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Abstract. In the qualitative theory of differential equations in
the plane one of the most difficult objects to study is the exis-
tence of limit cycles. There are many papers dedicated to this
subject. Here we will present a survey mainly dedicated to the
algebraic and explicit non-algebraic limit cycles of the polynomial
differential systems in R2 and of the discontinuous piecewise dif-
ferential systems in R2 formed by two linear differential systems
separated by a straight line. For this class of discontinuous piece-
wise differential systems the study of their algebraic and explicit
non-algebraic limit cycles just is starting. Here we provide the
first explicit non-algebraic limit cycle for the discontinuous piece-
wise linear differential systems. Additionally we recall seven open
questions related with these types of limit cycles.

1. Introduction

We start by recalling the definition of the two classes of differential
systems whose algebraic and explicit non-algebraic limit cycles we will
study.

Let P (x, y) and Q(x, y) be real polynomials in the variables x and
y. Then the differential system

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where as usual the dot denotes the derivative with respect to the inde-
pendent variable t, is a polynomial differential system. The maximum
of the degrees of the polynomials P and Q is the degree of the polyno-
mial differential system (1).
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Here we consider the discontinuous piecewise differential systems

(2) X± : (ẋ, ẏ) = (f±(x, y), g±(x, y)),

defined in the half-planes Σ± = {(x, y) ∈ R2 : ±x > 0}. On the
straight line Σ = {x = 0} the differential system is bivaluated. The
straight line Σ is called the straight line of discontinuity when the two
vector fields X± do not coincide on it. We use the Filippov conventions
for defining the discontinuous piecewise differential system on Σ, see
[33]. If f+(0, y)f−(0, y) > 0 at the point (0, y) ∈ Σ we say that (0, y)
is a crossing point. If a periodic orbit of a discontinuous piecewise
differential system (2) has exactly two crossing points we say that it is
a crossing periodic orbit.

A limit cycle (respectively crossing limit cycle) of system (1) (respec-
tively (2)) is an isolated periodic orbit in the set of all periodic orbits
(respectively crossing periodic orbits) of system (1) (respectively (2)).

Here if h(x, y) is a real polynomial irreducible in the ring R[x, y] of
all real polynomials in the variables x and y, the zero set {h(x, y) = 0}
is an algebraic curve. An algebraic limit cycle is a limit cycle contained
in an algebraic curve of the plane, otherwise such a limit cycle is called
non–algebraic. The degree of an algebraic limit cycle is the degree of
the irreducible polynomial which defines the algebraic curve contain-
ing the limit cycle. It is well known that the orbits of a polynomial
differential system (1) are contained in analytic curves, which usually
are not algebraic curves.

In general it is a difficult problem to distinguish if a limit cycle is
algebraic or not. The proof that the famous limit cycle exhibited in
the van der Pol equation in 1926 (see [80]) was not algebraic arrived
in 1995, see Odani [76]. The differential equation of van der Pol can
be written as a polynomial differential system (1) of degree 3, but we
do not know explicitly its limit cycle. More precisely, we do not know
the explicit expression of the analytic curve which contains the non-
algebraic limit cycle of van der Pol equation. We remark that all the
algebraic limit cycles are explicit because we only know them when we
provide the algebraic curve containing the limit cycle.

A crossing limit cycle of the piecewise differential system (2) is al-
gebraic if all its points, with the exception of the ones which are in
Σ, are contained in algebraic curves of the half-planes Σ±. The degree
(n−, n+) of an algebraic crossing limit cycle is formed by the degree
of the irreducible polynomials defining the algebraic curves which con-
tain the crossing limit cycle, thus n− (respectively n+) is the degree of



3

the irreducible polynomial defining the algebraic curve in Σ− (respec-
tively Σ+) which contains the piece of the crossing limit cycle in Σ−

(respectively Σ+).

2. Algebraic limit cycles of polynomial differential
systems

2.1. Some general results on algebraic limit cycles. A nice result
on algebraic limit cycles is the following one.

Theorem 1 (Bautin–Christopher–Dolov–Kuzmin Theorem). Assume
that f(x, y) = 0 is a non-singular algebraic curve of degree m, and
cx + dy + e = 0 a straight line which does not intersect any bounded
component of the algebraic curve f(x, y) = 0. Let a and b real numbers
such that ac+ bd 6= 0. Consider the polynomial differential system

(3) ẋ = af − (cx+ dy + e)fy, ẏ = bf + (cx+ dy + e)fx,

of degree m. Then every bounded component of the algebraic curve
f(x, y) = 0 is a hyperbolic algebraic limit cycle of the polynomial dif-
ferential system (3). Furthermore the differential system (3) has no
other limit cycles.

Bautin in [5] proved a result similar to Theorem 1. But Bautin’s
paper contains a mistake which was solved in [26], and this result was
generalized in [27]. The present statement of Theorem 1 is due to
Christopher, see [24] where also there is a proof of it.

Let f = f(x, y) be a real polynomial in the variables x and y. The
algebraic curve f(x, y) = 0 of R2 is an invariant algebraic curve of the
polynomial differential system (1) if for some polynomial K ∈ R[x, y]
we have

(4) P
∂f

∂x
+Q

∂f

∂y
= Kf.

From (4) we note that the gradient (∂f/∂x, ∂f/∂y) of the curve on
the points of the algebraic curve f(x, y) = 0 is orthogonal to the vector
field (P,Q), and consequently the vector field (P,Q) is tangent to the
curve f(x, y) = 0 in all its points. In other words the curve f(x, y) = 0
is formed by orbits of the vector field (P,Q). This explains the name
of invariant algebraic curve given to the algebraic curve f(x, y) = 0,
because the curve f(x, y) = 0 is invariant under the flow of the vector
field (P,Q).
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Consider a polynomial differential system having a unique irreducible
invariant algebraic curve, then the following result provides the maxi-
mum number of algebraic limit cycles that such differential system can
have in function of the degree of that algebraic curve, for a proof see
for instance [55].

Theorem 2. Suppose that the algebraic curve f(x, y) = 0 of degree m
is the unique irreducible invariant algebraic curve of a polynomial vector
field (P,Q). Then the vector field (P,Q) can have at most [(m−1)(m−
2)/2] + 1 algebraic limit cycles. Moreover choosing that f(x, y) = 0
has the maximal number of ovals for the irreducible algebraic curves
of degree m, there exist vector fields X of degree m having exactly
[(m− 1)(m− 2)/2] + 1 algebraic limit cycles.

2.2. Configurations of limit cycles via algebraic limit cycles.
Hilbert in 1900 and in the second part of his 16th problem (see [43])
proposed to provide a uniform upper bound for the maximum number
of limit cycles of all polynomial differential systems of a given degree,
additionally he also proposed to study the possible configurations or
distributions of limit cycles in the plane for all polynomial differential
systems. This last question has been solved in [64] using algebraic limit
cycles.

A finite set C = {C1, . . . , Cn} of disjoint simple closed curves in the
plane satisfying Ci ∩ Cj = ∅ for all i 6= j is called a configuration of
limit cycles.

Let C = {C1, . . . , Cn} and C ′ = {C ′1, . . . , C ′m} be two configurations
of limit cycles we say that they are (topologically) equivalent if there
is a homeomorphism h : R2 → R2 such that h (∪ni=1Ci) = (∪mi=1C

′
i).

Of course, in order that two equivalent configurations of limit cycles C
and C ′ be equivalent we need that n = m.

The configuration of limit cycles C is realized by a polynomial vector
field (P,Q) if the set of all limit cycles of (P,Q) is equivalent to C.

In 2004 and in [64] it was proved the following result.

Theorem 3. Let C = {C1, . . . , Cn} be an arbitrary configuration of
limit cycles. Then the configuration C is realizable with algebraic limit
cycles by a polynomial vector field.

Inspired in the proof of Theorem 3 it is possible to provide an alter-
native proof using the Bautin–Christopher–Dolov–Kuzmin Theorem.
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In 2013 Coll, Dumortier and Prohens in [25] proved that any config-
uration of limit cycles can be realized for a convenient Liénard polyno-
mial differential system.

2.3. The 16th Hilbert problem restricted to algebraic limit
cycles. The original 16th Hilbert problem states: give an upper bound
of the maximum number of limit cycles that the polynomial differential
systems of degree n can exhibit in function of n, see more details on
this famous problem in [43, 47, 50]. In this subsection we consider this
problem restricted to the algebraic limit cycles.

If a set of irreducible algebraic curves, fj = fj(x, y) = 0 for j =
1, . . . , k, satisfies the following five conditions it is called generic.

(i) The curve fj = 0 is a non-singular algebraic curve, i.e. there
are no points (x,y) satifying simultaneously fj = 0, ∂fj/∂x = 0
and ∂fj/∂y = 0.

(ii) The homogeneous terms of higher order of fj have no repeated
factors.

(iii) If two distinc curves fi = 0 and fj = 0 intersect in a point of
the affine plane, they intersect transversally at that point.

(iv) For every point of the affine plane at most pass two curves
fj = 0.

(v) The highest order homogeneous terms of two distinct polyno-
mials fi and fj do not have common factors.

In the paper [62] it was proved the following result.

Theorem 4. Assume that the set of all irreducible invariant algebraic
curves of a polynomial differential system of degree n ≥ 2 is generic.
Then the maximum number of algebraic limit cycles of this system is
at most 1 + (n− 1)(n− 2)/2 if n is even, and (n− 1)(n− 2)/2 if n is
odd. And there are polynomial differential systems of degree n reaching
these upper bounds.

Related with the results of Theorem 4 are the results of the paper
[63].

In the papers [52, 55] appear the following open problem very related
with Theorem 4.

Open problem 1. Every quadratic polynomial differential system has
at most one algebraic limit cycle.
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Partial results in the sense that the open problem 1 will have a
positive answer are given in the papers [70, 71, 72].

From Theorem 4 it follows that if all the irreducible invariant alge-
braic curves of a cubic polynomial differential system are generic, then
the system has at most 1 algebraic limit cycle. But there are cubic
polynomial differential systems in [62] with two algebraic limit cycles,
of course the invariant algebraic curves of those cubic polynomial differ-
ential systems are not generic. Thus the cubic polynomial differential
system

ẋ = 2y(10 + xy), ẏ = 20x+ y − 20x3 − 2x2y + 4y3,

has two algebraic limit cycles contained in the invariant algebraic curve
2x4 − 4x2 + 4y2 + 1 = 0, see Proposition 19 of [52]. Another cubic
polynomial differential system having the two limit cycles x2 + y2 = r2

and (x− a)2 + y2 = r2 is

ẋ = y(a2 − r2 − 3ax+ 3x2 − ay + 2xy + y2),
ẏ = −a2x+ 3ax2 − 2x3 − r2y + axy − x2y + y3,

when r < a/2.

These cubic polynomial differential systems exhibiting two algebraic
limit cycles motivated that in the paper [55] appeared the next open
problem, which also can be found in [52].

Open problem 2. Every cubic polynomial differential system has at
most two algebraic limit cycles.

Clearly the open questions 1 and 2 hold for the quadratic and cubic
polynomial differential systems if all their invariant algebraic curves
are generic. But they remain open for those polynomial differential
systems having non-generic invariant algebraic curves.

These two previous open problems where extended in [62] to the
following most general open problem.

Open problem 3. The maximum number of algebraic limit cycles
that a polynomial differential system of degree n can have is 1 + (n −
1)(n− 2)/2.

The open problem 3 was proved for planar polynomial differential
systems having only nodal invariant algebraic curves by Zhang in [86]

On the other hand the 16th Hilbert problem restricted to algebraic
limit cycles formed by circles has been solved in [61].
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2.4. Algebraic limit cycles of quadratic polynomial differen-
tial systems. The first algebraic limit cycle found in the quadratic
polynomial differential systems is due to Qin [82, 83] and to Liu [53],
they in 1957 and 1958 respectively proved that such systems can have
algebraic limit cycles of degree 2, and that if a quadratic polynomial
differential system has an algebraic limit cycle then it is the unique
limit cycle of the system.

Later on it was proved that the quadratic polynomial differential
systems cannot have algebraic limit cycles of degree 3 by Evdokimenco
in [30, 31, 32], more recently this result has been proved in a shorter and
clear way in [21, 54], and also in the projective quadratic polynomial
differential systems by Zhang [87].

The first family of algebraic limit cycles of degree 4 in the quadratic
polynomial differential systems was found in 1966 by Yablonskii [81].
In 1973 Filiptsov [34] found a second family of algebraic limit cycles
of degree 4. In [21] two new families of algebraic limit cycles of degree
4 has been found, and the authors of [23] shown that the quadratic
polynomial differential systems has no more families of algebraic limit
cycles of degree 4. Moreover in [20] was proved that when a quadratic
polynomial differential system has an algebraic limit cycle of degree
4 this is the unique limit cycle of the system. See [65, 66] for some
other results on the algebraic limit cycles of the quadratic polynomial
differential systems.

In [23] using birational transformation of the plane some families of
algebraic limit cycles of degree 4 of the quadratic polynomial differen-
tial systems were transformed in new families of algebraic limit cycles
of degrees 5 and 6 also for quadratic polynomial differential systems.
These results were improved in [1] where a new family of algebraic limit
cycles of degrees 5 was found for the quadratic polynomial differential
systems.

Open problem 4. Provide the maximum degree that can reach the
algebraic limit cycles of the quadratic polynomial differential systems.

Of course until now we know that the quadratic polynomial differen-
tial systems have algebraic limit cycles of degree 6, but it is unknown
if these systems can have algebraic limit cycles of degree higher than
6.
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3. Algebraic limit cycles of discontinuous piecewise
linear differential systems

This is a very new area of research. At this moment we only know the
paper of Buzzi, Gasull and Torregrosa [17] dedicated to this problem.
In what follows we summarize the main results of [17].

For the family of piecewise linear differential systems (2) being f±(x, y)
and g±(x, y) polynomials of degree 1 defined in Σ± the following state-
ments hold.

(i) If a piecewise linear differential system (2) has an algebraic
crossing limit cycle, then every linear differential system either
has no equilibrium points, or has a unique equilibrium point of
type: center, saddle, or node with distinct eigenvalues. More-
over, if the equilibrim point is a saddle or a node with distinct
eigenvalues the quotient of both eigenvalues is a rational num-
ber.

(ii) If a piecewise linear differential system (2) has an algebraic
crossing limit cycle, all the other limit cycles of the system are
also algebraic, and all of them are nested. If Γ1 and Γ2 are
two limit cycles, they are nested if either Γ1 is contained in
the region limited by Γ2, or vice versa. In a similar way any
number of limit cycles are said to be nested if every two of them
are nested.

(iii) Does not exist an algebraic crossing limit cycles Γ of a piecewise
linear differential system (2) such that the algebraic curve in Σ−

and the algebraic curve in Σ+ containing Γ are defined by the
same polynomial.

(iv) There are piecewise linear differential system (2) having exactly
two algebraic crossing limit cycles.

(v) There are piecewise linear differential system (2) with exactly
one semistable algebraic crossing limit cycle.

(vi) For every pair of positive integers (m,n) with m ≥ 2 and n ≥ 2
there exists a piecewise linear differential system (2) with an
algebraic crossing limit cycle of degree (m,n).

In [17] the authors stated the following open problem.

Open problem 5. Can the piecewise linear differential system (2)
exhibit more than two algebraic crossing limit cycles?



9

4. Explicit non-algebraic limit cycles of polynomial
differential systems

Recently, since 2006 up to now, many articles have been showing
explicit non-algebraic limit cycles in polynomial differential systems,
i.e. in those articles the authors provided the explicit expression of
the analytic curve containing the limit cycle. In this direction Gasull,
Giacomini and Torregrosa [39] provided as far as we know the first
explicit non-algebraic limit cycle for a polynomial differential system
of degree 5. Clearly, if we multiply the right hand part of that quintic
polynomial differential system by the expression (ax+ by+ c)n being n
any given positive integer, and we choose the straight line ax+by+c = 0
in such a way that it does not intersect the explicit non-algebraic limit
cycle of the differential system, we obtain a new polynomial differential
system of degree 5 + n exhibiting an explicit non-algebraic limit cycle
for all integer n ≥ 1.

One year after the article of Gasull, Giacomini and Torregrosa and
inspired in this article appeared the paper of Al-Dosary [2], where the
author exhibits another explicit non-algebraic limit cycle for a distinct
polynomial differential system of degree 5.

In 2006 Giné and Grau [41] shown the simultaneous existence of two
limit cycles one algebraic and an explicit non-algebraic in a polynomial
differential system of degree 9. Note that the paper [39] is quoted in
[41].

The first paper providing an explicit non-algebraic limit cycle for
polynomial differential systems of degree less than 5 was given by Ben-
terki and Llibre [11] in 2012 for a polynomial differential system of
degree 3, and of course it can be extended to any degree larger than 3.

Later on many other papers have been published providing explicit
non-algebraic limit cycles for several polynomial differential systems,
but in all these papers the explicit non-algebraic limit cycles are for
polynomial differential systems of degree larger than or equal to 3, see
[6, 7, 8, 9, 10, 11, 12, 13, 15, 16], the authors of these papers are Aziza,
Bendjeddou, Benterki, Benyoucef, Berbache, Boukoucha, Boukoucha,
Cheurfa, Grazem and Salhi.

Of course the polynomial differential systems of degree 1, i.e. the
linear differential systems, cannot have limit cycles, because when they
have a periodic orbit this forms part of a continuum of periodic orbits
surrounding a center. In 2012 and in the paper [11] it was stated the
following open problem, which remains open until now.
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Open problem 6. Provide an explicit non–algebraic limit cycle for a
polynomial differential system of degree 2.

We want to mention the paper of Garćıa [38] which provides a
method for proving the non-algebraicity of limit cycles for particu-
lar polynomial systems under the generic assumption that the line at
infinity is invariant.

5. Explicit non-algebraic limit cycles for the
discontinuous piecewise linear differential systems

A discontinuous piecewise linear differential system with two pieces
separated by a straight line in the plane R2 after a linear change of
variables can be written into the form(

ẋ
ẏ

)
=

(
a−11 a−12
a−21 a−22

)(
x
y

)
+

(
b−1
b−2

)
in x < 0;

and (
ẋ
ẏ

)
=

(
a+11 a+12
a+21 a+22

)(
x
y

)
+

(
b+1
b+2

)
in x > 0.

That is, without loss of generality we can assume that the discontinuity
straight line is x = 0.

In 1930’s Andronov, Vitt and Khaikin studied these discontinuous
piecewise linear differential systems in their seminal book [3], where
these differential systems appear in a natural way when they studied
electrical, mechanical or control problems. The work of Levinson [48] is
another important milestone in the history of the piecewise differential
systems because it allowed to understand the complicated dynamics of
the forced van der Pol equation, and this work inspired Smale [79] to
find the horseshoe dynamics. Nowadays the piecewise linear systems
continue receiving the attention of many researchers, see the books of
di Bernardo [14] and Simpson [78], the survey of Makarenkov and Lamb
[75], and the hundreds of references quoted in these last three works.

During these last twenty years many authors have been studied the
limit cycles of the discontinuous piecewise linear differential systems
(5), see for instance the papers [4, 18, 22, 19, 29, 35, 36, 37, 40, 42, 44,
45, 46, 51, 56, 57, 58, 60, 67, 68, 69, 74, 77, 84, 85]. The authors of these
articles are Artés, Braga, Buzzi, Castillo, Ting Chen, Xiaoyan Chen,
Euzébio, Freire, Giannakopoulos, Gouveia, Han, Chuangxia Huang,
Lihong Huang, Wentao Huang, Liping Li, Llibre, Medrado, Mello, No-
vaes, Ordóñez, Pessoa, Pliete, Ponce, Rodrigo, Shui, Teixeira, Torre-
grosa, Torres, Verduzco, Wang, Jiazhong Yang, Xiao-Song Yang, Yu,
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Cheng Zhang, Weinian Zhang and Xiang Zhang. In all these papers at
most 3 crossing limit cycles were found for the discontinuous piecewise
linear differential systems (5), and from 2012 it remains the following
open problem.

Open problem 7. Is 3 the maximum number of crossing limit cycles
that a discontinuous piecewise linear differential systems with a straight
line of separation can have?

In all these articles dedicated to study the crossing limit cycles of
the discontinuous piecewise linear differential systems, do not appear
explicit non-algebraic limit cycles, they proved their existence using
different methods as the Poincaré map, the Melnikov function, the
averaging theory, the Newton-Kantorovich Theorem, the first integrals,
...

In what follows we provide a new result showing an explicit non-
algebraic limit cycle for the discontinuous piecewise linear differential
system (2) defined by

(5)

f−(x, y) = αx+ y,
g−(x, y) = −x+ αy,
f+(x, y) = −αx+ y − α,
g+(x, y) = −x− αy − 1,

with α 6= 0.

It is easy to check that differential system (5) has the explicit non-
algebraic crossing periodic orbit given by the analytic curves (x−(t), y−(t))
in the half-plane x < 0 for t ∈ [0, π], and by (x+(t), y+(t)) in the half-
plane x > 0 for t ∈ [π, 3π/2] where

(6)

x−(t) = −eαt−πα2 sin t,
y−(t) = −eαt−πα2 cos t,
x+(t) = e−αt

(
cos t− e−πα2 sin t

)
− 1,

y+(t) = e−αt
(
−e−πα2 cos t− sin t

)
.

This non-algebraic crossing periodic orbit is drawn Figure 1 and has
period 3π/2. We shall provide the expression of the analytic curve
containing the non-algebraic crossing periodic orbit parametrized by
the time t, but using the first integrals of both linear differential sys-
tems and knowing that the non-algebraic crossing periodic orbit passes
through the point (0,−e−πα/2) when t = 0 and through the point
(0, eαπ/2) when t = π. Thus these expressions are√

x2 + y2eα arctan( yx) = e
πα
2

√
e−πα,
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in x < 0, and

e4α arctan( x+αy+1
α+αx−y )

((x+ 1)2 + y2)2
=
e
4α arctan

(
1−e−

πα
2 α

α+e
−πα

2

)

(e−πα + 1)2
,

in x > 0.

Figure 1. The non-algebraic limit cycle (6) of the piece-
wise linear differential system (5) for α = −1.

Now we shall prove that this non-algebraic crossing periodic orbit
is a limit cycle. For a smooth differential system (1) in the plane a
periodic solution (x(t), y(t)) of period T such that

(7)

∫ T

0

(
∂P

∂x
+
∂Q

∂y

)
(x(t), y(t))dt 6= 0,

is a limit cycle, usually called a hyperbolic limit cycle. This is a well
known result, for a proof see for instance Theorem 1.23 of [28]. The
formula (7) can be extended to the discontinuous piecewise linear dif-
ferential systems here considered. Then for the discontinuous piecewise
linear differential system (2)-(5) we have that∫ π

0

2αdt+

∫ 3π/2

π

(−2α)dt = απ 6= 0,

hence the non-algebraic crossing periodic orbit (6) is a limit cycle.
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[38] I.A. Garćıa, Transcendental limit cycles via the structure of arbitrary degree
invariant algebraic curves of polynomial planar vector fields, Rocky Mountain
J. Math.35 (2005), no. 2, 501–515.

[39] A. Gasull, H. Giacomini and J. Torregrosa, Explicit non-algebraic limit
cycles for polynomial systems, J. Comput. Appl. Math. 200 (2007), 448–457.

[40] F. Giannakopoulos and K. Pliete, Planar systems of piecewise linear
differential equations with a line of discontinuity, Nonlinearity 14 (2001), 1611–
1632.
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