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Abstract. We provide the best lower bound for the number of
critical periods of planar polynomial centers known up to now.
The new lower bound is obtained in the Hamiltonian class and
considering a single period annulus. This lower bound doubles the
previous one from the literature, and we end up with at least n2−2
(resp. n2−2n−1) critical periods for planar polynomial systems of
odd (resp. even) degree n. Key idea is the perturbation of a vector
field with many cusp equilibria, whose construction is by itself a
nontrivial construction that uses elements of catastrophe theory.

1. Introduction

The study of the number of oscillations of the period function as-
sociated to a planar polynomial center has a long history that took
a start with the seminal paper by Chicone and Jacobs in 1989 where
the authors did a bifurcation analysis of the critical periods for pla-
nar vector fields in [2]. In classical Liénard families the isochronicity
and monotonicity problems were studied in [12] and later in [4]. For
polynomial families of arbitrary degree there are very few studies. The
first lower bound of order n was obtained by Cima, Gasull, and Silva
in 2008, see [3]. This result was quickly improved providing a lower
bound of order n2/4, using perturbations from a center as in [8], by
Gasull, Liu, and Yang in a paper published in 2010, see [7]. More
concretely, they proved that the number of critical periods is higher
than or equal to (n2 + 6n− 4)/4 in the even degree case, with a simi-
lar but slightly worse bound for the odd degree case. This bound was
recently improved by Cen in 2021, see [1]. Cen, with a very nice idea
of removing cusps or fake saddles via a simple perturbation, provides
a new lower bound, doubled in order. In fact, he proves that there
exist odd degree Hamiltonian vector fields having a center for which
the corresponding period function has at least (n2 + 2n− 5)/2 critical
periods. Cen’s construction leads for the even degree case to a slightly
worse bound given by (n2−4)/2. In both cases, the analyzed center has
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only one period annulus. In the present paper, inspired by Cen’s idea,
we managed to roughly double the number of oscillations. Providing a
new lower bound of order n2 instead of order n2/2. Up to our knowl-
edge, this is the best lower bound for the number of oscillations of the
period function of a center, but we have no indications concerning the
optimality of our result. The proof will closely follow Cen’s proof but
with a refined unfolding of a fake saddle into two cusps, as in [5]. Our
main result is the following.

Theorem 1. There exist (Hamiltonian) planar polynomial vector fields
of odd (resp. even) degree n ≥ 3, having a center and whose period
function associated to the period annulus around that center has at
least n2 − 2 (resp. n2 − 2n− 1) critical periods.

Remark 2. With the period function we mean the function T that
maps a given Hamiltonian energy level h to the positive time it takes
to travel along one round around the center, under condition that the
level curve is homeomorphic to a circle. The Hamiltonian function in
Theorem 1 is of degree n+ 1.

The key point is to study the period function associated to the center
located at the origin of the planar polynomial vector field of degree
n = 2m+ 1 (m ≥ 1), defined by the Hamiltonian

Ha,b,δ,ε(x, y) = Ga,δ,ε(x, y) + Fb,ε(y) =

∫ x

0

ga,δ,ε(s, y)ds+

∫ y

0

fb,ε(s)ds,

(1)
where δ, ε > 0 are sufficiently small parameters, a = (a1, . . . , am), b =
(b1, . . . , bm) satisfying 0 < a1 < a2 < · · · < am < 1, 0 < b1 < b2 < · · · <
bm < 1 and

fb,ε(y) = y

m∏
i=1

((bi−y)2+ε), ga,δ,ε(x, y) = x

m∏
i=1

((ai−x+δy)2+ε). (2)

The construction involves making a particular choice for a and b.
This idea is inspired by Cen’s construction in [1], but unlike in that
paper we use a two-stage perturbation: after analyzing Ha,b,0,0 in Sec-
tion 2 we proceed to study the perturbation Ha,b,δ,0 in Section 3 and
finish the proof in the odd degree case in Section 4 by examining the
effect of the ε-perturbation in Ha,b,δ,ε. For the even degree case we will
even need a third perturbation level; this is worked out in Section 5.
Finally, we present an analytic example with an infinite number of
oscillations in Section 6.

Three types of equilibria will play a role in the Hamiltonian systems
here: we will relate them to critical points of Hamiltonian functions in
local normal form coordinates:

(1) centers, i.e. where H = u2 + v2,
(2) cusps, i.e. where H = u3 + v2,
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Figure 1. Level curves of Hamiltonians in normal form
coordinates near the equilibria that appear in this paper.

(3) fake saddles, i.e. where H = u3 + v3.

See Figure 1 for the local phase portraits.

Remark 3. When considering the critical points of the Hamiltonians,
their unfoldings are described by catastrophe theory (see for example
[9]). The Hamiltonian H = u2 + v2 has a non-degenerate critical
point (Morse type), which is stable. The Hamiltonian H = u3 + v2

is part of the stable unfolding Hλ = u3 + v2 + λu (fold catastrophe
breaking up the associated cusp equilibrium into a saddle and a cen-
ter). The Hamiltonian H = u3 + v3 is part of the stable unfolding
Hλ,µ,ν = u3 + v3 + λu + µv + νuv (hyperbolic umbilic catastrophe).
The unfolding contains regions where the equilibrium splits into two
cusps; it is the basis of our construction. Using [9] one can see that the
three above normal forms are 2-determined resp. 3-determined, where
k-determinacy means it suffices to compare the k-order Taylor expan-
sion of a given function with the normal form to conclude both are
locally (right-)equivalent. (Note that right equivalence of two Hamilto-
nians corresponds to orbital equivalence of the associated vector fields.)
Outside the Hamiltonian class, centers are of course not preserved un-
der perturbation, cusps may undergo Bogdanov–Takens bifurcations,
and fake saddles have a more involved unfolding; see [5].

Remark 4. A side result in this paper is the construction of degree
n Hamiltonian vector fields with O(n2/2) cusps (see Proposition 12).
It is in general not so easy to construct vector fields with prescribed
equilibria and homoclinic/heteroclinic connections. The restriction to
the Hamiltonian case makes the question a little bit more tractable, but
it is still difficult. We remark in that light that looking for a Hamil-
tonian H with many cusps for the associated vector field is completely
different from looking for an algebraic curve H = 0 with many cusps
(as in [10]). See Figure 6 for a phase portrait of a cubic system with
a center and 4 cusps. It remains an open question whether or not the
bound in Proposition 12 is optimal.

2. The initial unperturbed system

Although some of the results of this section can be seen in [1], for
completeness we have reproduced the arguments here, at several places
in a simpler way.
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Figure 2. Graph of function f̂c (with m = 3); c can be
either a or b.

Clearly, for δ = ε = 0, the differential system corresponding to the
first integral Ha,b,0,0(x, y), defined in (1), is

ẋ = −f̂b(y) = −y
m∏
i=1

(bi − y)2,

ẏ = f̂a(x) = x
m∏
i=1

(ai − x)2.

(3)

See Figure 2 for graphs of f̂a, f̂b. The origin is an equilibrium; we will
refer to it as (a0, b0) := (0, 0), and consider it together with the indexed
sequence of points (ai, bj):

Lemma 5. The equilibrium points of system (3) are located at (ai, bj),
for i, j = 0, . . . ,m and the qualitative behavior is of the following type:

(i) (0, 0) is a non-degenerate center and the algebraic intersection
multiplicity of the two nullclines is 1;

(ii) (ai, 0) and (0, bi), for i = 1, . . . ,m are cusps and the algebraic
intersection multiplicity of the two nullclines is 2; and

(iii) (ai, bj) for i, j = 1, . . . ,m are fake saddles and the algebraic in-
tersection multiplicity of the two nullclines is 4.

Proof. The proof follows just computing the first and second derivatives
of the function f̂c defined in (3) and their values at z = ci for each i.

When ci ̸= cj, the function f̂c(z) has a simple zero at z = 0 and
double zeros at z = ci, for i = 1, . . . ,m. (See also Figure 2). This
observation directly leads to the claims on the algebraic intersection
multiplicity. (See eg. [6] for background on algebraic multiplicity.)

Following Remark 3, it suffices to compute the Taylor expansion of
Ha,b,0,0 at the various equilibria, and the relate them to one of the
normal forms listed above that remark by means of a simple linear
transformation. This is in all the cases an elementary task: using the
expressions for f̂a(x) and f̂b(y) we easily find the Taylor expansions:

(1) Around (0, 0) we have Ha,b,0,0 = x2

2
α + y2

2
β + O(x3) + O(y3)

so a suitable transformation (u, v) = (α̃x, β̃y) puts the 2-jet in
normal form. We point out to the reader that the shape of the
Hamiltonian for (δ, ε) = (0, 0) is particular in the sense that
the variables are separated. It facilitates the transformation to
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Figure 3. Qualitative behaviour near the equilibria

normal form: this transformation is a combination of two scalar
diffeomorphisms, one for transforming x and one for transform-
ing y. It is why we wrote the remainder terms as O(x3)+O(y3)
instead of the slightly weaker O(∥(x, y)∥3). This remark will be
valid for the expressions below as well.

(2) Around (ai, 0) (for i ≥ 1) we have Ha,b,0,0 = hi0 +
(x−ai)

3

3
α +

y2

2
β + O((x − ai)

4) + O(y3) for some positive constants α, β.

So a suitable transformation (u, v) = (α̃(x− ai), β̃y+ γy2) puts
the 3-jet in normal form.

(3) Around (0, bj) (for j ≥ 1) we haveHa,b,0,0 = h0j+
x2

2
α+

(y−bj)
3

3
β+

O(x3) + O((y − bj)
4) for some positive constants α, β. So a

suitable transformation (u, v) = (α̃(y − bk), β̃x+ γx2) puts the
3-jet in normal form.

(4) Similarly for the equilibria (ai, bj) with i ≥ 1 and j ≥ 1.

Taking into account the different local changes of coordinates, we ar-
rive at a partially complete understanding of the phase portrait: see
Figure 3 for the local qualitative behavior of the equilibria. □

Lemma 6. When a = b and (δ, ε) = (0, 0), the vector field (3) associ-
ated to the Hamiltonian (1) is time-reversible with respect the straight
line y − x = 0.

Proof. Applying the transformation (x, y, t) 7→ (y, x,−t) (which is a
time reversal combined with the orthogonal reflection about y = x)
leaves the vector field invariant when a = b. □

Lemma 7. Consider the Poincaré compactification of the polynomial
vector field (3) on the Poincaré disc. The circle at infinity of (3) has
no equilibria; in other words, (3) has a center at infinity.

Proof. One can use the fact that the phase portrait near infinity only
depends on the terms of highest degree of (3), which is seen in (ẋ, ẏ) =
(· · · − αy2m+1, · · · + αx2m+1) for some positive constant α. There are
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no equilibria because ẏx− ẋy = · · ·+ α(x2m+2 + y2m+2), which reveals

that the part of θ̇ in polar coordinates that is dominant near r = ∞ is
strictly positive. □

In the following lemma we describe some interesting properties of
the singular level curves, i.e. those levels containing equilibria, and
we obtain a better description of how these singular level curves are
positioned relative to each other.

Lemma 8. Consider the Hamiltonian H = Ha,b,0,0, and the levels hij =
H(ai, bj) at the various equilibria listed in Lemma 5.

(1) The sequence (hij)i=0,...,m is a strictly increasing sequence for
each j, and (hij)j=0,...,m is a strictly increasing sequence for each
i. Furthermore, when a = b then hij = hji for all i, j.

(2) The set of (a, b) for which all singular levels hij are pairwise
distinct from each other is dense inside the whole parameter
space.

(3) Choose a, b in the above dense set. The singular levels hij, for
(i, j) ̸= (0, 0), have level curves that are homeomorphic to a
circle and that surround the center at the origin. Outside the
singular level curves the phase plane is filled with periodic orbits
around the center. See Figure 4 for a possible configuration of
them.

Proof. The first statement follows directly from the definition of func-
tions F̂a,b defined in the proof of Lemma 5 and the fact that all ai and
bj are positive. The statement concerning the symmetric case a = b
follows directly from the symmetry provided by Lemma 6.

For the second statement, consider, for a fixed i ≥ 1, the map

F̃ik : ai 7→
∫ ak

0

fa(x)dx = Fa(ak),

hereby focusing on the variation of a single parameter ai. Then observe
that when k ̸= i the expression F̃ik(ai) is a quadratic polynomial in ai
of degree 2. On the other hand when k = i the expression has a strictly
positive third order derivative: F̃ ′′′

ii = f ′′
a (ai) > 0. It implies that the

map
ai 7→ hij − hkℓ

is not identically zero when i ̸= k. Similarly bj 7→ hij − hkℓ is not
identically zero when j ̸= ℓ. A fortiori the map that considers all
parameters and that sends (a, b) 7→ (hij − hkℓ) is never identically zero
when (i, j) ̸= (k, ℓ). So the set in parameter space where one or more
levels are the same is a finite union of algebraic hypersurfaces, hence
(now following Cen’s argument) the complement is open and dense.

Let us finally deal with the third part. The absence of equilibria at
infinity obtained in Lemma 7 is not so unimportant: it shows there are
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(a) (b) (c)

Figure 4. Possible configurations of the level curves
passing through the cusp and fake saddles. (a) A sym-
metric configuration. (b) A generic non-symmetric con-
figuration without heteroclinics. (c) A non-generic non-
symmetric configuration with one heteroclinic.

no unbounded level curves, or more concretely: it shows that any sepa-
ratrix (of any of the cusps or fake saddles) must connect to another one
of these separatrices (to form a homoclinic or heteroclinic connection).
If we however take all singular levels pairwise distinct, then no hete-
roclinics appear and the cusps and fake saddles are part of homoclinic
loops. By looking at the signs of ẋ and ẏ in the four quadrants one
concludes that all these loops circle around the origin. □

Remark 9. The way that cusps alternate with fake saddles, when or-
dering the different singular points by increasing energy value, defines
the qualitative picture. Different configurations lead to pictures that are
completely different from those shown in Figure 4. It is for example
possible to have all heteroclinic cusp connections inside the heteroclinic
or homoclinic fake saddle connections (this appears just taking all ai
and, symmetrically, all bi close enough). The precise configuration is
however not important in view of proving our results. All we need is
that the homoclinics are nested in each other, as stated in Lemma 8.

Lemma 10. The period function T (h) along the level curves Γh =
{Ha,b,0,0 = h} corresponding to non-singular energy levels h tend to
infinity as h approaches one of the singular energy levels hij ̸= 0. In
other words the graph of T has vertical asymptotes at h = hij.

Proof. Integration time tends to infinity as one approaches equilibrium
on a singular level curve (except at the center). Note that there is no
need of computing precise asymptotics (like for example in [11]) in view
of proving our results. □

Let us now describe the qualitative behavior of the period function
for the unperturbed system. For completeness, note that the period



8 P. DE MAESSCHALCK AND J. TORREGROSA

T (h)

h

T0

· · ·

· · ·

Figure 5. Graph of the period function for the unper-
turbed (δ = ε = 0) system

function near the linear center for (δ, ε) = (0, 0) can be easily obtained
using polar coordinates. We define

T0 =
2π

(
∏

i≥1 ai)(
∏

j≥1 bj)
> 0.

Then:

Corollary 11. There exist values of a and b (and keeping (δ, ε) =
(0, 0)) such that the period function associated to (3) has m2 + 2m
asymptotes. Moreover, the period T (h) tends to T0 as h→ 0 and tends
to 0 as h→ ∞. See Figure 5 for a typical graph.

Proof. The first statement follows from Lemma 10 and counting the
number of equilibria we have exactly m2 + 2m of them. The limit-
ing behavior of the period function near the center has been briefly
discussed above. In the proof of Lemma 7 we have computed r2θ̇ =
ẏx− ẋy = · · ·+ α(x2m+2 + y2m+2). Hence, when r goes to infinity the
period of the center located at infinity goes to zero. □

3. The first perturbation. From fake saddles to cusps

This section picks up the main differences of our work with [1]. In
this section we will consider, as in the previous section, only odd degree
n.

Our aim is to perturb the Hamiltonian Ha,b,0,0 in a way that the
existing center and cusps remain but the existing fake saddle breaks
into two cusps. Referring to Remark 3 we will have to take care that
none of the existing cusps break into a saddle and a center.
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Figure 6. Cubic case. Nullclines of the vector field for
values of different values of δ < 0, ordered by increasing
distance to δ = 0. In red (blue) we have drawn when the
vector field has vertical (horizontal) direction.

Clearly, for ε = 0, the differential system corresponding to the first
integral Ha,b,δ,0(x, y), defined in (1), is

ẋ = −
∫ x

0

∂ga,δ,0(s, y)

∂y
ds− y

m∏
i=1

(bi − y)2,

ẏ = x
m∏
i=1

(ai − x+ δy)2.

(4)

Proposition 12. There exist values of (a, b, δ), such that system (4)
(keeping ε = 0) has an equilibrium of center type at (0, 0) and 2m2+2m
equilibria of cusp type. There are no other equilibria. Moreover, the
energy levels are different for each of the equilibrium points.

The proof is somewhat long; before initiating it let us give some
insights. In Lemma 5 the characterization of equilibria was principally
based on the intersection number of the two nullclines. The nullclines
were horizontal and vertical there, see Figure 6 for the lowest degree
case, i.e. the cubic case. If we want to make sure the cusps on the
two principle axes are not broken, but the other ones have to, then the
nullclines have to change in a specific way: we refer to Figure 6 for the
way that we do it: the order 4 intersections are split in two order 2
intersections, but the existing order 2 intersections are not being split.
We also show in Figure 6 the level curves through the equilibria, to give
an impression of the phase portraits before and after perturbation.

Proof of Proposition 12. The proof will follow studying the local phase
portrait of each equilibrium depending on where it is located, at the
origin, on the y-axis, near the x-axis, or far from the coordinates axis.
Equivalently, we will prove that the local algebraic multiplicity of the
intersection of the components of (4) is always 2 except at the origin
which is 1. More concretely, the equilibria near the coordinate axis,
except the origin, remains double, as the case with δ = 0, while the
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rest, which are of multiplicity 4 when δ = 0, split exactly in two double
points.

From the definitions in (2) it is clear that (0, 0) is an equilibrium point
of (4) and, as the perturbation by δ does not break the Hamiltonian
character, the local phase portrait given in Lemma 5 remains. So, the
origin is of center type. In particular, the local multiplicity is 1.

On the y-axis, the equilibria remain located at (0, bj) and again,
as in the previous case, the phase portrait given in Lemma 5 does not
change: they are all of cusp type and with local multiplicity 2. Another
way of seeing this is to observe that the local expression of H, which
was given before perturbation by

Ha,b,0,0 = h0j +
x2

2
α +

(y − bj)
3

3
β +O(x3) +O((y − bj)

4),

for some positive constants α, β (see Lemma 5), perturbs in an O(δx2)-
way. To see this notice that ga,δ,0(x, y) = ga,0,0(x, y)+δxr(x, y) for some
r(x, y) implying that Ga,δ,0(x, y) = Ga,0,0(x, y) + δx2R(x, y) for some
R(x, y). So we find

Ha,b,δ,0 = h0j +
x2

2
α +

(y − bj)
3

3
β + δx2R(x, y) +O(x3) +O((y − bj)

4)

= h0j +
x2

2
(α +O(δ, x)) +

(y − bj)
3

3
β +O((y − bj)

4)

= h0j +
1

2

(
x
√
α +O(δ, x)

)2
+

1

3

(
(y − bj)

3

√
β +O(y − bj)

)3

,

Like in the proof of Lemma 5, an obvious transformation puts the 3-jet
in cusp normal form, which is sufficient to prove the cusp behavior.

Let us next focus on the cusps on x-axis, i.e. located at (ai, 0). Our
argument that they perturb to cusps is based solely on the study of
the two nearby nullclines. The ẏ = 0 nullcline is actually a double line
x = ai+ δ, which is almost vertical for small δ ̸= 0. The other nullcline
is more involved, but we only need ẋ = βy + O(y2) + O(δ) to know,
using the Implicit Function Theorem, that near (ai, 0) the nullcline is a
smooth graph y = δϕ(x, δ). Clearly there is a unique intersection point
near (ai, 0), and it is automatically a double point. In the Hamiltonian
framework, this implies that the perturbed equilibrium is necessarily a
cusp (it is an easy consequence of catastrophe theory).
The other equilibria are again located at straight lines x = ai + δy,

and are close to the fake saddles (ai, bj) if we keep δ close to 0. Again,
any of these perturbed equilibria are at least double points, because
of the specific form of the nullcline ẏ = 0 of (4). Using Lemma 13
stated below, it hence suffices to show that the nullcline ẋ = 0 of (4)
bifurcates from a double line y = bj into two separate curves near the
point (ai, bj).
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We recall the expression for ẋ, stressing its dependence on (y, δ), and
keeping the dependence on x silent:

ẋ = φ(y, δ) = ψ(y, δ) + ϕ(y)

with

ψ(y, δ) =

∫ x

0

(
∂

∂y
s

m∏
k=1

(ak − s+ δy)2

)
ds,

and

ϕ(y) = y

m∏
k=1

(bk − y)2.

Fixing i ≥ 1 and j ≥ 1 we immediately see that

ϕ(y) = (bj − y)2(bj
∏m

k=1(bk − bj)
2︸ ︷︷ ︸

≥0

+O(y − bj)).

Straightforward computations show that

∂

∂y
s

m∏
k=1

(ak − s+ δy)2

∣∣∣∣∣
y=bj+α

=s
m∑
k=1

2(aj − s+ δy)δ
m∏
ℓ=1
ℓ ̸=k

(aℓ − s+ δy)2

=
(
s

m∑
k=1

2(aj − s)
m∏
ℓ=1
ℓ̸=k

(aℓ − s)2
)
δ + · · ·

so
ψ(α, δ) = δ(ψ1 +O(y − bj, δ)),

with

ψ1 := 2bj

∫ x

0

(
s

m∑
k=1

2(aj − s)
m∏
ℓ=1
ℓ ̸=k

(aℓ − s)2
)
ds.

Assuming ψ1 = ψ1(x) is strictly positive near x = ai, the nullcline is
given by

δ(ψ1 + · · · ) + (y − bj)
2(ϕ1 + · · · ) = 0 (5)

which would prove the unfolding of the double line y = bj into two
nearby curves for δ < 0 sufficiently close to 0.

An easy way to see that there exists values of aj such that ψ1 > 0 is
to take all very close to the same value A. We can substitute x = ai =
aj = aℓ = A in the above first term and, at the limit point, we get

ψA
1 =

∫ A

0

(
s

m∑
k=1

2(A− s)
m∏
ℓ=1
ℓ ̸=k

(A− s)2
)
ds

= 2m

∫ A

0

s(A− s)2m−1ds

=
A2m+1

2m+ 1
> 0.



12 P. DE MAESSCHALCK AND J. TORREGROSA

Figure 7. From a fake saddle to two cusps

Consequently, for nearby choices of a = (a1, . . . , am) the property on
ψ1 remains valid. In fact using the density property in Lemma 8 we can
additionally assume that all energy levels of the unperturbed equilibria
at δ = 0 are distinct for the chosen set of parameters (a, b). It then
follows, using Lemma 13 below, the presence of two nearby cusps at
different energy levels for δ < 0 sufficiently small. Note that it is
immediately clear from (5) that there are no equilibria perturbing from
the fake saddles when δ > 0. □

As announced inside the proof of Proposition 12, we state and prove
following lemma:

Lemma 13. Let H = x3 + y3 + λx + µy + νxy. If the associated
planar vector field does not have hyperbolic equilibria, then either there
is no equilibrium at all, or there is a fake saddle equilibrium (and then
(λ, µ, ν) = (0, 0, 0)), or there are two cusp equilibria, and in that case
the values of H of both levels are distinct, see Figure 7 for an example.

Proof. The number of equilibria, taken multiplicity into account, of the
complexified system is 4, so when there are no multiplicity 1 equilibria,
we find only the following possibilities: 0 real equilibria, 2 real equilibria
of multiplicity 2, and 1 equilibrium of multiplicity 4. It is not so hard
to show that the last case only occurs for (λ, µ, ν) = (0, 0, 0), and one
can also see that the second case only occurs for (λ, µ, ν) = (s, 0, 0) or
(λ, µ, ν) = (0, s, 0), for some s < 0. The two possibilities are the same
upon exchanging x and y, so let us focus on the first one. Then

H = x3 + sx+ y3.

The two equilibria are located at x = ±
√

−s/3, y = 0, which surely
have different energy levels. □

Like in the previous section, we could study infinity and rule out
the possibility of equilibria there, thus showing that all level sets, sin-
gular and non-singular ones, are homoclinic connections and periodic
orbits around the origin. We again finish the section by describing the
qualitative behavior of the graph of the period function for ε = 0. It
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is similar to the one for δ = ε = 0, i.e. Figure 5 remains valid also for
δ ̸= 0, but with more asymptotes.

Corollary 14. Let (a, b, δ, ε = 0) be like in Proposition 12. Then the
period function associated to (3) has 2m2 +2m asymptotes. Moreover,
the behavior near h = 0 and near h = ∞ is similar to the unperturbed
case.

We finish this section by giving a supplementary explicit example in
the cubics (eg. with degree 4 Hamiltonian), for which it is elementary
to show (ideally with the aid of some computer algebra program), for
a specific value of δ, the claims that are only proven to be correct in
the above proposition for δ < 0 sufficiently close to 0. It is in fact this
family that we used as input for Figure 6. Of course, for the remainder
of the proof of our main theorem, the reader may continue to read the
next section.

Taking m = 1 and using f2,ε(x) = y((2 − y)2 + ε) and g3,δ,ε(x, y) =
x((3− x+ δy)2 + ε) we get the specific degree 4 Hamiltonian

H3,2,δ,ε =
1
4
x4 − 2δ

3
x3y + δ2

2
x2y2 + 1

4
y4

− 2x3 + 3δx2y − 4
3
y3 + 9

2
x2 + 2y2 + εx

2+y2

2
.

(6)

For (δ, ε) = (−1/9, 0) it corresponds to the following cubic vector field:

ẋ =− 2
27
x3 − 1

81
x2y − y3 + 1

3
x2 + 4 y2 − 4 y,

ẏ = 1
81
x (9x+ y − 27)2 .

It has 5 equilibrium points P0 = (0, 0), P1 = (0, 2), P2 =
(

225
76
, 27

76

)
,

and P± = (3 − 3γ±, 27γ±), where γ± = 5
74

± 3
518

√
21. In Table 1 we

list the local normalizing transformations and resulting normal forms
of the Hamiltonian up to order 3. Clearly P0 is a center and the other
four are cusp points.

The plots of the nullclines of the vector field corresponding to Hδ,
for δ = −10−4,−10−2,−1/9, are shown in Figure 6. For the sake
of completeness we show the phase portrait of the vector field with
δ = −1/9 in Figure 8.

4. The second perturbation. Removing equilibria

In this section we will prove Theorem 1 for odd degree n as a direct
consequence of the results proved in Section 3. As we have described
above, for δ < 0 and ε > 0, the differential system corresponding to
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P Transformation Local normal form of H−1/9

P0 x = u+ 2
9
u2 H0 =

9
2
u2 + 2v2

y = v + 1
12
u2 + 1

3
v2

P1 x = u+ 6
25
u2 + 1

25
uv H1 =

4
3
+ 625

162
u2 + 2

35
v3

y = 2 + v

P2 x = 225
76

+ u− 1
9
v H2 =

11585997
1755904

+ 125
152
v2 + 75

76
u3

y = 27
76

+ v + 18088
30375

v2

P± x = 3− 3γ± H± = 279207
38332

− 37179
2738

γ±

y = 27γ± + v + 1−γ±
13−238γ±

u2 + 238γ±−13
6

v2

+ 1−γ±
117−2142γ±

uv − 4−81γ±
13−238γ±

v2 + (1− γ±)u
3

Table 1. Normalizing transformations (up to order 3)
near equilibria of a cubic example.

Figure 8. Qualitative phase portrait of an explicit cu-
bic system with one center and three cusps.

the Hamiltonian Ha,δ,ε(x, y), defined in (1), is

ẋ = −
∫ x

0

∂ga,δ,ε(s, y)

∂y
ds− y

m∏
i=1

((bi − y)2 + ε),

ẏ = x

m∏
i=1

((ai − x+ δy)2 + ε).

(7)
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As in [1], when ε > 0 small enough, the equilibria located out of the
origin disappear and all asymptotes of the period function provided
by Corollary 14 are replaced by maxima of the corresponding period
function. Consequently, we have 2m2 +2m maxima and 2m2 +2m− 1
minima. Hence, as n = 2m+1, we obtain at least 4m2+4m−1 = n2−2
critical periods.

Remark 15. If we want to be more precise then we say that for any
orbit γa,b,δ,ε that approaches a singular level curve γa,b,δ,0 the period
tends to ∞, whereas the period function remains bounded as ε → 0
for orbits that are away from the singular level sets. Since we have a
finite number of singular levels, we can take ε > 0 small enough for the
period function to have the guaranteed minimum number of oscillations.
This more precise explanation shows that some care is needed when one
wants to generalize the results to constructing examples with an infinite
number of critical periods.

5. The third perturbation. Near infinity

This section is devoted to the proof of the second part of Theorem 1,
that is when the degree of the vector field n is even. Our approach dif-
fers substantially from the one in [1]. We will use again a perturbative
mechanism, now of system (7).

Let us consider Hamiltonian system of degree n = 2m+ 2 given by

ẋ = −
∫ x

0

∂ga,δ,ε(s, y)

∂y
ds− y

m∏
i=1

((bi − y)2 + ε) + µy2m+2,

ẏ = x
m∏
i=1

((ai − x+ δy)2 + ε)− µx2m+2.

where µ is a small parameter. It corresponds to the Hamiltonian

H̃a,b,δ,ε,µ = Ha,b,δ,ε −
µ

2m+ 3

(
x2m+3 + y2m+3

)
.

When µ = 0 all the results proved in previous section apply, and it
is easy to check that all the equilibria bifurcations and oscillations of
the period function occurs in a compact region K. Consequently, for µ
small enough, the number of oscillations of the period function remains
as for the odd Hamiltonian of odd degree 2m+1. Therefore, the proof
for even degree finishes because the number of oscillations will be, using
Theorem 1 for the odd degree case, at least (2m+1)2−2 = n2−2n−1.

Remark 16. The above proof does not depend on the explicit pertur-
bation terms. But if we would like to improve the lower bound a little
(only one extra oscillation), we suggest taking the next steps, that we
leave for the reader to verify. When µ ≳ 0, there are exactly two
nodes at infinity, located in the direction of y + x = 0. This is because
ẏx− ẋy = · · · − µ(x2m+3 + y2m+3). The fact that they are nodes should
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K

Figure 9. Phase portrait on the Poincaré sphere after
the third perturbation. The dynamics in the compact
region K does not change qualitatively under this final
perturbation.

be easy to prove. Additionally, from infinity emerge two (finite) saddles
from the positive y-axis and another from the positive x-axis. Finally,
one observes an additional center equilibrium in the direction y−x = 0
for x, y big enough. A summary is shown in Figure 9. By considering
this perturbation, the period annulus has a boundary defined by a het-
eroclinic cycle, partly along infinity and also containing a heteroclinic
saddle connection between two hyperbolic saddles in the finite region.
The period function should hence go to infinity as one approaches this
singular cycle, so an extra oscillation occurs.

6. No upper bound for analytic Hamiltonian vector
fields

Finally, we will extend this idea to an analytic vector field that the
unperturbed system, taking ε = 0, has infinitely many degenerate equi-
librium points but the presented proof does not provide infinitely many
isolated critical periods. Nevertheless, at the end of this section we
present a simple ad-hoc example of an analytic vector field with infin-
itely many critical periods, unrelated to any nearby cusp equilibria.

Proposition 17. For any n, there exist ε > 0 small enough such that
the period function of system

ẋ = −y(1 + ε− sin y),

ẏ = x(1 + ε− sinx),
(8)

has at least n critical periods.
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Proof. The proof follows the same steps as the proof of Theorem 1. We
start describing the phase portrait of the unperturbed system (8) when
ε = 0. It has only one non-degenerate center located the origin and the
other equilibrium points are of cusp and fake saddle type. The cusps
are located at (0, π/2+2kπ) and (π/2+2kπ, 0), for any k ∈ Z and the
fake saddles are located at (π/2 + 2kπ, π/2 + 2ℓπ), for any k, ℓ ∈ Z.
Here we have no other centers nor saddles. This system is also time
reversible with respect to the straight line y − x = 0. Consequently,
we have only one period annulus and the period function has infinitely
many of asymptotics and minima. The proof finishes taking ε > 0
small enough and, by continuity, the asymptotics disappear converting
to maxima and the number of minima remain. We note that for a
fixed ε we can control only the oscillations in a compact region. Of
course decreasing ε the number of oscillations increases and the com-
pact region can be taken higher. But we can not extend this argument
to prove the existence of infinitely many of critical periods because we
have not described the behavior of infinity and the uniformity of the
decreasing of ε. □

We remark that in equation (8) also the value of the energy levels
decrease along vertical and horizontal straight lines and we do not
need to study if in a level there are one or more equilibria because
there are infinitely many of them. In fact, the qualitative behavior of
this example is very close to the odd degree study made by Cen in [1].
Clearly, there are other analytic vector fields having the same property,
a similar result can be found changing the function 1− sin y by cos2 y.

Finally, if we fix the compact the number of oscillations can be in-
creased increasing the frequency of oscillations, 1− sin ky, but fixed ε
the finiteness is maintained. Hence, this approach does not prove that
we have “infinitely many” isolated critical periods.

As mentioned in the beginning of this section we now present a sim-
ple example of a Hamiltonian vector field with infinitely many cusps:
consider

Hε(x, y) = x2 + y2 + ε sin(x2 + y2), 0 < ε < 1.

We write Hε(r cos θ, r sin θ) = H̃ε(r, θ) in order to consider Hε in polar
coordinates:

H̃ε(r, θ) = r2 + ε sin(r2),

so we immediately find the associated family of vector fields in polar
coordinates:

ṙ = −1

r

∂H̃ε

∂θ
= 0, θ̇ =

1

r

∂H̃ε

∂r
= 2 + 2ε cos(r2).
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When 0 < ε < 1, all orbits are circles r = r0. Recall that we use the
energy level as a parameter for the orbits (see Remark 2), so we find

Tε(r
2
0 + ε sin(r20)) =

π

1 + ε cos(r20)
.

The right hand side oscillates an infinite number of times between π
1+ε

and π
1−ε

for r0 in the interval [0,∞[, and since r0 7→ r20 + ε sin(r20) is
a monotonically increasing function, also the function h 7→ Tε(h) will
oscillate an infinite number of times.
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