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Abstract

We provide the best lower bound for the number of critical periods of planar polynomial centers known 
up to now. The new lower bound is obtained in the Hamiltonian class and considering a single period 
annulus. This lower bound doubles the previous one from the literature, and we end up with at least n2 − 2
(resp. n2 − 2n − 1) critical periods for planar polynomial systems of odd (resp. even) degree n. Key idea 
is the perturbation of a vector field with many cusp equilibria, whose construction is by itself a nontrivial 
construction that uses elements of catastrophe theory.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

The study of the number of oscillations of the period function associated to a planar polyno-
mial center has a long history that took a start with the seminal paper by Chicone and Jacobs in 
1989 where the authors did a bifurcation analysis of the critical periods for planar vector fields 
in [2]. In classical Liénard families the isochronicity and monotonicity problems were studied 
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in [12] and later in [4]. For polynomial families of arbitrary degree there are very few studies. 
The first lower bound of order n was obtained by Cima, Gasull, and Silva in 2008, see [3]. This 
result was quickly improved providing a lower bound of order n2/4, using perturbations from a 
center as in [8], by Gasull, Liu, and Yang in a paper published in 2010, see [7]. More concretely, 
they proved that the number of critical periods is higher than or equal to (n2 + 6n − 4)/4 in the 
even degree case, with a similar but slightly worse bound for the odd degree case. This bound 
was recently improved by Cen in 2021, see [1]. Cen, with a very nice idea of removing cusps 
or fake saddles via a simple perturbation, provides a new lower bound, doubled in order. In fact, 
he proves that there exist odd degree Hamiltonian vector fields having a center for which the 
corresponding period function has at least (n2 + 2n − 5)/2 critical periods. Cen’s construction 
leads for the even degree case to a slightly worse bound given by (n2 − 4)/2. In both cases, the 
analyzed center has only one period annulus. In the present paper, inspired by Cen’s idea, we 
managed to roughly double the number of oscillations. Providing a new lower bound of order n2

instead of order n2/2. Up to our knowledge, this is the best lower bound for the number of oscil-
lations of the period function of a center, but we have no indications concerning the optimality 
of our result. The proof will closely follow Cen’s proof but with a refined unfolding of a fake 
saddle into two cusps, as in [5]. Our main result is the following.

Theorem 1. There exist (Hamiltonian) planar polynomial vector fields of odd (resp. even) degree 
n ≥ 3, having a center and whose period function associated to the period annulus around that 
center has at least n2 − 2 (resp. n2 − 2n − 1) critical periods.

Remark 2. With the period function we mean the function T that maps a given Hamiltonian 
energy level h to the positive time it takes to travel along one round around the center, under con-
dition that the level curve is homeomorphic to a circle. The Hamiltonian function in Theorem 1
is of degree n + 1.

The key point is to study the period function associated to the center located at the origin of 
the planar polynomial vector field of degree n = 2m + 1 (m ≥ 1), defined by the Hamiltonian

Ha,b,δ,ε(x, y) = Ga,δ,ε(x, y) + Fb,ε(y) =
x∫

0

ga,δ,ε(s, y)ds +
y∫

0

fb,ε(s)ds, (1)

where δ, ε > 0 are sufficiently small parameters, a = (a1, . . . , am), b = (b1, . . . , bm) satisfying 
0 < a1 < a2 < · · · < am < 1, 0 < b1 < b2 < · · · < bm < 1 and

fb,ε(y) = y

m∏
i=1

((bi − y)2 + ε), ga,δ,ε(x, y) = x

m∏
i=1

((ai − x + δy)2 + ε). (2)

The construction involves making a particular choice for a and b. This idea is inspired by 
Cen’s construction in [1], but unlike in that paper we use a two-stage perturbation: after analyz-
ing Ha,b,0,0 in Section 2 we proceed to study the perturbation Ha,b,δ,0 in Section 3 and finish 
the proof in the odd degree case in Section 4 by examining the effect of the ε-perturbation in 
Ha,b,δ,ε . For the even degree case we will even need a third perturbation level; this is worked out 
in Section 5. Finally, we present an analytic example with an infinite number of oscillations in 
Section 6.
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Fig. 1. Level curves of Hamiltonians in normal form coordinates near the equilibria that appear in this paper.

Three types of equilibria will play a role in the Hamiltonian systems here: we will relate them 
to critical points of Hamiltonian functions in local normal form coordinates:

(1) centers, i.e. where H = u2 + v2,
(2) cusps, i.e. where H = u3 + v2,
(3) fake saddles, i.e. where H = u3 + v3.

See Fig. 1 for the local phase portraits.

Remark 3. When considering the critical points of the Hamiltonians, their unfoldings are de-
scribed by catastrophe theory (see for example [9]). The Hamiltonian H = u2 + v2 has a 
non-degenerate critical point (Morse type), which is stable. The Hamiltonian H = u3 + v2 is 
part of the stable unfolding Hλ = u3 + v2 +λu (fold catastrophe breaking up the associated cusp 
equilibrium into a saddle and a center). The Hamiltonian H = u3 +v3 is part of the stable unfold-
ing Hλ,μ,ν = u3 +v3 +λu +μv +νuv (hyperbolic umbilic catastrophe). The unfolding contains 
regions where the equilibrium splits into two cusps; it is the basis of our construction. Using [9]
one can see that the three above normal forms are 2-determined resp. 3-determined, where k-
determinacy means it suffices to compare the k-order Taylor expansion of a given function with 
the normal form to conclude both are locally (right-)equivalent. (Note that right equivalence of 
two Hamiltonians corresponds to orbital equivalence of the associated vector fields.) Outside the 
Hamiltonian class, centers are of course not preserved under perturbation, cusps may undergo 
Bogdanov–Takens bifurcations, and fake saddles have a more involved unfolding; see [5].

Remark 4. A side result in this paper is the construction of degree n Hamiltonian vector fields 
with O(n2/2) cusps (see Proposition 12). It is in general not so easy to construct vector fields 
with prescribed equilibria and homoclinic/heteroclinic connections. The restriction to the Hamil-
tonian case makes the question a little bit more tractable, but it is still difficult. We remark in 
that light that looking for a Hamiltonian H with many cusps for the associated vector field is 
completely different from looking for an algebraic curve H = 0 with many cusps (as in [10]). 
See Fig. 6 for a phase portrait of a cubic system with a center and 4 cusps. It remains an open 
question whether or not the bound in Proposition 12 is optimal.

2. The initial unperturbed system

Although some of the results of this section can be seen in [1], for completeness we have 
reproduced the arguments here, at several places in a simpler way.

Clearly, for δ = ε = 0, the differential system corresponding to the first integral Ha,b,0,0(x, y), 
defined in (1), is
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Fig. 2. Graph of function f̂c (with m = 3); c can be either a or b.

ẋ = −f̂b(y) = −y

m∏
i=1

(bi − y)2,

ẏ = f̂a(x) = x

m∏
i=1

(ai − x)2.

(3)

See Fig. 2 for graphs of f̂a , f̂b . The origin is an equilibrium; we will refer to it as (a0, b0) :=
(0, 0), and consider it together with the indexed sequence of points (ai, bj ):

Lemma 5. The equilibrium points of system (3) are located at (ai, bj ), for i, j = 0, . . . , m and 
the qualitative behavior is of the following type:

(i) (0, 0) is a non-degenerate center and the algebraic intersection multiplicity of the two null-
clines is 1;

(ii) (ai, 0) and (0, bi), for i = 1, . . . , m are cusps and the algebraic intersection multiplicity of 
the two nullclines is 2; and

(iii) (ai, bj ) for i, j = 1, . . . , m are fake saddles and the algebraic intersection multiplicity of 
the two nullclines is 4.

Proof. The proof follows just computing the first and second derivatives of the function f̂c de-
fined in (3) and their values at z = ci for each i.

When ci �= cj , the function f̂c(z) has a simple zero at z = 0 and double zeros at z = ci , for 
i = 1, . . . , m. (See also Fig. 2). This observation directly leads to the claims on the algebraic 
intersection multiplicity. (See e.g. [6] for background on algebraic multiplicity.)

Following Remark 3, it suffices to compute the Taylor expansion of Ha,b,0,0 at the various 
equilibria, and the relate them to one of the normal forms listed above that remark by means of 
a simple linear transformation. This is in all the cases an elementary task: using the expressions 
for f̂a(x) and f̂b(y) we easily find the Taylor expansions:

(1) Around (0, 0) we have Ha,b,0,0 = x2

2 α + y2

2 β + O(x3) + O(y3) so a suitable transformation 
(u, v) = (α̃x, β̃y) puts the 2-jet in normal form. We point out to the reader that the shape of 
the Hamiltonian for (δ, ε) = (0, 0) is particular in the sense that the variables are separated. 
It facilitates the transformation to normal form: this transformation is a combination of two 
scalar diffeomorphisms, one for transforming x and one for transforming y. It is why we 
wrote the remainder terms as O(x3) + O(y3) instead of the slightly weaker O(‖(x, y)‖3). 
This remark will be valid for the expressions below as well.
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Fig. 3. Qualitative behavior near the equilibria.

(2) Around (ai, 0) (for i ≥ 1) we have Ha,b,0,0 = hi0 + (x−ai )
3

3 α + y2

2 β +O((x −ai)
4) +O(y3)

for some positive constants α, β . So a suitable transformation (u, v) = (α̃(x −ai), β̃y +γy2)

puts the 3-jet in normal form.

(3) Around (0, bj ) (for j ≥ 1) we have Ha,b,0,0 = h0j + x2

2 α+ (y−bj )3

3 β +O(x3) +O((y−bj )
4)

for some positive constants α, β . So a suitable transformation (u, v) = (α̃(y−bk), β̃x+γ x2)

puts the 3-jet in normal form.
(4) Similarly for the equilibria (ai, bj ) with i ≥ 1 and j ≥ 1.

Taking into account the different local changes of coordinates, we arrive at a partially complete 
understanding of the phase portrait: see Fig. 3 for the local qualitative behavior of the equilib-
ria. �
Lemma 6. When a = b and (δ, ε) = (0, 0), the vector field (3) associated to the Hamiltonian (1)
is time-reversible with respect the straight line y − x = 0.

Proof. Applying the transformation (x, y, t) �→ (y, x, −t) (which is a time reversal combined 
with the orthogonal reflection about y = x) leaves the vector field invariant when a = b. �
Lemma 7. Consider the Poincaré compactification of the polynomial vector field (3) on the 
Poincaré disc. The circle at infinity of (3) has no equilibria; in other words, (3) has a center 
at infinity.

Proof. One can use the fact that the phase portrait near infinity only depends on the terms of 
highest degree of (3), which is seen in (ẋ, ẏ) = (· · · − αy2m+1, · · · + αx2m+1) for some positive 
constant α. There are no equilibria because ẏx − ẋy = · · · + α(x2m+2 + y2m+2), which reveals 
that the part of θ̇ in polar coordinates that is dominant near r = ∞ is strictly positive. �

In the following lemma we describe some interesting properties of the singular level curves, 
i.e. those levels containing equilibria, and we obtain a better description of how these singular 
level curves are positioned relative to each other.
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Fig. 4. Possible configurations of the level curves passing through the cusp and fake saddles. (a) A symmetric configura-
tion. (b) A generic non-symmetric configuration without heteroclinics. (c) A non-generic non-symmetric configuration 
with one heteroclinic.

Lemma 8. Consider the Hamiltonian H = Ha,b,0,0, and the levels hij = H(ai, bj ) at the various 
equilibria listed in Lemma 5.

(1) The sequence (hij )i=0,...,m is a strictly increasing sequence for each j , and (hij )j=0,...,m is a 
strictly increasing sequence for each i. Furthermore, when a = b then hij = hji for all i, j .

(2) The set of (a, b) for which all singular levels hij are pairwise distinct from each other is 
dense inside the whole parameter space.

(3) Choose a, b in the above dense set. The singular levels hij , for (i, j) �= (0, 0), have level 
curves that are homeomorphic to a circle and that surround the center at the origin. Outside 
the singular level curves the phase plane is filled with periodic orbits around the center. See 
Fig. 4 for a possible configuration of them.

Proof. The first statement follows directly from the definition of functions F̂a,b defined in the 
proof of Lemma 5 and the fact that all ai and bj are positive. The statement concerning the 
symmetric case a = b follows directly from the symmetry provided by Lemma 6.

For the second statement, consider, for a fixed i ≥ 1, the map

F̃ik : ai �→
ak∫

0

fa(x)dx = Fa(ak),

hereby focusing on the variation of a single parameter ai . Then observe that when k �= i the 
expression F̃ik(ai) is a quadratic polynomial in ai of degree 2. On the other hand when k = i the 
expression has a strictly positive third order derivative: F̃ ′′′

ii = f ′′
a (ai) > 0. It implies that the map

ai �→ hij − hk


is not identically zero when i �= k. Similarly bj �→ hij − hk
 is not identically zero when j �= 
. 
A fortiori the map that considers all parameters and that sends (a, b) �→ (hij − hk
) is never 
identically zero when (i, j) �= (k, 
). So the set in parameter space where one or more levels are 
the same is a finite union of algebraic hypersurfaces, hence (now following Cen’s argument) the 
complement is open and dense.
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Let us finally deal with the third part. The absence of equilibria at infinity obtained in Lemma 7
is not so unimportant: it shows there are no unbounded level curves, or more concretely: it shows 
that any separatrix (of any of the cusps or fake saddles) must connect to another one of these 
separatrices (to form a homoclinic or heteroclinic connection). If we however take all singular 
levels pairwise distinct, then no heteroclinics appear and the cusps and fake saddles are part of 
homoclinic loops. By looking at the signs of ẋ and ẏ in the four quadrants one concludes that all 
these loops circle around the origin. �
Remark 9. The way that cusps alternate with fake saddles, when ordering the different singular 
points by increasing energy value, defines the qualitative picture. Different configurations lead 
to pictures that are completely different from those shown in Fig. 4. It is for example possible 
to have all heteroclinic cusp connections inside the heteroclinic or homoclinic fake saddle con-
nections (this appears just taking all ai and, symmetrically, all bi close enough). The precise 
configuration is however not important in view of proving our results. All we need is that the 
homoclinics are nested in each other, as stated in Lemma 8.

Lemma 10. The period function T (h) along the level curves �h = {Ha,b,0,0 = h} corresponding 
to non-singular energy levels h tend to infinity as h approaches one of the singular energy levels 
hij �= 0. In other words the graph of T has vertical asymptotes at h = hij .

Proof. Integration time tends to infinity as one approaches equilibrium on a singular level curve 
(except at the center). Note that there is no need of computing precise asymptotics (like for 
example in [11]) in view of proving our results. �

Let us now describe the qualitative behavior of the period function for the unperturbed system. 
For completeness, note that the period function near the linear center for (δ, ε) = (0, 0) can be 
easily obtained using polar coordinates. We define

T0 = 2π

(
∏

i≥1 ai)(
∏

j≥1 bj )
> 0.

Then:

Corollary 11. There exist values of a and b (and keeping (δ, ε) = (0, 0)) such that the period 
function associated to (3) has m2 + 2m asymptotes. Moreover, the period T (h) tends to T0 as 
h → 0 and tends to 0 as h → ∞. See Fig. 5 for a typical graph.

Proof. The first statement follows from Lemma 10 and counting the number of equilibria we 
have exactly m2 + 2m of them. The limiting behavior of the period function near the center 
has been briefly discussed above. In the proof of Lemma 7 we have computed r2θ̇ = ẏx − ẋy =
· · ·+α(x2m+2 +y2m+2). Hence, when r goes to infinity the period of the center located at infinity 
goes to zero. �
3. The first perturbation. From fake saddles to cusps

This section picks up the main differences of our work with [1]. In this section we will con-
sider, as in the previous section, only odd degree n.
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Fig. 5. Graph of the period function for the unperturbed (δ = ε = 0) system.

Our aim is to perturb the Hamiltonian Ha,b,0,0 in a way that the existing center and cusps 
remain but the existing fake saddle breaks into two cusps. Referring to Remark 3 we will have to 
take care that none of the existing cusps break into a saddle and a center.

Clearly, for ε = 0, the differential system corresponding to the first integral Ha,b,δ,0(x, y), 
defined in (1), is

ẋ = −
x∫

0

∂ga,δ,0(s, y)

∂y
ds − y

m∏
i=1

(bi − y)2,

ẏ = x

m∏
i=1

(ai − x + δy)2.

(4)

Proposition 12. There exist values of (a, b, δ), such that system (4) (keeping ε = 0) has an 
equilibrium of center type at (0, 0) and 2m2 + 2m equilibria of cusp type. There are no other 
equilibria. Moreover, the energy levels are different for each of the equilibrium points.

The proof is somewhat long; before initiating it let us give some insights. In Lemma 5 the 
characterization of equilibria was principally based on the intersection number of the two null-
clines. The nullclines were horizontal and vertical there, see Fig. 6 for the lowest degree case, 
i.e. the cubic case. If we want to make sure the cusps on the two principal axes are not broken, 
but the other ones have to, then the nullclines have to change in a specific way: we refer to Fig. 6
for the way that we do it: the order 4 intersections are split in two order 2 intersections, but the 
existing order 2 intersections are not being split. We also show in Fig. 6 the level curves through 
the equilibria, to give an impression of the phase portraits before and after perturbation.

Proof of Proposition 12. The proof will follow studying the local phase portrait of each equi-
librium depending on where it is located, at the origin, on the y-axis, near the x-axis, or far from 
the coordinates axis. Equivalently, we will prove that the local algebraic multiplicity of the in-
tersection of the components of (4) is always 2 except at the origin which is 1. More concretely, 
the equilibria near the coordinate axis, except the origin, remains double, as the case with δ = 0, 
while the rest, which are of multiplicity 4 when δ = 0, split exactly in two double points.
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Fig. 6. Cubic case. Nullclines of the vector field for values of different values of δ < 0, ordered by increasing distance to 
δ = 0. In red (blue) we have drawn when the vector field has vertical (horizontal) direction.

From the definitions in (2) it is clear that (0, 0) is an equilibrium point of (4) and, as the 
perturbation by δ does not break the Hamiltonian character, the local phase portrait given in 
Lemma 5 remains. So, the origin is of center type. In particular, the local multiplicity is 1.

On the y-axis, the equilibria remain located at (0, bj ) and again, as in the previous case, 
the phase portrait given in Lemma 5 does not change: they are all of cusp type and with local 
multiplicity 2. Another way of seeing this is to observe that the local expression of H , which was 
given before perturbation by

Ha,b,0,0 = h0j + x2

2
α + (y − bj )

3

3
β + O(x3) + O((y − bj )

4),

for some positive constants α, β (see Lemma 5), perturbs in an O(δx2)-way. To see this no-
tice that ga,δ,0(x, y) = ga,0,0(x, y) + δxr(x, y) for some r(x, y) implying that Ga,δ,0(x, y) =
Ga,0,0(x, y) + δx2R(x, y) for some R(x, y). So we find

Ha,b,δ,0 = h0j + x2

2
α + (y − bj )

3

3
β + δx2R(x, y) + O(x3) + O((y − bj )

4)

= h0j + x2

2
(α + O(δ, x)) + (y − bj )

3

3
β + O((y − bj )

4)

= h0j + 1

2

(
x
√

α + O(δ, x)
)2 + 1

3

(
(y − bj )

3
√

β + O(y − bj )
)3

,

Like in the proof of Lemma 5, an obvious transformation puts the 3-jet in cusp normal form, 
which is sufficient to prove the cusp behavior.

Let us next focus on the cusps on x-axis, i.e. located at (ai, 0). Our argument that they per-
turb to cusps is based solely on the study of the two nearby nullclines. The ẏ = 0 nullcline is 
actually a double line x = ai + δ, which is almost vertical for small δ �= 0. The other nullcline is 
more involved, but we only need ẋ = βy + O(y2) + O(δ) to know, using the Implicit Function 
Theorem, that near (ai, 0) the nullcline is a smooth graph y = δφ(x, δ). Clearly there is a unique 
intersection point near (ai, 0), and it is automatically a double point. In the Hamiltonian frame-
work, this implies that the perturbed equilibrium is necessarily a cusp (it is an easy consequence 
of catastrophe theory).

The other equilibria are again located at straight lines x = ai + δy, and are close to the fake 
saddles (ai, bj ) if we keep δ close to 0. Again, any of these perturbed equilibria are at least 
189
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double points, because of the specific form of the nullcline ẏ = 0 of (4). Using Lemma 13 stated 
below, it hence suffices to show that the nullcline ẋ = 0 of (4) bifurcates from a double line 
y = bj into two separate curves near the point (ai, bj ).

We recall the expression for ẋ, stressing its dependence on (y, δ), and keeping the dependence 
on x silent:

ẋ = ϕ(y, δ) = ψ(y, δ) + φ(y)

with

ψ(y, δ) =
x∫

0

(
∂

∂y
s

m∏
k=1

(ak − s + δy)2

)
ds,

and

φ(y) = y

m∏
k=1

(bk − y)2.

Fixing i ≥ 1 and j ≥ 1 we immediately see that

φ(y) = (bj − y)2(bj

∏m
k=1(bk − bj )

2︸ ︷︷ ︸
≥0

+O(y − bj )).

Straightforward computations show that

∂

∂y
s

m∏
k=1

(ak − s + δy)2

∣∣∣∣∣
y=bj +α

=s

m∑
k=1

2(aj − s + δy)δ

m∏

=1

�=k

(a
 − s + δy)2

=
(
s

m∑
k=1

2(aj − s)

m∏

=1

�=k

(a
 − s)2
)
δ + · · ·

so

ψ(α, δ) = δ(ψ1 + O(y − bj , δ)),

with

ψ1 := 2bj

x∫
0

(
s

m∑
k=1

2(aj − s)

m∏

=1

�=k

(a
 − s)2
)
ds.

Assuming ψ1 = ψ1(x) is strictly positive near x = ai , the nullcline is given by

δ(ψ1 + · · · ) + (y − bj )
2(φ1 + · · · ) = 0 (5)
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Fig. 7. From a fake saddle to two cusps.

which would prove the unfolding of the double line y = bj into two nearby curves for δ < 0
sufficiently close to 0.

An easy way to see that there exists values of aj such that ψ1 > 0 is to take all very close 
to the same value A. We can substitute x = ai = aj = a
 = A in the above first term and, at the 
limit point, we get

ψA
1 =

A∫
0

(
s

m∑
k=1

2(A − s)

m∏

=1

�=k

(A − s)2
)
ds

= 2m

A∫
0

s(A − s)2m−1ds

= A2m+1

2m + 1
> 0.

Consequently, for nearby choices of a = (a1, . . . , am) the property on ψ1 remains valid. In fact 
using the density property in Lemma 8 we can additionally assume that all energy levels of 
the unperturbed equilibria at δ = 0 are distinct for the chosen set of parameters (a, b). It then 
follows, using Lemma 13 below, the presence of two nearby cusps at different energy levels for 
δ < 0 sufficiently small. Note that it is immediately clear from (5) that there are no equilibria 
perturbing from the fake saddles when δ > 0. �

As announced inside the proof of Proposition 12, we state and prove following lemma:

Lemma 13. Let H = x3 + y3 + λx + μy + νxy. If the associated planar vector field does not 
have hyperbolic equilibria, then either there is no equilibrium at all, or there is a fake saddle 
equilibrium (and then (λ, μ, ν) = (0, 0, 0)), or there are two cusp equilibria, and in that case the 
values of H of both levels are distinct, see Fig. 7 for an example.

Proof. The number of equilibria, taken multiplicity into account, of the complexified system is 
4, so when there are no multiplicity 1 equilibria, we find only the following possibilities: 0 real 
equilibria, 2 real equilibria of multiplicity 2, and 1 equilibrium of multiplicity 4. It is not so 
hard to show that the last case only occurs for (λ, μ, ν) = (0, 0, 0), and one can also see that the 
second case only occurs for (λ, μ, ν) = (s, 0, 0) or (λ, μ, ν) = (0, s, 0), for some s < 0. The two 
possibilities are the same upon exchanging x and y, so let us focus on the first one. Then
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H = x3 + sx + y3.

The two equilibria are located at x = ±√−s/3, y = 0, which surely have different energy lev-
els. �

Like in the previous section, we could study infinity and rule out the possibility of equilibria 
there, thus showing that all level sets, singular and non-singular ones, are homoclinic connections 
and periodic orbits around the origin. We again finish the section by describing the qualitative 
behavior of the graph of the period function for ε = 0. It is similar to the one for δ = ε = 0, 
i.e. Fig. 5 remains valid also for δ �= 0, but with more asymptotes.

Corollary 14. Let (a, b, δ, ε = 0) be like in Proposition 12. Then the period function associated 
to (3) has 2m2 + 2m asymptotes. Moreover, the behavior near h = 0 and near h = ∞ is similar 
to the unperturbed case.

We finish this section by giving a supplementary explicit example in the cubics (e.g. with 
degree 4 Hamiltonian), for which it is elementary to show (ideally with the aid of some computer 
algebra program), for a specific value of δ, the claims that are only proven to be correct in the 
above proposition for δ < 0 sufficiently close to 0. It is in fact this family that we used as input 
for Fig. 6. Of course, for the remainder of the proof of our main theorem, the reader may continue 
to read the next section.

Taking m = 1 and using f2,ε(x) = y((2 − y)2 + ε) and g3,δ,ε(x, y) = x((3 − x + δy)2 + ε)

we get the specific degree 4 Hamiltonian

H3,2,δ,ε = 1
4x4 − 2δ

3 x3y + δ2

2 x2y2 + 1
4y4

− 2x3 + 3δx2y − 4
3y3 + 9

2x2 + 2y2 + ε
x2+y2

2 .

(6)

For (δ, ε) = (−1/9, 0) it corresponds to the following cubic vector field:

ẋ = − 2
27 x3 − 1

81 x2y − y3 + 1
3 x2 + 4y2 − 4y,

ẏ = 1
81x (9x + y − 27)2 .

It has 5 equilibrium points P0 = (0, 0), P1 = (0, 2), P2 =
(

225
76 , 27

76

)
, and P± = (3 − 3γ±, 27γ±), 

where γ± = 5
74 ± 3

518

√
21. In Table 1 we list the local normalizing transformations and resulting 

normal forms of the Hamiltonian up to order 3. Clearly P0 is a center and the other four are cusp 
points.

The plots of the nullclines of the vector field corresponding to Hδ , for δ = −10−4, −10−2,

−1/9, are shown in Fig. 6. For the sake of completeness we show the phase portrait of the vector 
field with δ = −1/9 in Fig. 8.

4. The second perturbation. Removing equilibria

In this section we will prove Theorem 1 for odd degree n as a direct consequence of the results 
proved in Section 3. As we have described above, for δ < 0 and ε > 0, the differential system 
corresponding to the Hamiltonian Ha,δ,ε(x, y), defined in (1), is
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Table 1
Normalizing transformations (up to order 3) near equilibria of a cubic example.

P Transformation Local normal form of H−1/9

P0 x = u + 2
9 u2 H0 = 9

2 u2 + 2v2

y = v + 1
12 u2 + 1

3 v2

P1 x = u + 6
25 u2 + 1

25 uv H1 = 4
3 + 625

162 u2 + 2
35 v3

y = 2 + v

P2 x = 225
76 + u − 1

9 v H2 = 11585997
1755904 + 125

152 v2 + 75
76 u3

y = 27
76 + v + 18088

30375 v2

P± x = 3 − 3γ± H± = 279207
38332 − 37179

2738 γ±
y = 27γ± + v + 1−γ±

13−238γ± u2 + 238γ±−13
6 v2

+ 1−γ±
117−2142γ± uv − 4−81γ±

13−238γ± v2 + (1 − γ±)u3

Fig. 8. Qualitative phase portrait of an explicit cubic system with one center and three cusps.

ẋ = −
x∫

0

∂ga,δ,ε(s, y)

∂y
ds − y

m∏
i=1

((bi − y)2 + ε),

ẏ = x

m∏
i=1

((ai − x + δy)2 + ε).

(7)

As in [1], when ε > 0 small enough, the equilibria located out of the origin disappear and all 
asymptotes of the period function provided by Corollary 14 are replaced by maxima of the corre-
sponding period function. Consequently, we have 2m2 +2m maxima and 2m2 +2m −1 minima. 
Hence, as n = 2m + 1, we obtain at least 4m2 + 4m − 1 = n2 − 2 critical periods.
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Remark 15. If we want to be more precise then we say that for any orbit γa,b,δ,ε that approaches a 
singular level curve γa,b,δ,0 the period tends to ∞, whereas the period function remains bounded 
as ε → 0 for orbits that are away from the singular level sets. Since we have a finite number of 
singular levels, we can take ε > 0 small enough for the period function to have the guaranteed 
minimum number of oscillations. This more precise explanation shows that some care is needed 
when one wants to generalize the results to constructing examples with an infinite number of 
critical periods.

5. The third perturbation. Near infinity

This section is devoted to the proof of the second part of Theorem 1, that is when the degree 
of the vector field n is even. Our approach differs substantially from the one in [1]. We will use 
again a perturbative mechanism, now of system (7).

Let us consider Hamiltonian system of degree n = 2m + 2 given by

ẋ = −
x∫

0

∂ga,δ,ε(s, y)

∂y
ds − y

m∏
i=1

((bi − y)2 + ε) + μy2m+2,

ẏ = x

m∏
i=1

((ai − x + δy)2 + ε) − μx2m+2.

where μ is a small parameter. It corresponds to the Hamiltonian

H̃a,b,δ,ε,μ = Ha,b,δ,ε − μ

2m + 3

(
x2m+3 + y2m+3

)
.

When μ = 0 all the results proved in previous section apply, and it is easy to check that all 
the equilibria bifurcations and oscillations of the period function occurs in a compact region K . 
Consequently, for μ small enough, the number of oscillations of the period function remains as 
for the odd Hamiltonian of odd degree 2m + 1. Therefore, the proof for even degree finishes 
because the number of oscillations will be, using Theorem 1 for the odd degree case, at least 
(2m + 1)2 − 2 = n2 − 2n − 1.

Remark 16. The above proof does not depend on the explicit perturbation terms. But if we would 
like to improve the lower bound a little (only one extra oscillation), we suggest taking the next 
steps, that we leave for the reader to verify. When μ � 0, there are exactly two nodes at infinity, 
located in the direction of y + x = 0. This is because ẏx − ẋy = · · · − μ(x2m+3 + y2m+3). The 
fact that they are nodes should be easy to prove. Additionally, from infinity emerge two (finite) 
saddles from the positive y-axis and another from the positive x-axis. Finally, one observes an 
additional center equilibrium in the direction y − x = 0 for x, y big enough. A summary is 
shown in Fig. 9. By considering this perturbation, the period annulus has a boundary defined by 
a heteroclinic cycle, partly along infinity and also containing a heteroclinic saddle connection 
between two hyperbolic saddles in the finite region. The period function should hence go to 
infinity as one approaches this singular cycle, so an extra oscillation occurs.
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Fig. 9. Phase portrait on the Poincaré sphere after the third perturbation. The dynamics in the compact region K does not 
change qualitatively under this final perturbation.

6. No upper bound for analytic Hamiltonian vector fields

Finally, we will extend this idea to an analytic vector field that the unperturbed system, taking 
ε = 0, has infinitely many degenerate equilibrium points but the presented proof does not provide 
infinitely many isolated critical periods. Nevertheless, at the end of this section we present a 
simple ad-hoc example of an analytic vector field with infinitely many critical periods, unrelated 
to any nearby cusp equilibria.

Proposition 17. For any n, there exist ε > 0 small enough such that the period function of system

ẋ = −y(1 + ε − siny),

ẏ = x(1 + ε − sinx),
(8)

has at least n critical periods.

Proof. The proof follows the same steps as the proof of Theorem 1. We start describing the phase 
portrait of the unperturbed system (8) when ε = 0. It has only one non-degenerate center located 
the origin and the other equilibrium points are of cusp and fake saddle type. The cusps are located 
at (0, π/2 + 2kπ) and (π/2 + 2kπ, 0), for any k ∈ Z and the fake saddles are located at (π/2 +
2kπ, π/2 + 2
π), for any k, 
 ∈ Z. Here we have no other centers nor saddles. This system is 
also time reversible with respect to the straight line y − x = 0. Consequently, we have only one 
period annulus and the period function has infinitely many of asymptotics and minima. The proof 
finishes taking ε > 0 small enough and, by continuity, the asymptotics disappear converting to 
maxima and the number of minima remain. We note that for a fixed ε we can control only the 
oscillations in a compact region. Of course decreasing ε the number of oscillations increases 
and the compact region can be taken higher. But we can not extend this argument to prove the 
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existence of infinitely many of critical periods because we have not described the behavior of 
infinity and the uniformity of the decreasing of ε. �

We remark that in equation (8) also the value of the energy levels decrease along vertical and 
horizontal straight lines and we do not need to study if in a level there are one or more equilibria 
because there are infinitely many of them. In fact, the qualitative behavior of this example is very 
close to the odd degree study made by Cen in [1]. Clearly, there are other analytic vector fields 
having the same property, a similar result can be found changing the function 1 − siny by cos2 y.

Finally, if we fix the compact the number of oscillations can be increased increasing the fre-
quency of oscillations, 1 − sinky, but fixed ε the finiteness is maintained. Hence, this approach 
does not prove that we have “infinitely many” isolated critical periods.

As mentioned in the beginning of this section we now present a simple example of a Hamil-
tonian vector field with infinitely many cusps: consider

Hε(x, y) = x2 + y2 + ε sin(x2 + y2), 0 < ε < 1.

We write Hε(r cos θ, r sin θ) = H̃ε(r, θ) in order to consider Hε in polar coordinates:

H̃ε(r, θ) = r2 + ε sin(r2),

so we immediately find the associated family of vector fields in polar coordinates:

ṙ = −1

r

∂H̃ε

∂θ
= 0, θ̇ = 1

r

∂H̃ε

∂r
= 2 + 2ε cos(r2).

When 0 < ε < 1, all orbits are circles r = r0. Recall that we use the energy level as a parameter 
for the orbits (see Remark 2), so we find

Tε(r
2
0 + ε sin(r2

0 )) = π

1 + ε cos(r2
0 )

.

The right hand side oscillates an infinite number of times between π
1+ε

and π
1−ε

for r0 in the 
interval [0, ∞[, and since r0 �→ r2

0 + ε sin(r2
0 ) is a monotonically increasing function, also the 

function h �→ Tε(h) will oscillate an infinite number of times.
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