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Abstract. For the polynomial vector fields on a Clifford n-dimen-
sional torus, we develop a Darboux theory of integrability. More-
over, we study the optimal maximal number of invariant meridians
in terms of the degree of the polynomial vector field.

1. Introduction and statement of the main results

Nonlinear ordinary differential equations are vastly used to model
processes in many fields. First integrals are important in particular
because they help to obtain the phase portrait of the system and to
reduce the dimension of the system by its number of independent first
integrals. For all this, the corresponding methods are very important.

The existence of first integrals for non Hamiltonian vector fields can
be studied for example using Noether symmetries [3], the Darboux
theory of integrability [9], Lie symmetries [25], the Painlevé analysis
[2], the use of Lax pairs [14], and the direct method [11] and [12].
There are also many extensions to Rn. In particular, the Darboux
theory of integrability can be applied to polynomial vector fields using a
sufficient number of invariant algebraic hypersurfaces. It was extended
succesfully to R2 [4, 5, 6, 7, 9, 13, 15, 23, 26, 27, 28, 29, 30, 31, 32] and
to Rn [16, 17, 18, 20, 21, 22, 24].

In this paper we first develop a Darboux theory of integrability on
the n-dimensional Clifford torus T and, second, we study the maximal
number of invariant meridians of polynomial vector fields on this torus.

We recall that the Clifford n-dimensional torus T is the n-dimensional
torus whose circles have all equal radius. A torus of this type embeds
into R2n by the parametrization

xi = cos θi, yi = sin θi, i = 1, . . . , n.
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Following partly [20], we recall a few necessary definitions. Given a
C1 map G : Rℓ → R, a hypersurface

S = {(x1, . . . , xℓ) ∈ Rℓ : G(x1, . . . , xℓ) = 0}

is regular if ∇G ̸= 0 on S. A hypersurface S is algebraic of degree d if
G is an irreducible polynomial of degree d.

A polynomial vector field X = (P1, . . . , Pℓ) on a regular hypersur-
face S is a polynomial vector field satisfying X · ∇G = 0 on S. An
algebraic hypersurface {f = 0} ∩ S ⊂ Rℓ is said to be invariant under
a polynomial vector field X if:

(a) for some k ∈ C[x1, . . . , xℓ] (the cofactor of f = 0 on S) we have

(1) Xf =
ℓ∑

i=1

Pi
∂f

∂xi

= kf on S;

(b) the hypersurfaces f = 0 and S are transverse.

Note that X is tangent to {f = 0} ∩ S. Hence, the intersection is
composed by orbits of X.

Assume that X has degree m. We say that F = F (x1, . . . , xℓ) =
exp(g/h) is an exponential factor of X on the regular hypersurface S if
g, h ∈ C[x1, . . . , xℓ] and XF = LF on S for some L ∈ Cm−1[x1, . . . , xℓ]
(the set of polynomials in C[x1, . . . , xℓ] of degree at most m−1). Given
a regular algebraic hypersurface S = {G = 0} in Rℓ, two polynomials
f, g ∈ Cm[x1, . . . , xℓ] are said to be related (and we write f ∼ g), if
f/g = constant or f − g = hG for some polynomial h. One can easily
verify that ∼ is an equivalence relation.

The dimension d(m) of Cm[x1, . . . , xℓ]/ ∼ is called the dimension of
Cm[x1, . . . , xℓ] on S. It is proved in [20, Proposition 1] that

(2) d(m) =

(
ℓ+m

ℓ

)
−
(
ℓ+m− d

ℓ

)
,

where d is the degree of the algebraic hypersurface S.

Now take f, g ∈ Cm[x1, . . . , xℓ] and let S = {G1 = 0}∩· · ·∩{Gq = 0}
be the intersection of q regular algebraic hypersurfaces in Rℓ of degree di
for i = 1, . . . , q. Similarly, we say that f and g are related (and again
we write f ∼ g), if either f/g = constant or f−h =

∑q
i=1 hiGi for some

polynomials hi. Then ∼ is an equivalence relation in Cm[x1, . . . , xℓ].
We denote the quotient space Cm[x1, . . . , xℓ]/ ∼ by d(m) and called it
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the dimension of Cm[x1, . . . , xℓ] on S. It follows from (2) that

d(m) =

(
ℓ+m

ℓ

)
−

q∑
i=1

(
ℓ+m− di

ℓ

)
.

Given an open set U ∈ Rℓ, a function H(x1, . . . , xℓ, t) : Rℓ × R → R
is said to be an invariant of X on S ∩ U if H(x1(t), . . . , xℓ(t), t)=
constant for all t such that (x1(t), . . . , xℓ(t)) belongs to S ∩ U . When
it is independent of t we call it a first integral and when it is a rational
function we call it rational first integral.

Now we present the extension of the Darboux theory of integrability
to polynomial vector fields on T.

In the case of T = (S1)n, i.e. the Clifford n-dimensional torus, we
have that di = 2 for i = 1, . . . , n and so

d(m) =

(
2n+m

2n

)
−

n∑
i=1

(
2n+m− 2

2n

)
=

(2n+m− 2)!

(2n)!m!

(
(2n+m)(2n+m− 1)− nm(m− 1)).

Note that for the Clifford torus T it is necessary that m ≥ 2. Moreover,
m = 2 then d(2) = 2n2 + 2n+ 1.

We recall the following result (see [16, 20]).

Theorem 1. Assume that X = (P1, . . . , Pn) is a polynomial vector
field on T of degree m = (m1, . . . ,mn), i.e. degPi = mi, having p
invariant algebraic hypersurfaces {fi = 0} ∩ T with cofactors Ki for
i = 1, . . . , p and q exponential factors F1, . . . , Fq with Fj = exp(gj/hj)
with cofactors Lj for j = 1, . . . , q. Then the following statements hold.

(a) There exist λi, µj ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = 0 on T,

if and only if the real (multi-valued) function of Darboux type

fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q substituting fλi

i by |fi|λi if λi ∈ R is a
first integral of the vector field X on T.

(b) If p+ q ≥ d(m) + 1 then there exist λi, µj ∈ C not all zero such
that

∑p
i=1 λiKi +

∑q
j=1 µjLj = 0 on T.
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(c) There exist λi, µj ∈ C not all zero such that
p∑

i=1

λiKi +

q∑
j=1

µjLj = −σ on T

for some σ ∈ R \ {0} if and only if the real (multi-valued)

function of Darboux type fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q eσt substituting

fλi
i by |fi|λi if λi ∈ R is an invariant of the vector field X on
T.

(d) The vector field X on T has a rational first integral if and only
if p+ q ≥ d(m)+n. Moreover all the trajectories are contained
in invariant algebraic hypersurfaces.

See [20] for the proof of statements (a), (b) and (c) and see [16] for
the proof of statement (d).

We shall use extactic polynomials [10] (see also [1]) for obtaining
invariant algebraic hypersurfaces. For a finitely generated subspace
W of C[x1, . . . , xd] with basis {v1, . . . , vl}, the extactic polynomial of a
polynomial vector field X associated to W is defined by

EW (X) = E{v1,...,vl}(X) = det


v1 v2 · · · vl

X(v1) X(v2) · · · X(vl)
...

...
...

X l−1(v1) X l−1(v2) · · · X l−1(vl)


(although it does not depend on the choice of the basis). We shall use
the following result from [8].

Proposition 2. Let W be a finitely generated vector subspace of di-
mension dimW > 1 of C[x1, . . . , xd]. Then every algebraic invariant
hypersurface f = 0 of a polynomial vector field X in Cd, with f ∈ W ,
is a factor of the polynomial EW (X).

For all (ai, bi) ∈ R2 such that a2i + b2i = 1, a meridian of T is defined
by

(3)
{
(x1, x2, a1, b1, . . . , an−1, bn−1) : x

2
1 + x2

2 = 1
}
.

The following result gives the maximal number of invariant meridians
that a polynomial vector fieldX on T can have as function of its degree.

Theorem 3. Let X be a polynomial vector field on the Clifford n-
dimensional torus T of degree m = (m1, . . . ,m2n) with m1 ≥ m2 > 0
and m2n−1 ≥ m2n > 0. Assume that X has finitely many invariant
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meridians. Then their number is at most 2(m2−1) taking into account
their multiplicities.

Theorem 3 is proved in section 2. The case when n = 2 was treated
in [19].

2. Proof of Theorem 3

Before proving Theorem 3 we state and prove an auxiliary result.

Proposition 4. The polynomial differential systems X = (P1, . . . , P2n)
having an invariant Clifford n-dimensional torus T are

P2j+1 = Aj(x
2
2j+1 + x2

2j+2 − 1)− 2Cjx2j+2,

P2j+2 = Bj(x
2
2j+1 + x2

2j+2 − 1) + 2Cjx2j+1,

for j = 0, 1, . . . , n − 1, where Aj, Bj, Cj are arbitrary polynomials in
(x1, . . . , x2n).

Proof. Fix j ∈ {1, . . . , n− 1} and take f (j) = x2
2j+1 + x2

2j+2 − 1. Since

there are no points at which f (j), f
(j)
x2j+1 , f

(j)
x2j+2 vanish simultaneously,

from Hilbert’s nullstellensatz we obtain that there exist polynomials
E(j), F (j), G(j) such that

(4) E(j)f (j)
x2j+1

+ F (j)f (j)
x2j+2

+G(j)f (j) = 1.

If X is a polynomial vector field on T, then f (j) = 0 is an invariant
hypersurface of X with cofactor K(j). As f (j) satisfies equation (1) we
get from (1) and (4) that

K(j) = (K(j)E(j) +G(j)P2j+1)f
(j)
x2j+1

+ (K(j)F (j) +G(j)P2j)f
(j)
x2j+2

.

Substituting K(j) into (1) we get(
P2j+1 − (K(j)E(j) +G(j)P2j+1)f

(j)
)
f (j)
x2j+1

= −
(
P2j+2 − (K(j)F (j) +G(j)P

(j)
2j )f

(j)
)
f (j)
x2j+2

.

Since (f
(j)
x2j+1 , f

(j)
x2j+2) = 1, there exists a polynomial D(j) such that

P2j+1 − (K(j)E(j) +G(j)P2j+1)f
(j) = −D(j)f (j)

x2j+2
= −D(j)x2j+2

and

P2j+2 − (K(j)F (j) +G(j)P2j+2)f
(j) = D(j)f (j)

x2j+1
= D(j)x2j+1.

This proves the theorem for P2j+1 and P2j taking Aj = K(j)E(j) +
G(j)P2j+1 Bj = K(j)F (j) + G(j)P2j+2 and Cj = D(j). Since this proce-
dure can be done for any j the proof of the proposition is complete. □
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We finally establish our main result.

Proof of Theorem 3. A meridian of the Clifford n-dimensional torus T
is obtained intersecting T with the hyperplanes x1 = a and x2 = b
taking a2 + b2 = 1 (see (3)). Therefore the hyperplanes x1 − a = 0 and
x2 − b = 0 must be invariant under the polynomial vector field X. In
view of Proposition 2, the polynomial x1 − a must divide the extactic
polynolmial

E{1,x1} = det

(
1 x1

X(1) X(x1)

)
= det

(
1 x1

0 P1

)
= P1(x1, x2, . . . , x2n−1, x2n),

and so x1 − a must divide the polynomial P1(x1, x2, . . . , x2n−1, x2n). In
a similar way we have that x2− b must divide the extactic polynolmial

E{1,x2} = det

(
1 x2

X(1) X(x2)

)
= det

(
1 x2

0 P2

)
= P2(x1, x2, . . . , x2n−1, x2n),

and so x2 − b must divide the polynomial P2(x1, x2, . . . , x2n−1, x2n).

Since the degree of P2 is m2, it follows that the polynomials of the
form x2 − b can divide the polynomial P2 at most m2 times. If this is
the case then

P2 = κ

m2∏
j=1

(x2 − bj)

with κ ∈ R \ {0} and |bj| ≤ 1 (so that we have a meridian).

It follows from Proposition 4 that

P2 = B1(x
2
1 + x2

2 − 1) + 2C1x1.

Therefore we have that

B1(x
2
1 + x2

2 − 1) = −2C1x1 + κ4

m2∏
j=1

(x2 − bj).

Hence, from x1 = 0 it follows that x2
1 − 1 must divide

∏m2

j=1(x2 − bj).
Then the two planes x2 = ±1 can only produce meridians with x1 = 0.
So the two planes x2 = ±1 can produce at most two meridians. The
other m2 − 2 planes x2 = bj ̸= 1 can produce each one at most two
meridians. We conclude that the maximum number of meridians is
2(m2 − 2) + 2 = 2(m2 − 1). □
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Now we provide an example realizing the upper bound for the merid-
ians provided in Theorem 3 (thus showing that the upper bound is
optimal). Consider the vector field X on the Clifford n-dimensional
torus T given by

X =
n−1∑
j=0

(x2
2j+1 + x2

2j+2 − 1)
∂

∂x2j+1

+ x2j+1x2j+2
∂

∂x2j

,

thus of degree (2, . . . , 2). We prove that the upper bound 2(m1−1) = 2
for the number of meridians provided in Theorem 3 is attained. Since

X(x2
2j+1 + x2

2j+2 − 1) = 2x2j+1(x
2
2j+1 + x2

2j+2 − 1)

for j = 0, . . . , n− 1 it follows that X defines a vector field on T.
Note that

(x1, x2, a1, b1, . . . , an−2, bn−2) = (1, 0, a1, b1, . . . , an−2, bn−2),

(x1, x2, a1, b1, . . . , an−2, bn−2) = (−1, 0, a1, b1, . . . , an−2, bn−2),

for any aj, bj ∈ R satisfying a2j + b2j = 1 are two meridians for X.

3. Conclusions

This paper is devoted to the Darboux theory of integrability for
the polynomial vector fields on the Clifford torus. In Theorem 1 we
summarize what is known for the Clifford torus. The theory is based on
the study of the invariant algebraic hypersurfaces of polynomial vector
fields.

One of the best tools for obtaining invariant algebraic hypersurfaces
for a polynomial vector field is the extactic polynomial (see Proposi-
tion 2 for the precise relation between both of them). While in The-
orem 1 the extactic polynomial is not present, in Theorem 3 proven
in our paper we use it for studying the maximal number of invariant
meridians that a polynomial vector field on the Clifford torus can ex-
hibit as a function of its degree.
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