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Abstract: In many problems appearing in applied mathematics in the nonlinear ordinary differential
systems, as in physics, chemist, economics, etc., if we have a differential system on a manifold of
dimension, two of them having a first integral, then its phase portrait is completely determined.
While the existence of first integrals for differential systems on manifolds of a dimension higher
than two allows to reduce the dimension of the space in as many dimensions as independent first
integrals we have. Hence, to know first integrals is important, but the following question appears:
Given a differential system, how to know if it has a first integral? The symmetries of many differential
systems force the existence of first integrals. This paper has two main objectives. First, we study how
to compute first integrals for polynomial differential systems using the so-called Darboux theory of
integrability. Furthermore, second, we show how to use the existence of first integrals for finding
limit cycles in piecewise differential systems.
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1. Introduction to the Darboux Theory of Integrability

For a differential system on a two dimensional manifold, its phase portrait is deter-
mined by the existence of a first integral. The Hamiltonian differential systems are the
easiest differential systems having a first integral.

A differential system of the form:

ẋ =
∂H
∂y

, ẏ = −∂H
∂x

,

where H : R2 → R is a C2 function, is a Hamiltonian differential system or a simple Hamilto-
nian system in R2.

The integrable planar differential systems different from the Hamiltonian ones, in
general, are not easy to find. First, we stated the basic results of the Darbouxian theory
of integrability for finding first integrals for planar polynomial differential systems. The
Darbouxian theory of integrability connects the integrability of polynomial differential
systems with the invariant algebraic curves that those systems have.

1.1. Polynomial Differential Systems

Let P and Q be real polynomials in the real variables x and y. Then, a differential
system:

dx
dt

= ẋ = P(x, y),
dy
dt

= ẏ = Q(x, y), (1)

is a two dimensional planar polynomial differential system or simply a polynomial system. As
usual, m = max{deg P, deg Q} is the degree of the polynomial system. In this paper, we
supposed that the polynomials P and Q were coprime in the ring of real polynomials in
the variables x and y.
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The Darboux theory of integrability illustrates for a polynomial differential system the
relationships between the existence of exact algebraic solutions (an algebraic phenomenon)
and the integrability (a topological phenomenon).

1.2. First Integrals

As usual, the vector field:

X = P
∂

∂x
+ Q

∂

∂y

is associated to the differential system (1).
Let U be an open subset of R2. We stated that the polynomial differential system

(1) was integrable in U if there was a non-constant analytic function H : U → R that was
constant on all orbits (x(t), y(t)) of the system (1) contained in U. Such a function is called
a first integral. It was clear that H is a first integral of system (1) in U if, and only if, the
following equality holds:

dH
dt

= Hx ẋ + Hyẏ = HxP + HyQ = XH = 0 in U.

Of course, the curves H(x, y) = constant in U were formed by the orbits of the
differential system (1).

Example 1. Consider the Hamiltonian system:

ẋ =
∂H
∂y

= P, ẏ = −∂H
∂x

= Q.

Then, the function H is called the Hamiltonian of this system, and H is a first integral of it, because:

XH = P
∂H
∂x

+ Q
∂H
∂y

= Hy Hx − Hx Hy = 0.

1.3. Integrating Factors

Again, U denotes an open subset of R2. An analytic function R : U → R non-
identically zero is an integrating factor of the polynomial differential system (1) in U if one
of the next three equivalent conditions is satisfied in U:

XR = −R div(P, Q), div(RP, RQ) = 0,
∂(RP)

∂x
+

∂(RQ)

∂y
= 0.

As usual, we defined the divergence of the vector field X = (P, Q) by:

div(X) =
∂P
∂x

+
∂Q
∂y

= div(P, Q).

Doing the change of time dt = rds, the differential system (1) becomes:

ẋ = RP =
∂H
∂y

, ẏ = RQ = −∂H
∂x

. (2)

Note that, since system (2) has a divergence of zero, it is Hamiltonian.
To each integrating factor R, there is a first integral H associated, given by:

H(x, y) =
∫

R(x, y)P(x, y) dy + h(x), (3)

and the function h must satisfy ∂H
∂x = −RQ.
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Example 2. The quadratic polynomial differential system:

ẋ = −y− b(x2 + y2) = P, ẏ = x = Q, (4)

has the integrating factor R = 1/(x2 + y2). Indeed,

∂(RP)
∂x

+
∂(RQ)

∂y
=

∂(−y− b(x2 + y2))/(x2 + y2)

∂x
+

∂x/(x2 + y2)

∂y
= 0.

In order to find a first integral of system (4), we follow (3), i.e.,:

H =
∫

RPdy + h(x) =
∫ −y− b(x2 + y2)

x2 + y2 dy + h(x) = −by− 1
2

log(x2 + y2) + h(x).

Then,
∂H
∂x

+ RQ = h′(x) = 0.

Therefore, h(x) is a constant and we can omit it from the first integral H; hence:

H = −by− 1
2

log(x2 + y2),

or, as the first integral, we can take:

F = eH =
e−by√
x2 + y2

.

The result of the next proposition is well known; for instance, see [1]. Since its proof is
very short, we provided it.

Proposition 1. Let R1 and R2 be two integrating factors of the polynomial differential system (1)
in the open subset U of R2; then, the function R1/R2 is a first integral in the open set U \ {R2 = 0},
if R1/R2 is non-constant.

Proof. We have XRi = −Ridiv(P, Q) because Ri is an integrating factor for i = 1, 2.
Therefore, from:

X
(

R1

R2

)
=

(XR1)R2 − R1(XR2)

R2
2

= 0,

the proposition follows.

1.4. Invariant Algebraic Curves

A non-constant polynomial f ∈ R[x, y] defines the invariant algebraic curve of the
polynomial differential system (1) if there is a polynomial K ∈ R[x, y], such that:

X f = P
∂ f
∂x

+ Q
∂ f
∂y

= K f . (5)

We stated that the invariant algebraic curve f = 0 has, as a cofactor, the polynomial
K. Of course, the cofactor has a degree of at most m− 1, because m is the degree of the
polynomial differential system.

From (5), it follows that the gradient (∂ f /∂x, ∂ f /∂y) of the invariant algebraic curve
f = 0 is orthogonal to the vector field X = (P, Q) at the points of the curve f = 0. Therefore,
at each point of the curve f = 0, the vector X is tangent to the curve f = 0; therefore, the
curve f = 0 is formed by orbits of the vector field X. Therefore, since the curve f = 0 is
invariant under the flow defined by X, this curve is called an “invariant algebraic curve”.
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If the polynomial f was irreducible in the ring R[x, y], then we stated that the invariant
algebraic curve f = 0 was irreducible.

Example 3. We claim that f1 = ay + b = 0 with cofactor K1 = ax and f2 = x2 + y2 −
1 = 0 with cofactor K2 = −2x are two invariant algebraic curves of the quadratic polynomial
differential system:

ẋ = −y(ay + b)− (x2 + y2 − 1) = P, ẏ = x(ay + b) = Q, (6)

a 6= 0. Indeed,

X f1 = P
∂ay + b

∂x
+ Q

∂ay + b
∂y

= x(ay + b)a = K1 f1,

and
X f2 = P

∂ f2

∂x
+ Q

∂ f2

∂y
= (−y(ay + b)− (x2 + y2 − 1))2x + x(ay + b)2y

= −(x2 + y2 − 1)2x = K2 f2.

1.5. Exponential Factors

Other objects playing a similar role as the invariant algebraic curves in order to obtain
first integrals of a polynomial differential system (1) are the exponential factors.

Let h, g ∈ R[x, y] either be coprime polynomials in the ring R[x, y], or h ≡ 1. Then, for
the polynomial differential system (1), the function exp(g/h) is an exponential factor if there
is a polynomial K ∈ R[x, y] of a degree of at most m− 1, such that:

X
(

exp
( g

h

))
= K exp

( g
h

)
. (7)

Then, for the exponential factor exp(g/h) we stated that K was its cofactor.
Since the exponential factor cannot vanish, it does not define invariant curves of the

polynomial system (1).

Example 4. Consider the polynomial differential quadratic system:

ẋ = x(y + a) = P, ẏ = y = Q.

Such a system has the exponential factor ey. Indeed:

Xey = P
∂ey

∂x
+ Q

∂ey

∂y
= yey = Key,

with cofactor K = y.

1.6. The Method of Darboux

For polynomial differential systems (1), we summarized the Darboux theory of inte-
grability in the next theorem.

Theorem 1. Let fi = 0 be irreducible invariant algebraic curves with cofactors Ki for i = 1, . . . , p,
and let exp(gj/hj) be exponential factors with cofactors Lj for j = 1, . . . , q for a polynomial
differential system (1) of degree m.

(i) The function:

f λ1
1 . . . f

λp
p

(
exp

(
g1

h1

))µ1

. . .
(

exp
(

gq

hq

))µq

(8)

is a first integral of system (1) if, and only if, there are λi, µj ∈ R, not all zero, such that:
p
∑

i=1
λiKi +

q
∑

j=1
µjLj = 0.
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(ii) When p + q ≥ m(m + 1)/2 + 1, there are λi, µj ∈ R, not all zero, satisfying
p
∑

i=1
λiKi +

q
∑

j=1
µjLj = 0.

(iii) If p + q ≥ m(m + 1)/2 + 2, all orbits of the differential system (1) are contained in invariant
algebraic curves, because the system has a rational first integral.

(iv) Function (8) is an integrating factor of system (1) if, and only if, there are λi, µj ∈ R, not all

zero, such that
p
∑

i=1
λiKi +

q
∑

j=1
µjLj = −div(P, Q).

(v) We defined Fj = exp(gj/hj). Since fi = 0 are invariant algebraic curves with cofactors, and
Ki and Fj are exponential factors with cofactors Lj, we have X fi = Ki fi, and XFj = LjFj.
Therefore, the statement (i) follows from the equality:

X
(

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q

)
=(

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q

)( p

∑
i=1

λi
X fi

fi
+

q

∑
j=1

µj
XFj

Fj

)
=

(
f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q

)
,

(
p

∑
i=1

λiKi +
q

∑
j=1

µjLj

)
= 0.

Example 5. Assume that a 6= 0 in the quadratic system:

ẋ = −y(ay + b)− (x2 + y2 − 1), ẏ = x(ay + b). (9)

Then, this system has f2 = x2 + y2 − 1 = 0 with cofactor K2 = −2x, and f1 = ay + b = 0
with cofactor K1 = ax, as invariant algebraic curves. Due to the fact 2K1 + aK2 = 0, by Theorem 1

(i) We obtained that H = (ay + b)2(x2 + y2 − 1)a is a first integral of system (9).
(ii) Since the degree of the polynomial cofactors Ki and Lj is at most m− 1, we obtained that

Ki, Lj ∈ Rm−1[x, y], the space of all polynomials of R[x, y] of a degree of at most m− 1. We
observed that the vector space Cm−1[x, y] over C has a dimension m(m + 1)/2.

Since all the polynomials Ki and Lj belong to the vector space Cm−1[x, y] of the dimension
(m + 1)/2], and we have p + q polynomials Ki and Lj with p + q > m(m + 1)/2, and we
obtained that the p + q polynomials must be linearly dependent in Cm−1[x, y]. Therefore, there are

λi, µj ∈ C, not all zero, such that
p
∑

i=1
λiKi +

q
∑

j=1
µjLj = 0. Hence, statement (ii) was proved.

Example 6. Consider the real quadratic system:

ẋ = x(ax + c), ẏ = y(2ax + by + c), (10)

with abc 6= 0. Then, this system has the following five invariant straight lines: f1 = x = 0,
f2 = ax + c = 0, f3 = y = 0, f4 = ax + by = 0, f5 = ax + by + c = 0. Therefore, from
Theorem 1(ii) we obtained that system (10) has the first integral H = f λ1

1 f λ2
2 f λ3

3 f λ4
4 f λ5

5 with

λi ∈ R, satisfying
5
∑

i=1
λiKi = 0, where Ki is the cofactor of fi. It is easy to check that K1 = ax + c,

K2 = ax, K3 = 2ax + by+ c, K4 = ax + by+ c, K5 = ax + by. Hence, a solution of
5
∑

i=1
λiKi = 0

is λ1 = λ5 = −1, λ2 = λ4 = 1 and λ3 = 0. Therefore a first integral of system (10) is:

H =
(ax + c)(ax + by)

x(ax + by + c)
.
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(iii) Under the hypotheses of this statement, we applied statement (ii) to the two following subsets of
p + q− 1 > 0 functions formed by the invariant algebraic curves and the exponential factors.
In this way, we obtained two linear dependencies between their corresponding cofactors, with
which, after some relabeling and linear algebra, we could obtain:

M1 + α3M3 + . . . + αp+q−1Mp+q = 0, M2 + β3M3 + . . . + βp+q−1Mp+q = 0,

where Ml are the cofactors Lj and Ki, and αl , βl ∈ R. Therefore, by statement (i), we obtained that
the two first integrals:

G1Gα3
3 . . . G

αp+q
p+q−1, G2Gβ3

3 . . . G
βp+q
p+q−1,

of the differential system (1), Gl is either an invariant algebraic curve or an exponential factor with
cofactor Ml for l = 1, . . . , p + q. Therefore, taking logarithms of these two, these previous first
integrals, we obtained that:

H1 = log(G1) + α3 log(G3) + . . . + αp+q log(Gp+q),

H2 = log(G2) + β3 log(G3) + . . . + βp+q log(Gp+q),

are also first integrals of the differential system (1) where they are defined. Each one of these first
integrals has associated an integrating factor Ri satisfying:

P = Ri
∂Hi
∂y

, Q = −Ri
∂Hi
∂x

.

Therefore, we have that:
R1

R2
=

∂H2

∂x
/

∂H1

∂x
.

Due to the fact that the functions Gl are exponentials of a quotient of polynomials, or poly-
nomials, we obtained that ∂Hi/∂x are rational functions for i = 1, 2. Therefore, we obtained that
R1/R2 is a rational function, and by Proposition 1 we know that R1/R2 is a rational first integral.
Hence, statement (iii) was proved.

In Example 5, we observed that, since this system has five invariant algebraic curves, by
Theorem 1(iii) it has a rational first integral. The one that we obtained.

(iv) Since equality
p
∑

i=1
λiKi +

q
∑

j=1
µjLj = −div(P, Q) is equivalent to the equality:

X
(

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q

)
=(

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q

)( p

∑
i=1

λiKi +
q

∑
j=1

µjLj

)
=

−
(

f λ1
1 . . . f

λp
p Fµ1

1 . . . F
µq
q

)
div(P, Q).

Therefore, statement (iv) was proved.

Example 7. The algebraic curve f1 = x2 + y2 is invariant for the differential system:

ẋ = −y− b(x2 + y2) = P, ẏ = x = Q, (11)

with cofactor K1 = −2bx. Since K1 = div(P, Q), we obtained from Theorem 1(iv) that f−1
1 is an

integrating factor of this differential system. Using this integrating factor, we could compute the
first integral H = exp(−2by)(x2 + y2) of system (11).
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The Darboux theory of integrability, here presented for polynomial differential systems
in R2, was extended to polynomial differential differential systems in Rn and Cn. For more
information on the Darboux theory of integrability, see Chapter 8 of [2].

We must mention that there is another nice theory for finding first integrals of the
ordinary differential equations using the Lie symmetries; for instance, see book [3].

2. Limit Cycles in Piecewise Differential Systems via First Integrals

The study of limit cycles is one of the most important objectives in the qualitative
theory of the planar ordinary differential equations. We remark that, to obtain an upper
bound for the maximum number of limit cycles for a given differential system in the plane
R2, in general, is a very difficult problem.

The study of the discontinuous piecewise differential systems, more recently also
called Filippov systems, has attracted the attention of mathematicians during these past
decades due to their applications. These piecewise differential systems in the plane are
formed by different differential systems defined in distinct regions separated by a curve.
A pioneering work on this subject was due to Andronov, Vitt and Khaikin in the 1920s,
and later on, Filippov, in 1988, provided the theoretical bases for these kinds of differential
systems. Nowadays, a vast literature on these differential systems is available; for instance,
see the books of [4–7] and the survey by [8]. As for the smooth differential systems, the
study of the existence and location of limit cycles in the piecewise differential systems is
also of great importance.

The main tools for computing analytical limit cycles of differential systems are based
on the averaging theory, the Melnikov integral, the Poincaré map, and the Poincaré map
together with the Newton–Kantorovich Theorem or the Poincaré–Miranda theorem. To
these tools, in the particular case of the piecewise differential systems, we had to add
the use of the first integrals of the differential systems forming the piecewise differential
systems for computing their limit cycles.

To show how to use the first integrals for computing the limit cycles and the periodic
orbits of the piecewise differential systems is the objective of this second part of this paper.
Of course, this tool is restricted to the piecewise differential systems such that all their
differential systems be integrable, in the sense that we know for each of them a further
invariant st integral.

2.1. Discontinuous Piecewise Differential Systems

A discontinuous piecewise differential system on R2 is a pair of Cr (with r ≥ 1) differential
systems in R2 separated by a smooth curve Σ. The line of discontinuity Σ of the discontinuous
piecewise differential system is given by Σ = h−1(0), where h : R2 −→ R is a C1 function
having 0 as a regular value. Observe that Σ is the boundary between the regions Σ+ =
{(x, y) ∈ R2 | h(x, y) > 0} and Σ− = {(x, y) ∈ R2 | h(x, y) < 0}. Hence:

Z(x, y) =

{
X(x, y), if h(x, y) ≥ 0,

Y(x, y), if h(x, y) ≤ 0,
(12)

is the vector field corresponding to a piecewise differential system with a line of discontinuity Σ.
When the vector fields X and Y coincide on the line Σ, we obtain a continuous piecewise

differential system on R2, that, in general, will not be smooth on Σ.
The vector field (12) is usually denoted by Z = (X, Y, Σ) or simply by Z = (X, Y), if

the separation line Σ is known. In order to establish a definition for the trajectories of Z, we
had to have a criterion for the transition of the trajectories between Σ+ and Σ− across the
curve of discontinuity Σ. The contact between the curve of discontinuity Σ and the vector
field X (or Y) is described by the directional derivative of h with respect to the vector field
X, i.e.,:

Xh(p) = 〈∇h(p), X(p)〉.
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Here, 〈., .〉 denotes the usual inner product of the plane R2. Filippov in [9] stated the
main results of the discontinuous piecewise differential systems. The curve of discontinuity
Σ is divided into the three following sets:

(a) Σc : {p ∈ Σ : Xh(x) ·Yh(x) > 0}, the Crossing set.
(b) Σe : {p ∈ Σ : Xh(x) > 0 and Yh(x) < 0}, the Escaping set.
(c) Σs : {p ∈ Σ : Xh(x) < 0 and Yh(x) > 0}, the Sliding set.

The points of Σ, where both vector fields X and Y simultaneously point outwards
or inwards, define the escaping Σe or sliding Σs regions, while the interior in Σ of their
complement defines the crossing region Σc (see Figure 1). The points of Σ, which are not in
Σc ∪ Σe ∪ Σs, are the tangency points between X or Y and Σ.

Figure 1. Crossing, sliding, and escaping regions, respectively.

There are many papers studying the limit cycles of continuous and discontinuous
piecewise differential systems in R2; for instance, see [8,10–23].

2.2. Limit Cycles of a Piecewise Differential System Formed by a Linear Differential System and a
Quadratic Polynomial Differential System Separated by the Straight Line x = 0

In what follows, we wanted to study the limit cycles of the following discontinuous
piecewise differential system separated by the straight line x = 0. In the half-plane x ≥ 0,
there is the linear differential system:

ẋ = 2 + 2x− 2y, ẏ = 6− 2y, (13)

and in the half-plane x ≤ 0, there is the quadratic polynomial differential system:

ẋ = −9x + 15y + 4x2 + 8xy− 28y2,

ẏ = −6x + 9y− 4x2 + 32xy− 44y2.
(14)

Theorem 2. The discontinuous piecewise differential systems (13) and (14) have a unique limit
cycle shown in Figure 2.

Proof. Since we wanted to compute the limit cycles of this piecewise differential system
using their first integrals, we had to find such first integrals.

It is known that all the linear differential systems in Rn for n ≥ 2 are Darboux
integrable (see [24]), so, in particular, the differential system (13) must have a first integral.
Clearly, the differential system (13) is Hamiltonian with Hamiltonian:

H1(x, y) = 6x− 2y− 2xy + y2.

Therefore, we obtained a first integral of system (13).
System (14) has a center at the origin of coordinates, because the eigenvalues of the

linear part of the system at the origin are±3i, so the origin is either a weak focus or a center,
but when computing their Lyapunov constants, we saw that all of them are zero, so it is a
center; for more details, see Chapter 5 of [2]. Moreover, it is well known that all quadratic
polynomial differential systems having a center are Darboux integrable; for more details
see the proof of Theorem 8.15 of [2] or paper [25].

Now, in order to find a first integral for the differential system (14) we applied the
Darboux theory of integrability. We started looking for their invariant algebraic curves of
degrees one and two.
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Figure 2. The unique limit cycle that exists for the piecewise differential systems (13) and (14). The
limit cycle is travels in counterclockwise sense.

First, we looked for invariant straight lines f = f (x, y) = ax + by + c = 0, and since
the polynomial differential system has a degree of two, their cofactors must be polynomials
of a degree of at most one, so they must be of the form K = k0 + k1x + k2y, and f and
K must satisfy Equation (5). Passing the right hand side of this equation to the left, we
obtained the polynomial:

−ck0 + (−9a− 6b− ak0 − ck1)x + (15a + 9b− bk0 − ck2)y + (4a− 4b− ak1)x2+
(8a + 32b− bk1 − ak2)xy + (−28a− 44b− bk2)y2 = 0.

Therefore, we had to solve the system:

ck0 = 0,
9a + 6b + ak0 + ck1 = 0,
15a + 9b− bk0 − ck2 = 0,
4a− 4b− ak1 = 0,
8a + 32b− bk1 − ak2 = 0,
28a + 44b + bk2 = 0,

in the unknowns a, b, c, k0, k1, and k2 for obtaining the possible invariant straight lines of
the differential system (14). This system has a unique solution with (a, b, c) = (0, 0, 0).
Namely, b = −a, c = −3a/8, k0 = 0, k1 = 8, and k2 = −16. Therefore, we obtained:

f =
1
8

a(8x− 8y− 3) and K = 8(x− 2y).

Therefore, without a loss of generality, we could assume that the invariant straight
line is f1 = 8x− 8y− 3 = 0 with the cofactor K1 = 8(x− 2y).

Now, we looked for possible invariant algebraic curves of degree two. Therefore, we
had to solve Equation (5) with f = a0 + a1x + a2y + a3x2 + a4xy + a5y2 and K = k0 + k1x +
k2y. Solving it, in a similar way for obtaining the invariant algebraic curves of degree one,
we obtained only two invariant algebraic curves of degrees two for one, namely:

− 1
128

a4(8x− 8y− 3)2 = 0, and − 1
768

a4(−9 + 96x− 96y + 128x2 − 768xy + 896y2).
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The first solution really is an invariant straight line. Therefore, essentially, there is a
unique invariant algebraic curve of degree two, which we could take: f2 = −9 + 96x−
96y + 128x2 − 768xy + 896y2 = 0 with cofactor K2 = 32(x− 2y).

We knew that the equation λ1K1 + λ2K2 = 0 is satisfied with λ1 = −4 and λ2 = 1;
therefore, by Theorem 2(ii) we obtained the first integral:

H2(x, y) =
−9 + 96x− 96y + 128x2 − 768xy + 896y2

(8x− 8y− 3)4 .

Clearly, in the half-planes x ≥ 0 and x ≤ 0, the differential systems (13) and (14)
have no limit cycles, because the polynomial H1 and rational first integral H2 prevent
their existence, respectively. Therefore, the piecewise differential system formed with the
systems (13) and (14) separated by the straight line x = 0 has limit cycles, which must cross
line x = 0 in exactly two points, denoted by (0, y) and (0, Y) with y < Y. These two points
must be crossing points and satisfy the system:

e1 = H1(0, y)− H1(0, Y) = 0, e2 = H2(0, y)− H2(0, Y) = 0.

The unique solution of this system satisfying y < Y is:

(y, Y) =
1

1616
(
1616−

√
2222(1013− 9

√
1257), 1616 +

√
2222(1013− 9

√
1257)

)
. (15)

This solution provides the limit cycle of Figure 2.

2.3. Limit Cycles of Piecewise Differential Systems Formed by Three Linear Centers

These last years, since the piecewise linear differential systems, had many relevant
applications to physical phenomena; the interest for studying them has increased strongly.
As in the smooth differential systems also in the piecewise linear differential systems, the
study of their limit cycles plays a main role. Almost all papers studying the limit cycles
of the piecewise linear differential systems consider piecewise linear differential systems
formed only by two pieces. In this subsection, we studied piecewise linear differential
systems formed with three pieces.

In [26], we studied the limit cycles in R2 of the discontinuous piecewise linear differ-
ential systems separated by the line of discontinuity

Σ = {(x, y) ∈ R2 : y = 0 or x = 0 and y ≥ 0},

and formed by three arbitrary linear centers. Such discontinuous piecewise linear differen-
tial systems can exhibit, at most, three limit cycles, three being the maximum number of
limit cycles that they can exhibit. In particular, it was proved that there are such piecewise
linear differential systems with three limit cycles, each limit cycle having a unique point in
each branch of the three branches of Σ \ {(0, 0)}.

The three components of R2 \ Σ are Q1 = {(x, y) ∈ R2 : x > 0 and y > 0}, Q2 =
{(x, y) ∈ R2 : x < 0 and y > 0}, and H = {(x, y) ∈ R2 : y < 0}.

The objective of this section was to study the limit cycles of the discontinuous piece-
wise linear differential system defined by:

ẋ =
2

1565
y +

379
1565

, ẏ = −2x +
237
313

, in Q1,

ẋ =
4

1565
y +

11566
10955

, ẏ = −8x− 4
√

4430533
2191

, in Q2,

ẋ = 2y, ẏ = −8x−
2
(√

4430533− 1299
)

2191
, in H.

(16)



Symmetry 2021, 13, 1736 11 of 21

Theorem 3. The discontinuous piecewise differential system (16) has three limit cycles intersecting
each branch of the three branches of Σ in one point. These limit cycles travel in clockwise sense, see
Figure 3.

Figure 3. The three limit cycles of the discontinuous piecewise linear differential system (16). These
limit cycles travel in counterclockwise sense.

Proof. Of course, we wanted to prove this objective using the first integrals of the three
linear differential centers. It is well known that all the linear differential centers can be
obtained upon conducting an affine transformation of the linear differential center ẋ = −y,
ẏ = x, which has the first integral H = x2 + y2. Therefore, all the linear differential centers
are Hamiltonian systems, and, then, by computing the Hamiltonians of the linear centers
in Q1, Q2 and H, we obtained the first integrals:

H1(x, y) = 1565x2 + y2 − 1185x + 379y,

H2(x, y) = 21910x2 + 7y2 + 10
√

4430533x + 5783y,

H3(x, y) = 8764x2 + 2191y2 + (2
√

4430533− 2598)x,

for each one of these three systems, respectively.
These limit cycles must intersect each branch of Σ \ {(0, 0)} in one point. These points

are (x+, 0) with x+ > 0, (0, y+) with y+ > 0, and (x−, 0) with x− < 0. These three
points are crossing points. Then, the first integrals H1, H2, and H3 satisfy the following
three equations:

H1(x+, 0)− H1(0, y+) = 0,

H2(0, y+)− H2(x−, 0) = 0,

H3(x−, 0)− H3(x+, 0) = 0,

(17)

or, equivalently:

1565x2
+ − y2

+ − 1185x+ − 379y+ = 0,

21910x2
− − 7y2

+ + 10
√

4430533x− − 5783y+ = 0,

(x+ − x−)
(

4382x+ + 4382x− +
√

4430533− 1299
)
= 0.

(18)
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We looked for the solutions (x+, y+, x−) of these three equations satisfying x+ > 0,
x− < 0 and y+ > 0, and these solutions are:

(x1
+, y1

+, x1
−) =

(
1,
−3083−

√
4430533

4382
, 1

)
,

(x2
+, y2

+, x2
−) =

(
2,
−7465−

√
4430533

4382
, 10

)
,

(x3
+, y3

+, x3
−) =

(
3,
−11847−

√
4430533

4382
, 26

)
.

The solution of system (16):

x1(t) =
1

21910
sin

(
2

√
2

1565
t

)(
√

3130(14u + 5783) cos

(
2

√
2

1565
t

)

−10
√

4430533 sin

(
2

√
2

1565
t

))
,

y1(t) =
(

u +
5783

14

)
cos

(
4

√
2

1565
t

)
− 1

7

√
22152665

626
sin

(
4

√
2

1565
t

)

−5783
14

,

satisfies the initial conditions x1(0) = u and y1(0) = 0.
The solution of system (16):

x2(t) =
(

v− 237
626

)
cos
(

2t√
1565

)
+

379
2
√

1565
sin
(

2t√
1565

)
+

237
626

,

y2(t) =
1
2

√
5

313
(237− 626v) sin

(
2t√
1565

)
+

379
2

cos
(

2t√
1565

)
− 379

2
,

satisfies the initial conditions x3(0) = v and y3(0) = 0.
The solution of system (16):

x3(t) =
1

8764

(
8764w cos(4t) +

(√
4430533− 1299

)
(cos(4t)− 1)

)
,

y3(t) =

(
1299− 8764w−

√
4430533

)
sin(4t)

4382
,

satisfies the initial conditions x3(0) = w and y3(0) = 0.
Now, we considered the solution (x1

k(t), y1
k(t)) for k = 1, 2, 3 of the discontinuous

piecewise linear differential system (16) given by the solution (x1
+, y1

+, x1
−) of system (18).

Then, the time that the solution (x1
1(t), y1

1(t)) in Q1 needs to reach point (0, v) is t1 =
0.785398163397448. The time that the solution (x1

2(t), y1
2(t)) in Q2 needs to reach point

(w, 0) is t2 = 4.10363864680248. Finally, t3 = 1.11762450719575. is the time that the solution
(x1

3(t), y1
3(t)) in H needs to reach point (u, 0).

Let (x2
k(t), y2

k(t)) for k = 1, 2, 3 be the solution of the discontinuous piecewise linear
differential system (16) given by the solution (x2

+, y2
+, x2

−) of system (18). Then the time that
the solution (x2

1(t), y2
1(t)) in Q1 needs to reach the point (0, v) is r1 = 0.785398163397448.

The time that the solution (x2
2(t), y2

2(t)) in Q2 needs to reach the point (w, 0) is r2 =
7.93799227264621. The time that solution (x2

3(t), y2
3(t)) in H needs to reach point (u, 0) is

r3 = 2.02943545009903.
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Let (x3
k(t), y3

k(t)) for k = 1, 2, 3 be the solution of the discontinuous piecewise linear
differential system (16), given by solution (x3

+, y3
+, x3

−) = of system (18). Then, the time that
solution (x3

1(t), y3
1(t)) in Q1 needs to reach point (0, v) is s1 = 0.785398163397448. The time

that solution (x3
2(t), y3

2(t)) in Q2 needs to reach point (w, 0) is s2 = 11.27688306691738. The
time that solution (x3

3(t), y3
3(t)) in H needs to reach point (u, 0) is s3 = 2.88219547492608.

Drawing the three orbits (xj
k(t), yj

k(t)) for j = 1, 2, 3 and for the times t ∈ [0, tk],
t ∈ [0, rk], and t ∈ [0, sk] for k = 1, 2, 3, respectively, we obtained the three limit cycles of
Figure 3, which are travel in a clockwise sense.

2.4. Periodic Orbits of a Relay System in R3

Consider the discontinuous piecewise linear differential system:

ẋ = y, ẏ = z, ż = −sign(x)y. (19)

Then, the goal of this subsection was to analytically study the periodic orbits of this
differential system using their first integrals. The sign function is given by:

sign(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

Therefore, x = 0 is the plane of discontinuity of system (19). System (19) was studied
in [27].

Many discontinuous piecewise differential systems (19) appear in a natural way from
the control theory. In fact, system (19) is a particular relay system of the ones studied
in [28].

In general, a difficult problem is to analytically find the periodic solutions of a differ-
ential system; usually, this problem cannot be solved. We wanted to compute the periodic
orbits of continuous or discontinuous piecewise differential systems such that they are
completely integrable in each piece.

The objective of this subsection was to prove the next result.

Theorem 4. The following statements hold:

(a) Assume that the discontinuous piecewise linear differential system (19) has a periodic orbit γ
such that intersects x = 0 in two points. Then, these two points are (0, y, z) and (0,−y, z)
with z > 0 and y2 − z2 < 0. See Figure 4.

(b) For every pair of points (0, y, z) and (0,−y, z) with z > 0 and y2− z2 < 0, the discontinuous
piecewise linear differential system (19) has a periodic orbit γ intersecting x = 0 in these
two points.

Proof. The discontinuous piecewise linear differential system (19) in x > 0 is given by:

ẋ = y, ẏ = z, ż = −y, (20)

and in x < 0 by:
ẋ = y, ẏ = z, ż = y. (21)

Observe that the points of the x–axis are equilibrium points.
We could obtain two independent first integrals for the systems (20) and (21) because

these differential systems are linear. Linear differential systems are completely Darboux
integrable; for more details, see [24]. Therefore, for system’s (20) two independent first
integrals are:

H1 = x + z, and H2 = y2 + z2.
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Hence, the trajectories of system (20) are contained in:

γh1h2 = {H1 = h1} ∩ {H2 = h2} ∩ {x > 0},

for all (h1, h2) ∈ R2.
For system (21), the two independent first integrals are

F1 = x− z, and F2 = y2 − z2.

Hence, the trajectories of system (21) are contained in:

γ f1 f2 = {F1 = f1} ∩ {F2 = f2} ∩ {x < 0},

for all ( f1, f2) ∈ R2.
The set γh1h2 with h2 > 0 is composed in x > 0 by the intersection of the plane H1 = h1

with the cylinder H2 = h2. Therefore, the set γh1h2 is an arc without equilibria, and it is
a trajectory of system (20). If h2 = 0, then γh1h2 is an equilibrium point. Hence, γh1h2 is a
unique orbit of system (20).

Figure 4. The periodic orbit of Theorem 4 intersecting x = 0 in the points (0,−1, 2) and (0, 1, 2).

If f2 6= 0, the set γ f1 f2 in x < 0 is one or two arcs of the intersection of the plane F1 = f1
with the hyperboloid cylinder F2 = f2, these arcs have no equilibria. Therefore, γ f1 f2 has
one or two trayectories of system (21). If f2 = 0, then γ f1 f2 in x < 0 is the intersection of the
plane F1 = f1 with the two planes F2 = 0. The intersection {F1 = f1} ∩ {F2 = 0} in x < 0
is two straight lines which intersect at the equilibrium point ( f1, 0, 0). Such intersections
are formed by 5 or 2 trajectories, respectively.

We analyzed when a trajectory of γh1h2 and a trajectory of γ f1 f2 gave place to a periodic
orbit of the system (19). From above, if h2 > 0 and f2 6= 0, then the trajectories of systems
(20) and (21) could connect, forming a periodic orbit.

In the plane of discontinuity x = 0, we considered the point (0, y0, z0). Let h1 = z0,
h2 = y2

0 + z2
0, f1 = −z0 and f2 = y2

0 − z2
0 be the four values of the first integrals H1,

H2, F1, and F2 at this point, respectively. Now, we studied the points of the trajectory
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{H1 = h1} ∩ {H2 = h2} ∩ {x ≥ 0} contained in x = 0. This was conducted by solving
the system:

H1 = h1, H2 = h2, x = 0.

This system provides the two points (0,±y0, z0). The points of the trajectory {F1 =
f1} ∩ {F2 = f2} ∩ {x ≤ 0} in x = 0, are studied solving the system

F1 = f1, F2 = f2, x = 0.

This system provides the two points (0,±y0, z0). When these pair of points are in the same
trajectory {F1 = f1} ∩ {F2 = f2} ∩ {x ≤ 0}, we obtained a periodic orbit of the system (19).

In x ≥ 0, using the variable x, we parameterized the trajectory {H1 = h1}∩ {H2 = h2},
obtaining the arc:

{(x,±
√

y2
0 + z2

0 − (z0 − x)2, z0 − x) : 0 ≤ x ≤ z0 +
√

y2
0 + z2

0}. (22)

This trajectory in x ≥ 0 is symmetric with respect to the y–axis with endpoints
(0,±y0, z0) in x = 0.

In x ≤ 0, using the variable x, we parameterized the curve {F1 = f1} ∩ {F2 = f2},
which is formed by the two trajectories:

• {(x,±
√

x2 + y2
0, x) : x ≤ 0} if z0 = 0, each trajectory has one endpoint in x = 0;

• {x,±
√
(x + z0)2 + y2

0 − z2
0, z0 + x)} : x ≤ 0} if either z0 < 0 or z0 > 0 and y2

0− z2
0 > 0,

each trajectory has one endpoint in x = 0;
•

{x,±
√
(x + z0)2 + y2

0 − z2
0, z0 + x)} : −z0 +

√
z2

0 − y2
0 ≤ x ≤ 0} (23)

and
{x,±

√
(x + z0)2 + y2

0 − z2
0, z0 + x)} : x ≤ −z0 −

√
z2

0 − y2
0},

if z0 > 0 and y2
0 − z2

0 < 0, the first trajectory has its two endpoints at the points
(0,±y0, z0) in x = 0, and the second trajectory has its endpoints at infinity.

We note that y2
0 − z2

0 6= 0; otherwise, f2 = 0.
Summarizing, if z0 > 0 and y2

0 − z2
0 < 0, the trajectory (22) of system (20) with the

trajectory (23) of system (21) provides a periodic orbit of system (19), and this periodic
orbit intersects x = 0 in the points (0,±y0, z0). Hence, Theorem 4 was proved.

2.5. Limit Cycles of a Class of Piecewise Differential Systems Separated by a Parabola

The goal of this subsection was to analyze the limit cycles of discontinuous piece-
wise differential systems separated by the parabola y = x2 and formed by two linear
Hamiltonian systems without equilibrium points.

Easy computations show that a linear Hamiltonian system without equilibrium points
must be of the form:

Xi(x, y) = (−λibix + biy + γi,−λ2
i bix + λibiy + δi),

δi 6= λiγi and bi 6= 0, with i = 1 . . . 4, and its corresponding Hamiltonian function is:

Hi(x, y) = (−λ2
i bi/2)x2 + λibixy− (bi/2)y2 + δix− γiy.

We wanted to prove the following result, which came from [29].

Theorem 5. Generically, the maximum number of limit cycles of the piecewise differential systems
separated by the parabola y = x2 and formed by two linear Hamiltonian systems without equilibrium
points is two, and this maximum is reached, see Figure 5.
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Figure 5. Two limit cycles of a piecewise differential system separated by the parabola y = x2 and
formed by two linear Hamiltonian systems without equilibrium points. Both limit cycles travel in
counterclockwise sense.

Proof. In region R1 = {(x, y) : y− x2 ≥ 0}, we considered the linear Hamiltonian system
without equilibrium points:

ẋ = −λ1b1x + b1y + γ1, ẏ = −λ2
1b1x + λ1b1y + δ1, (24)

with b1 6= 0 and δ1 6= λ1γ1. Its corresponding Hamiltonian function is:

H1(x, y) = −(λ2
1b1/2)x2 + λ1b1xy− (b1/2)y2 + δ1x− γ1y. (25)

In region R2 = {(x, y) : y − x2 ≤ 0}, we considered another linear Hamiltonian
system without equilibrium points:

ẋ = −λ2b2x + b2y + γ2, ẏ = −λ2
2b2x + λ2b2y + δ2, (26)

with b2 6= 0 and δ2 6= λ2γ2. Its corresponding Hamiltonian function is:

H2(x, y) = −(λ2
2b2/2)x2 + λ2b2xy− (b2/2)y2 + δ2x− γ2y. (27)

In order to have a crossing limit cycle which intersects the parabola y− x2 = 0 in the
points (xi, x2

i ) and (xk, x2
k), these points must satisfy the following system:

H1(xi, x2
i )− H1(xk, x2

k) = 0,
H2(xi, x2

i )− H2(xk, x2
k) = 0,

(28)

We supposed that the two systems (24) and (26) have three crossing limit cycles, and
we arrived to a contradiction. Then, system (28) must have three pairs of points as solutions,
namely, pi = (ri, r2

i ) and qi = (si, s2
i ), with i = 1, 2, 3.

Since the points p1 = (r1, r2
1) and q1 = (s1, s2

1) satisfy system (28), we obtained that
the parameters γ1 and γ2 must be:

γ1 =
1

2(r1 + s1)
(−r1r3

1 − b1r2
1s1 − b1r1s2

1 − b1s3
1 + 2δ1 + 2b1r2

1λ1 + 2b1r1s1λ1

+2b1s2
1λ1 − b1r1λ2

1 − b1s1λ2
1),

and γ2 has the same expression that γ1 changes (b1, λ1, δ1) by (b2, λ2, δ2).
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If the second points p2 = (r2, r2
2) and q2 = (s2, s2

2) satisfy system (28), then the
parameters δ1 and δ2 must be:

δ1 =
b1

2(r1 − r2 + s1 − s2)
(−r3

1r2 − r1r3
2 + r2

1r2s1 − r3
2s1 + r1r2s2

1 + r2s3
1 + r3

1s2

−r1r2
2s2 + r2

1s1s2 − r2
2s1s2 + r1s2

1s2 + s3
1s2 − r1r2s2

2 − r2s1s2
2 − r1s3

2 − s1s3
2

−2r2
1r2λ1 + 2r1r2

2λ1 − 2r1r2s1λ1 + 2r2
2s1λ1 − 2r2s2

1λ1 − 2r2
1s2λ1 + 2r1r2s2λ1

−2r1s1s2λ1 + 2r2s1s2λ1 − 2s2
1s2λ1 + 2r1s2

2λ1 + 2s1s2
2λ1),

and δ2 has the same expression that δ1 changes (b1, λ1) by (b2, λ2).
Finally, we supposed that the points p3 = (r3, r2

3) and q3 = (s3, s2
3) satisfy system (28);

then, the parameters λ1 and λ2 must be λ1 = A/B, where:

A = r3
1(r2 − r3 + s2 − s3) + r2

1s1(r2 − r3 + s2 − s3) + r3
2(r3 − s1 + s3) + r2

2s2(r3 − s1
+s3) + r1(−r3

2 + r3
3 − r3s2

1 − r2
2s2 + s2

1s2 − s3
2 + r2(s2

1 − s2
2) + r2

3s3 − s2
1s3 + r3s2

3
+s3

3) + (s1 − s2)(r3
3 + r2

3s3 + (s1 − s3)(s2 − s3)(s1 + s2 + s3)− r3(s2
1 + s1s2 + s2

2
−s2

3))− r2(r3
3 − s3

1 + s1s2
2 + r2

3s3 − s2
2s3 + s3

3 + r3(−s2
2 + s2

3)),

B = 2((s1 − s2)(r2
3 + (s1 − s3)(s2 − s3)− r3(s1 + s2 − s3)) + r2

1(r2 − r3 + s2 − s3)
+r2

2(r3 − s1 + s3) + r1(−r2
2 + r2

3 − r3s1 + r2(s1 − s2) + s1s2 − s2
2 + r3s3 − s1s3

+s2
3)− r2(r2

3 + r3(−s2 + s3)− (s1 − s3)(s1 − s2 + s3)).

Furthermore, λ2 has the same expression that λ1 changes b1 by b2.
We replaced γ1, λ1 and δ1 in the expression of H1(x, y), and γ2, λ2 and δ2 in the

expression of H2(x, y), and we obtained H1(x, y) = H2(x, y). Therefore, the two linear
differential systems forming the piecewise system coincide. Therefore the piecewise system
has no limit cycles. Consequently, two is the maximum number of limit cycles.

To complete the proof of the theorem, we presented a discontinuous piecewise differ-
ential system satisfying the assumptions of the theorem, having two limit cycles.

Let the parabola y = x2 be the discontinuity line of the piecewise differential system
formed by the following two linear Hamiltonian systems without equilibria:

ẋ = 5.5x− 0.5y + 3, ẏ = 60.5x− 5.5y + 0.2, (29)

in the region R1 its Hamiltonian is:

H1(x, y) = 30.25x2 − 5.5xy + 0.2x + 0.25y2 − 3y.

The second system is:

ẋ = 0.2x− 0.1y− 0.778814, ẏ = 0.4x− 0.2y + 0.00727332, (30)

in the region R2, its Hamiltonian is:

H2(x, y) = 0.2x2 − 0.2xy + 0.00727332x + 0.05y2 + 0.778814y.

This piecewise differential system has the limit cycles shown in Figure 5. Therefore,
Theorem 5 was proved.

2.6. Piecewise Differential System with a Non-Regular Discontinuity Line

The extended 16th Hilbert problem consists of finding, for a given class of differential
systems, an upper bound for the maximum number of their limit cycles. This is, in general,
a very difficult problem, in general unsolved.

Only for very few classes of differential systems this problem has been solved.
Now, we studied the extended 16th Hilbert problem for the piecewise differential

systems separated by the non-regular lineR formed by the two positive half-axes x and y,
and formed by two linear centers.
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We denoted byR1 the open positive quadrant of R2, and byR2 the interior of R2 \R1.
It is known that an arbitrary linear center can be written as:

ẋ = −Ax− (A2 + Ω2)y + B,
ẏ = x + Ay + C,

for (x, y) ∈ R1, (31)

and
ẋ = −ax− (a2 + ω2)y + b,
ẏ = x + ay + c,

for (x, y) ∈ R2, (32)

with Ω, ω > 0, A, B, C, a, b, c ∈ R, and A, a 6= 0.
Each system (31) and (32) have, respectively, the first integrals:

H1(x, y) = (x + Ay)2 + 2(Cx− By) + y2Ω2,

H2(x, y) = (x + ay)2 + 2(cx− by) + y2ω2.
(33)

The next result appears in [30].

Theorem 6. Consider the two arbitrary linear differential centers (31) and (32) forming the
discontinuous piecewise differential systems separated by the non-regular line R. Then, the
maximum number of limit cycles of these piecewise systems intersecting R in two points is two.
Moreover there exist systems with exactly two limit cycles of this type, see Figure 6.

-8 -6 -4 -2 0

-1

0

1

2

3

4

5

Figure 6. Both limit cycles are travelled in counter-clockwise sense.

Proof. We considered the discontinuous planar linear differential systems (31) and (32). If
there exists a crossing limit cycle intersecting the non-regular separation curveR, in two
points of the forms (x, 0) and (0, y) both are different from the origin. Since the functions
H1 and H2 defined in (33) are first integrals of the systems (31) and (32), respectively, these
points must satisfy the equations:

e1 := H1(x, 0)− H1(0, y) = 2Cx + x2 + 2By− A2y2 − y2Ω2 = 0,

e2 := H2(x, 0)− H2(0, y) = 2cx + x2 + 2by− a2y2 − y2ω2 = 0.
(34)
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By using the Bézout theorem, this system can have, at most, four isolated solutions,
one of them being the origin.

In order to obtain crossing limit cycles, equations e1 = 0 and e2 = 0 must have isolated
solutions (xi, yi) with xi, yi > 0. Therefore, there are at most three crossing limit cycles of
system e1 = e2 = 0. In order for these three solutions (xi, yi) to produce limit cycles, it is
necessary that:

0 < x1 < x2 < x3 and 0 < y1 < y2 < y3.

We claimed that there are at most two solutions (x1, y1) and (x2, y2) providing limit
cycles, that is, satisfying:

0 < x1 < x2 and 0 < y1 < y2. (35)

Now, we proved the claim.
If a2 + ω2 − A2 − Ω2 = 0, then the piecewise system has at most one limit cycle.

Indeed, the resultant of the polynomial e1 and e2 with respect to the variable y is:

4x
(
a2 + ω2)(x

(
a2c2 − 2a2cC + a2C2 − b2 + 2bB− B2 + c2ω2 − 2cCω2 + C2ω2)
−2(b− B)(bC− Bc)).

Therefore, at most, one positive solution of x, consequently, is at most one limit cycle.
Assume now that a2 + ω2 − A2 −Ω2 6= 0.
Equations e1 = e2 = 0 are equivalent to equations E1 = e1 − e2 = 0 and E2 =

e1(a2 + ω2)− e2(A2 + Ω2) = 0, i.e.,:

E1 =2(C− c)x + 2(B− b)y− (A2 + Ω2 − a2 −ω2))y2 = 0,

E2 =2
(
(a2 + ω2)C− (A2 + Ω2)c

)
x + 2

(
(a2 + ω2)B− (A2 + Ω2)b

)
y

+ (a2 + ω2 − A2 −Ω2)x2 = 0.

(36)

If C = c, then E1 = 0 reduces to either one horizontal straight line, or two horizontal
parallel straight lines passing one of these two straight lines through the origin. The
equation E2 = 0 is either a parabola symmetric with respect to some vertical straight line,
one vertical straight line, or two vertical parallel straight lines passing one of these two
straight lines through the origin. Since E1 = E2 = 0 pass through the origin, there are at
most two intersection points satisfying (35) and so, at most, two limit cycles.

Assume now that C 6= c. In this case, E1 = 0 is a parabola symmetric with respect
to some horizontal straight line and E2 = 0 is a parabola symmetric with respect to some
vertical straight line. Since both parabolas intersect at the origin, there are at most two
intersection points satisfying (35), and so, at most, two limit cycles. This proves the claim
and, consequently, the theorem once we provided an example with two limit cycles.

Now, we gave a discontinuous piecewise linear differential system (31)–(32) having
exactly two limit cycles intersecting in two points the discontinuity lineR. In regionR1,
we considered the linear differential center:

ẋ = −2x− 8y− 3
2

, ẏ = x + 2y +
43
4

, (37)

with the first integral:

H1(x, y) = 4y2 + 2
(

43
4

x +
3
2

y
)
+ (x + 2y)2;

and in regionR2, we considered the linear differential center:

ẋ = −x− 2y, ẏ = x + y +
7
4

, (38)



Symmetry 2021, 13, 1736 20 of 21

with the first integral:

H2(x, y) = y2 +
7
2

x + (x + y)2.

In this case, the two solutions of Equation (36) are:

(x1, y1) =

(
1
2

, 1
)

, (x2, y2) =

(
1,

3
2

)
,

and the corresponding limit cycles are shown in Figure 2.

3. Discussion

In this paper, we summarized the main results on the Darboux theory of integrability
for finding first integrals. We illustrated, with some relevant examples, the different main
ingredients of this theory, as the invariant algebraic curves, the exponential factors, the
integrating factors, and the first integrals.

After, we used the first integrals of distinct classes of piecewise differential systems
for studying the limit cycles of these differential systems in R2 and R3. Thus, first we
studied the limit cycles of a discontinuous piecewise differential system in R2 with two
zones separated by a straight line and formed by a linear differential center and a quadratic
polynomial differential system.

After, we computed the three limit cycles of a piecewise differential system in R2 with
three zones separated by the non-regular line :

{(x, y) ∈ R2 : y = 0 or x = 0 and y ≥ 0},

and each zone having an arbitrary linear differential system.
We also studied the periodic orbits of a relay system in R3.
We analyzed the limit cycles of discontinuous piecewise differential systems in R2

with two zones separated by a parabola and each zone having a Hamiltonian system
without equilibrium points.

Finally, we proved that the maximum number of limit cycles of a piecewise differential
system in R2 with two zones separated by the non-regular line formed by the positive x
and y half-axes and having, in each zone, an arbitrary linear differential system was two.
We also provided an example of these differential systems having exactly two limit cycles.

4. Conclusions

We illustrated how to compute first integrals of the polynomial differential systems
via the Darboux theory of integrability, and we also illustrated how to compute periodic
orbits and limit cycles of different classes of piecewise differential systems using their
first integrals.
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