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Abstract. In 1960 Markus and Yamabe made the following conjecture: If a
C1 differential system ẋ = F (x) in R

n has a unique equilibrium point and the
Jacobian matrix of F (x) for all x ∈ R

n has all its eigenvalues with negative
real part, then the equilibrium point is a global attractor. Until 1997 we do
not have the complete answer to this conjecture. It is true in R

2, but it is false
in R

n for all n > 2.

Here we extend the conjecture of Markus and Yamabe to continuous and
discontinuous piecewise linear differential systems in R

n separated by a hy-
perplane, and we prove that for the continuous piecewise linear differential
systems it is true in R

2, but it is false in R
n for all n > 2. But for discontinu-

ous piecewise linear differential systems it is false in R
n for all n ≥ 2.

1. Introduction and statement of the main results

For the n-dimensional differential system

(1) ẋ = Ax+ ϕ(cTx)b,

with ϕ ∈ C0(R) satisfying ϕ(0) = 0 and b, c ∈ R
n, we say that S(α, β) is a sector of

linear stability (also called Hurwitz sector) if for all k ∈ (α, β) the matrix A+kbcT is
Hurwitz (that is all its eigenvalues have negative real parts), and when this interval
is bounded from below (respectively, bounded from above) then the matrix A+αbcT

(respectively, A+ βbcT ) has pure imaginary or zero eigenvalues.
In 1957 Kalman formulated the following conjecture.
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Kalman Conjecture. If S(α, β) is a sector of linear stability for the system (1)
and ϕ : R → R is continuously differentiable satisfying ϕ′(σ) ∈ (α, β) then the
origin is a global attractor.

We recall that an equilibrium point p is a global attractor for a differential system
defined in R

n if the ω–limit of any orbit of the differential system is p. See for
instance [8] for the definition of ω–limit of an orbit.

In 1988 Barabanov [2] proved the Kalman conjecture for n = 2, 3, with the case
n = 3 stated as his Theorem 1 together with a detail proof there. Barabanov
[2, Theorem 2] also tried to provide a counterexample to Kalman conjecture in
dimension 4 but his construction has some gaps. Bernat and Llibre [4] in 1996
presented the first counterexample to that conjecture in dimension larger than 3.
All these results were summarized in Brogliato et al [5, Theorems 3.63 and 3.64]
without proofs.

A C1 differential system ẋ(t) = F (x(t)) defined in R
n is Hurwitz if the Jacobian

matrix of F (x) is Hurwitz at every point x ∈ R
n.

Consider a C1 differential system ẋ(t) = F (x(t)) defined in R
n and having

an equilibrium point at the origin of coordinates. If DF (0) is Hurwitz then by
Hartman–Grobman Theorem [17] the origin is locally asymptotically stable. A
natural question is: What hypotheses we have to add to the function F (x) in order
to assure that the origin is a global attractor. Markus and Yamabe [23] in 1960
made the next conjecture.

Markus–Yamabe Conjecture. If we have a C1 Hurwitz differential system x′ =
F (x) defined in R

n and having a unique equilibrium point at the origin of coordi-
nates, then the origin is a global attractor.

The Markus–Yamabe conjecture for n = 1 follows easily. Some authors proved
the Markus–Yamabe conjecture adding additional assumptions. For instance,
Markus and Yamabe in [23] proved the conjecture if F = (F1, F2) and ∂Fi/∂xj = 0
for i �= j, i, j ∈ {1, 2}. In 1963 the conjecture was proved by Olech in [25] if∫∞
0

min||x||=r ||F (x)||dr = ∞. Gasull, Llibre and Sotomayor in [14] provided a list
with more than ten different additional sufficient conditions forcing the Markus–
Yamabe conjecture for n = 2. Meisters and Olech [24] in 1988 proved the Markus–
Yamabe conjecture for n = 2 when F1 and F2 are polynomials.

Finally the conjecture was proved without additional hypotheses in indepen-
dently by Gutiérrez [18, 19] and by Feßler [9, 10]. Gutiérrez had the proof in 1992
but it was published in 1993, and Feßler seems prove it in 1993, but it was published
in 1995. In 1994 a simpler proof was provided by Glutsyuk [15, 16].

Also there are some additional assumptions forcing the Markus–Yamabe conjec-
ture when n > 2. Thus in 1961 the conjecture was proved by Hartman in [20] if
DF (x) is negative definite for all x ∈ R

n. Other additional sufficient conditions,
under which the conjecture holds, were given in 1962 by Hartman and Olech in
[21].

The counterexample to the Kalman conjecture for n > 3 given in [4] also is a
counterexample to Markus–Yamabe conjecture for n > 3. Cima et al. provided
in [7] a counterexample to the Markus–Yamabe conjecture for n = 3 given by a
polynomial differential system.

In summary, now we know that the Markus–Yamabe conjecture holds in R
2, but

does not hold in R
n for all n > 2.
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We can say that the study of the continuous or discontinuous piecewise linear
differential systems started with Andronov, Vitt and Khaikin in [1]. After these
systems became a topic of great interest in the mathematical community due to
their applications in many areas, because they are used for modeling real phenom-
ena and different modern devices; see for instance the books [3, 26] and references
quoted therein.

Here we extend the Markus–Yamabe conjecture to continuous and discontinuous
piecewise linear differential systems formed by two pieces of R

n separated by a
hyperplane. More precisely, without loss of generality we consider the following
class of piecewise linear differential systems in R

n

(2) ẋ =

{
A+x+ b+ if x1 ≥ 0,
A−x+ b− if x1 ≤ 0.

If A+x + b+ = A−x + b− in all points x = (0, x2, . . . , xn), then we say that the
differential system (2) is a continuous piecewise linear differential system; otherwise
we say that it is a discontinuous piecewise linear differential system. We note
that the dynamics of this discontinuous differential system on the straight line of
discontinuity is defined according with the definitions of the book of Filippov [11].

Since we will study the global stability of system (2) at an equilibrium point, it
forces us to consider the case that the systems ẋ = A+x + b+ and ẋ = A−x + b−

both have a unique equilibrium point. So we will consider without loss of generality
that A+ and A− are both invertible.

We say that the linear differential system ẋ = A+x + b+ has a real equilibrium
point if the equilibrium point −(A+)−1b+ exists, and it is in the closed half-space
{x1 ≥ 0}, otherwise that equilibrium point is called virtual. Similarly the linear
differential system ẋ = A−x + b− has a real equilibrium point if the equilibrium
point −(A−)−1b− exists, and it is in the closed half-space {x1 ≤ 0}, otherwise that
equilibrium point is called virtual.

A Markus–Yamabe piecewise linear differential system is a differential system (2)
such that the matrices A+ and A− are Hurwitz, and either only one of the systems
ẋ = A+x + b+ and ẋ = A−x + b− has a real equilibrium point or both systems
have the same real equilibrium point in {x1 = 0}.

The objective of this paper is to answer the following question: Determine
the values of n ≥ 2 for which all continuous (respectively discontinuous) Markus–
Yamabe piecewise linear differential systems in R

n have a global attractor in their
real equilibrium point. That is, our goal is to consider the conjecture of Markus–
Yamabe made for C1 differential systems to continuous and discontinuous Markus–
Yamabe piecewise linear differential systems in R

n.
Our main results are the following two theorems, which characterize when the

extension of the Markus–Yamabe conjecture holds or not for continuous and dis-
continuous Markus–Yamabe piecewise linear differential systems in R

n.

Theorem 1. The following statements hold.

(a) The equilibrium point of all the continuous Markus–Yamabe piecewise linear
differential systems in R

2 is a global attractor.
(b) For all n > 2 there are continuous Markus–Yamabe piecewise linear dif-

ferential systems in R
n for which their equilibrium point is not a global

attractor.
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Theorem 1 is proved in section 2. A big part of this proof uses results of the
articles [6] and [12].

We note that the answer to the extended Markus–Yamabe conjecture for con-
tinuous piecewise linear differential systems is the same than for the C1 differential
systems. But this is not the case for the discontinuous piecewise linear differential
systems as it is shown in the following result.

Theorem 2. For all n ≥ 2 there are discontinuous Markus–Yamabe piecewise
linear differential systems in R

n for which their equilibrium point is not a global
attractor.

Theorem 2 is proved in section 2.
We note that for a very special class of discontinuous piecewise linear differential

systems in R
2, different from the classes here studied, the extension of the Markus–

Yamabe conjecture to them holds; see Llibre and Teixeira [22].

2. Proof of the results

In order to prove Theorem 1 we shall use the canonical forms of the piecewise
linear differential systems (2) provided in [13].

We consider the piecewise linear differential systems

(3)

(
ẋ
ẏ

)
=

(
2� −1

�2 − α2 0

)(
x
y

)
+

(
0
a

)
,

defined in {x ≤ 0}, and

(4)

(
ẋ
ẏ

)
=

(
2r −1

r2 − β2 0

)(
x
y

)
+

(
b
c

)
,

defined in {x ≥ 0}, where α, β ∈ {i, 0, 1}, being i is the imaginary unit. If α = i
then the equilibrium point of system (3) has eigenvalues � ± i, so it is a focus if
� �= 0, and a center if � = 0. If α = 0 then system (3) is a node with eigenvalue
� �= 0 of multiplicity 2 whose linear part does not diagonalize. If α = 1 then system
(3) is a saddle with eigenvalues � − 1 and � + 1 when |�| < 1, and a node with
eigenvalues �− 1 and �+ 1 whose linear part diagonalize when |�| > 1.

Let U be an open subset of R2. We say that the homeomorphism h between
U and its image by h is a topological equivalence between the piecewise linear
differential system (2) and the piecewise linear differential system (3)+(4) if h
applies orbits of system (2) contained in U into orbits of system (3)+(4) contained
in h(U).

From Propositions 1 and 2 of [13] it follows that there exists a topological equiv-
alence between the phase portrait of the piecewise linear differential system (2) and
the phase portrait of the piecewise linear differential system (3)+(4) restricted to
the orbits that do not have points in common with the sliding set of these systems.
Therefore, since we are interested in studying when the unique equilibrium point
of a Markus–Yamabe piecewise linear differential system (2) is a global attractor
and the sliding set for our piecewise linear differential systems is at most formed
by one orbit we do not need to take care of the sliding set. For a definition of the
sliding set see [11].

Since we shall use the canonical forms for studying the continuous piecewise
linear differential systems, we can restricted the canonical forms (3)+(4) to the
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continuous canonical forms on x = 0, i.e. to the continuous piecewise linear differ-
ential systems

(5)

(
ẋ
ẏ

)
=

(
2� −1

�2 − α2 0

)(
x
y

)
+

(
0
a

)
,

defined in {x ≤ 0}, and

(6)

(
ẋ
ẏ

)
=

(
2r −1

r2 − β2 0

)(
x
y

)
+

(
0
a

)
,

defined in {x ≥ 0}.

Proof of Theorem 1. Statement (a) of Theorem 1 when both linear differential sys-
tems of (2) have the same real equilibrium point in {x = 0} is proved in [12]. Now
we shall prove statement (a) when only one of the two linear differential systems
of (2) has a real equilibrium point, without loss of generality we can assume that
this real equilibrium point is −(A+)−1b+. So we can assume that the continuous
piecewise linear differential systems (5)+(6) have a unique equilibrium point in the
open half-plane {x > 0}, and we must prove that this equilibrium point is a global
attractor.

We claim that the straight line x = 0 is tranversal under the flow of the contin-
uous piecewise linear differential systems (5)+(6) except at the origin. Recall that
a line segment is transversal under the flow of systems (5)+(6) if it has no contact
points with the flow of systems (5)+(6), and that a contact point p of x = 0 is a
point where the vector field (2�x− y, (�2 −α2)x+ a) associated to systems (5)+(6)
at p is parallel to the straight line x = 0. That is, if p = (0, y0) is a contact point
of a system (5)+(6) with the straight line x = 0, then the inner product

(2�x− y, (�2 − α2)x+ a) · (1, 0)|(x,y)=(0,y0) = −y0.

This means that system (5)+(6) has a unique contact point with the straight line
x = 0, which is at the origin (0, 0).

Since by assumptions the matrices of the continuous piecewise linear differential
systems (5)+(6) are Hurwitz, the equilibrium point contained in the open half-
plane {x > 0} is a local attractor. Therefore on the straight line x = 0 the flow
of systems (5)+(6) enters in forward time at the half-plane {x > 0}. Hence, since
systems (5)+(6) restricted to {x > 0} are a linear differential system, all the orbits
contained in {x ≥ 0} have ω–limit the equilibrium point contained in {x > 0}.

On the other hand, since systems (5)+(6) are Markus–Yamabe in the half-plane
{x < 0} they do not have equilibria, the equilibrium point of a linear system (5)
is virtual, i.e. it is in {x > 0} which is also a global attractor for the orbits of the
linear system (5) in R

2, so all the orbits of a system (5)+(6) starting at a point of
{x < 0} cross the straight line x = 0 and enter in the open half-plane {x > 0}, and
consequently the equilibrium point contained in {x > 0} is a global attractor. This
concludes the proof of statement (a).

Statement (b) of Theorem 1 follows directly from Theorem 1 of [6]. More pre-
cisely, in [6] Carmona et al. proved the existence of continuous Markus–Yamabe
piecewise linear differential systems in R

3 having a unique unstable equilibrium
point at the origin of coordinates. In fact, the origin has an one-dimensional stable
manifold and a two-dimensional invariant manifold, which is an attractive cone, on
which the dynamics can be of stable or unstable focus type, or of center type.
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Of course, these examples of continuous Markus–Yamabe piecewise linear differ-
ential systems in R

3 for which the origin is unstable can be extended to continuous
Markus–Yamabe piecewise linear differential systems in R

n with n > 3 adding to
the 3-dimensional differential system the equations ẋk = −xk for k = 4, . . . , n. �

Proof of Theorem 2. It is sufficient to prove the theorem for n = 2, because we
can extend a discontinuous Markus–Yamabe piecewise linear differential system in
R

2 for which the unique equilibrium point of the system is not a global attractor
to a discontinuous Markus–Yamabe piecewise linear differential system in R

n with
n > 2 for which its unique equilibrium point will not be a global attractor, adding
to the 2-dimensional system the equations ẋk = −xk for k = 2, . . . , n.

First we consider the discontinuous piecewise linear differential system in R
2

defined by

(7)
ẋ = y − 1, ẏ = 1− x, in x ≤ 0,
ẋ = y, ẏ = 1− x, in x ≥ 0.

Note that this discontinuous piecewise linear differential system is formed by two
linear centers. Moreover the orbits in the half-plane x ≤ 0 are contained in the arcs
of the circles {(x−1)2+(y−1)2 = r2}∩{x ≤ 0} with r ≥ 1, while the orbits in the
half-plane x ≥ 0 are contained in the arcs of the circles {(x−1)2+y2 = r2}∩{x ≥ 0}
with r ≥ 0.

Then the orbit of the discontinuous piecewise linear differential system (7) start-
ing at the point (0, 2) crosses in forward time the straight line x = 0 by the first
time at the point (0,−2), by the second time at the point (0, 4), by the third time at
the point (0,−4), by the fourth time at the point (0, 6), . . . So this orbit in forward
time escapes to infinity spiraling intersecting the straight line x = 0 at the points
(0,±2k) for all k = 1, 2, . . .

Now we perturb slightly the discontinuous piecewise linear differential system
(7) as follows

(8)
ẋ = y − 1− εx, ẏ = 1− x, in x ≤ 0,
ẋ = y − εx, ẏ = 1− x, in x ≥ 0,

with ε > 0 sufficiently small.
Note that the two matrices A+ and A− of system (8) are Hurwitz. So system (8)

is a discontinuous Markus–Yamabe piecewise linear differential system having the
unique real equilibrium point (1, ε), which is a stable focus of the right subsystem.
Since ε > 0 is sufficiently small the orbit starting at the point (0, 2) of system (7)
which escapes spiraling to infinity, now for system (8) continues escaping to infinity.
Consequently the equilibrium point (1, ε) is not a global attractor. This completes
the proof of the theorem. �
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