = 2c0q0a0− (c0q0− c0 + 1)b0 = 0
then the displacement map D( · ;µ0) of Xµ0 along Γ is identically zero. The converse follows by Theorem 2.6
noting that d1(µ) = d2(µ) = 0 if, and only if, p− cq = 2cqa− (cq − c+ 1)b = 0.

It only remains to be proved that Cycl
(
(Γ, Xµ0), Xµ

)
= 1. This follows verbatim the proof of the same

fact in assertion (c) of Theorem 3.1 and so we shall omit the details for the sake of shortness. Indeed, by (b)
in Theorem 2.6 we have that if µ ≈ µ0 then

D(s;µ) = (b1(µ)ω(s;α(µ)) + b2(µ) + r(s;µ))sc,

where α = c− p/q and r ∈ F∞` (µ0) with ` ∈ (0,min(1, p)). Here we use that the three hyperbolicity ratios
are λ1 = 1/q, λ2 = p and λ3 = 1/c. We also have that (b1) = (d1) and (b1, b2) = (d1, d2) over the local ring
R{µ}µ0

. Therefore, if µ = (a, b, c, p, q) verifies p− cq = 2cqa− (cq− c+ 1)b = 0 then b1(µ) = b2(µ) = 0 and
r(s;µ) ≡ 0. Moreover, since∇d1(µ0) and∇d2(µ0) are linearly independent, see (33) and (39), this is also the
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case of ∇b1(µ0) and ∇b2(µ0). We can thus take three linear functions, say b3(µ), b4(µ) and b5(µ), such that
ν = Ψ(µ) :=

(
b1(µ), b2(µ), b3(µ), b4(µ), b5(µ)

)
is a local analytic change of coordinates in a neighbourhood

of µ = µ0 with Ψ(µ0) = 05 := (0, 0, 0, 0, 0). Notice then that Ψ maps {p− cq = 2cqa− (cq − c+ 1)b = 0} to
{ν1 = ν2 = 0} and, moreover,

R1(s; ν) := s−cD(s;µ)
∣∣∣
µ=Ψ−1(ν)

= ν1ω(s; α̂) + ν2 + r̂(s; ν),

where α̂ = α̂(ν) := α(Ψ−1(ν)) and r̂(s; ν) := r(s; Ψ̂−1(ν)) ∈ F∞` (05). Due to r̂(s; 0, 0, ν3, ν4, ν5) ≡ 0, by
applying [17, Lemma 4.1] we can write the remainder as r̂(s; ν) = ν1h1(s; ν) + ν2h2(s; ν) with hi ∈ F∞` (05)
and, consequently,

R1(s; ν) = ν1

(
ω(s; α̂) + h1(s; ν)

)
+ ν2

(
1 + h2(s; ν)

)
.

From this expression we conclude that there exists s0 > 0 and an open neighbourhood U of ν = 05 such that
R1(s; ν) that has at most one zero on (0, s0), counted with multiplicities, for all ν = (ν1, ν2, ν3, ν4, ν5) ∈ U
with ν2

1 + ν2
2 6= 0, which implies that Cycl

(
(Γ, Xµ0

), Xµ

)
6 1. The proof of this follows exactly as we

argue to show the same fact in Theorem 3.1, cf. (24), and it is omitted for brevity. Finally the fact that
Cycl

(
(Γ, Xµ0), Xµ

)
> 1 follows taking µ1 ≈ µ0 with p1 − c1q1 = 0 and 2c1q1a1 − (c1q1 − c1 + 1)b1 6= 0, and

applying the assertion in (b). This completes the proof of the result.

Remark 3.4. In order to prove Theorem 3.2 it is only necessary to compute the functions d1 and d2 in
Theorem A, which give the conditions for cyclicity 0 and 1, respectively. Let us explain that, as a matter of
fact, we computed the function d3 as well, realizing that it vanishes when d1 = d2 = 0. It was this fact that
lead us to investigate if the return map along the polycycle is the identity in that case. For completeness
let us explain succinctly the computations that involve the obtention of d3 for the Kolmogorov’s family
considered in Theorem 3.2. Recall, see (e) in Theorem A, that

d3(µ) := M̂3(λ3, 1)L11(1)− M̂1

(
1/λ1, 1

)
L31(1).

In this case, cf. (35), we have that

L11(u) = (1 + cu2)
1+(q+1)c

2c and L31(u) =
(
1 + u2/c

) 1+(q+1)c
2c

and then, from the definition in (2),

M1(u) = (1 + cu2)
1+(q−3)c

2c

(
aq + b+ (cb− (c+ 1)a)u2

)
and

M3(u) = −u
(
1 + u2/c

) 1+(q−3)c
2c

(
(aq + b)u2 + cb− (c+ 1)a

)
/c2.

In order to proceed with the computation of M̂1

(
1
λ1
, 1
)
and M̂3

(
λ3, 1

)
we note that if J(x; η, r) := (1+ηx2)r

with η > 0 and r ∈ R then

Ĵ(α, 1; η, r) =

∫ 1

0

(1 + ηx2)rx−α−1dx = − 1

α
2F1(−r,−α/2; 1− α/2;−η) for all α < 0,

where in the first equality we apply (b) in Proposition 2.5 with k = 0 and in the second one we use the
equality in [1, 15.3.1] to express the definite integral as a hypergeometric function. In principle the above
equality is only true provided that α < 0. However its validity can be extended to any α /∈ N thanks to the
meromorphic properties of the functions 2F1 and Ĵ stablished, respectively, by [17, Lemma B.2] and (d) in
Proposition 2.5. Consequently, thanks to this observation and applying twice the above formula, we get

M̂1(1/λ1, 1) = −aq + b

q
ϕ1(c, q) +

cb− (c+ 1)a

2− q
ϕ2(c, q),
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where

ϕ1(c, q) := 2F1

(
(3− q)/2− 1/(2c),−q/2; 1− q/2;−c

)
,

ϕ2(c, q) := 2F1

(
(3− q)/2− 1/(2c), 1− q/2; 2− q/2;−c

)
.

Here we also use that if h = f + g then ĥα = f̂α + ĝα and that if f(x) = xng(x) then f̂α(x) = xnĝα−n(x),
see [16, Corollary B3]. Similarly

M̂3(λ3, 1) =
aq + b

c(1− 3c)
ϕ3(c, q) +

cb− (c+ 1)a

c(1− c)
ϕ4(c, q),

where

ϕ3(c, q) := 2F1

(
(3− q)/2− 1/(2c), 3/2− 1/(2c); 5/2− 1/(2c);−1/c

)
,

ϕ4(c, q) := 2F1

(
(3− q)/2− 1/(2c), 1/2− 1/(2c); 3/2− 1/(2c);−1/c

)
.

In the proof of Theorem 3.2 we show that d1(µ) = d2(µ) = 0 if, and only if, µ = (a, b, c, p, q) verifies p = cq

and a = b(1−c+cq)
2cq . Long but easy computations show that, under these two conditions, d3(µ) = 0 if, and

only if,
q

1− 3c
ϕ3(c, q)− ϕ4(c, q) + c−

1+c+cq
2c

(
ϕ1(c, q) +

c− 1

q − 2
ϕ2(c, q)

)
= 0.

This is an equation for b, c and q that involves four hypergeometric functions. Surprisingly enough it turns
out, by applying the formula in [1, 15.3.7], that the function on the left hand side of the above equation is
identically zero. In other words, d1(µ0) = d2(µ0) = 0 implies d3(µ0) = 0. �

Acknowledgements. The authors want to thank Joan Torregrosa, who kindly lend us his Maple [13] pro-
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