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We study discontinuous piecewise linear differential systems formed by linear centers and/or
linear Hamiltonian saddles and separated by a non-regular straight line. There are two classes of
limit cycles: the ones that intersect the separation line in two points and the ones that intersect
the separation line in four points, named limit cycles of type Ils and limit cycles of type Iy,
respectively. We prove that the maximum numbers of limit cycles of types Il and Il are
two and one, respectively. We show that all these upper bounds are reached providing explicit
examples.

1. Introduction and statement of the main result

The 16th Hilbert problem which consists in finding an upper bound for the maximum number of limit cycles
(periodic orbits of a differential system isolated in the set of all periodic orbits of that system) that a given
class of differential systems can exhibit, is in general a very hard and unsolved problem. Only for very few
classes of differential systems this problem has been solved. We note that limit cycles play an important
role for explaining physical phenomena, see for instance the limit cycle of van der Pol equation [van der
Pol, 1920, 1926], or the one of the Belousov-Zhavotinskii model [Belousov, 1959; Zhabotinsky, 1964], etc.
and so there has been an intense active research on the limit cycles for many distinct smooth differential
Systems.

In recent years the study of the limit cycles has been extended to discontinuous planar piecewise
differential systems (that is, differential systems whose vector field is discontinuous on some curve). These
limit cycles exhibit more complex dynamical behavior because two kind of limit cycles can appear in
discontinuous piecewise linear differential systems due to the existence of the discontinuous curve. Following
Filippov’s convention [Filippov, 1988] they are the sliding limit cycles (those ones that contain some pieces
of the discontinuity curve) and the crossing limit cycles (those ones that only contain isolated points of the
discontinuity curve). These causes many differences in their dynamics but since these systems are widely
used to model processes appearing in control theory, electric circuits, biology, mechanics, economy, etc.,
(see for instance the books of di Bernardo et al. [di Bernardo et al., 2008] and Simpson [Simpson, 2010],
the survey of Makarenkov and Lamb [Makarenkov & Lamb, 2012], as well as many references quoted in



these last works) we will only work with the crossing limit cycle, called here simply limit cycles.

The simplest class of discontinuous piecewise differential systems are the planar ones formed by two
pieces separated by a straight line having a linear differential system in each piece. Several authors have
tried to determine the maximum number of limit cycles for this class of discontinuous piecewise differ-
ential systems. Thus, in one of the first papers dedicated to this problem, Giannakopoulos and Pliete
[Giannakopoulos & Pliete, 2001] in 2001, showed the existence of discontinuous piecewise linear differential
systems with two limit cycles. Then, in 2010 Han and Zhang [Han & Zhang, 2010] found other discontin-
uous piecewise linear differential systems with two limit cycles and they conjectured that the maximum
number of limit cycles for discontinuous piecewise linear differential systems with two pieces separated by
a straight line is two. But in 2012 Huan and Yang [Huan & Yang, 2012] provided numerical evidence of the
existence of three limit cycles in this class of discontinuous piecewise linear differential systems. In 2012
Llibre and Ponce [Llibre & Ponce, 2012] inspired by the numerical example of Huan and Yang, proved for
the first time that there are discontinuous piecewise linear differential systems with two pieces separated
by a straight line having three limit cycles. Later on, other authors obtained also three limit cycles for
discontinuous piecewise linear differential systems with two pieces separated by a straight line, see Braga
and Mello [Braga & Mello, 2013] in 2013, Buzzi, Pessoa and Torregrosa [Buzzi et al., 2013] in 2013, Liping
Li [Li, 2014] in 2014, Freire, Ponce and Torres [Freire et al., 2014] in 2014, and Llibre, Novaes and Teixeira
[Llibre et al., 2015] in 2015. But proving that discontinuous piecewise linear differential systems separated
by a straight line have at most three limit cycles is an open problem.

However in numerous models of practical problems the discontinuous curve is not always a regular
straight line. It is known that the number of limit cycles can change if the shape of the discontinuity
curve changes. If the unique straight line of discontinuity becomes a piecewise straight line formed by two
semi-straight lines the existence and number of limit cycles have recently deserved the attention of many
researchers.

Here we shall study the limit cycles of discontinuous piecewise differential systems defined in the
angular regions

Si={(z,y) eR*: 2 >0,y > ax},
Sy ={(z,y) €ER?>: 2 <0, or x>0,y < az},

Fa(z,y) = (fa(=,v), g2z, y) if (z,y) € Sa,

where f;, g; are linear polynomials for i = 1, 2.
System (1) is bi-valued on the non-regular separation line

S=5US={0,y):y>0}U{(x, ax): x> 0}.

In [Huan & Yang, 2019] the authors proved that any piecewise differential system of the form (1) can be
transformed into a piecewise differential system with o = 0 by means of an invertible linear transformation.
Thus it is not restrictive to consider o = 0. Now the discontinuity line will be

R=Ry,UR,={(0,y):y>0}U{(z, 0) : z > 0},
and the two pieces where we have the differential systems are
Ri={(z,y) eR*:2 >0,y >0},
Ro={(z,y) eR*: 2 <0, or >0,y <0}

(a:,y) — F(w,y) — {Fl(:ﬂay) = (fl(x¢y)7gl($7y)) if (x,y) € 81, (1)

We denote by I a crossing limit cycle having two intersection points with either R, or Ry; by 115 a
crossing limit cycle having one intersection point with R, and another intersection point with R,; by 113
a crossing limit cycle having three intersection points with the non-regular line R, and by Il a crossing
limit cycle having two intersection points with R, and two intersection points with R,.

The study of the existence of limit cycles of type Il is the study of limit cycles existing for either
two linear Hamiltonian saddles separated by a straight line, or formed by one linear center and one linear



Hamiltonian saddle separated by a straight line. It was proved in [Llibre & Valls, 2021, 2022] that such
piecewise differential systems have no limit cycles.

There exist two types of limit cycles of type I13. The first type in which one of the three points is the
origin of coordinates, and the second type in which one of the points is tangent to either R, or R,. The
limit cycles in the first case can be considered inside the class of limit cycles of types Il or I14. On the
other hand, the limit cycles in the second case can be considered inside the class of type I1; which we have
seen that do not exist.

In short, we restrict our analysis to study the maximum number of limit cycles of type Ils, or of type
114 of the discontinuous piecewise differential systems (1) with v = 0 formed by linear centers or linear
Hamiltonian saddles. We note that when in the two pieces of the piecewise differential system we have
linear centers these kind of limit cycles already have been studied in [Esteban et al., 2021; Li & Liu, 2022].
Moreover, if the two pieces we have linear Hamiltonian systems without equilibria their limit cycles have
been studied in [Zhao et al., 2021]. So here we only consider discontinuous piecewise differential systems
(1) with o = 0 formed by either a linear center in R; and a linear Hamiltonian saddle in R9, or a linear
Hamiltonian saddle in R and a linear center Rso, or two linear Hamiltonian saddles in R and Ro.

The two main results of the present paper are the following.

Theorem 1. Consider discontinuous piecewise differential systems separated by the non-regular line R and
formed by either arbitrary linear centers or arbitrary linear Hamiltonian saddles. The mazximum number
of limit cycles of type 115 of these discontinuous piecewise linear differential systems is two and there exist
systems of this form with exactly two limit cycles of type Iy (see Figures 1(a), (b) and (c) respectively).

(a)The pair of limit
cycles of type Il for
the center (9) in Ry
and the saddle (10) in
Ra.

(b)The pair of limit
cycles of type Il for
the saddle (12) in Ry
and the center (13)
in Ra.

(¢)The pair of limit
cycles of type I for
the saddles (14) in
Ri1 and (15) and in
Ra.

Fig. 1. All these limit cycles are travelled in counter-clockwise sense.

Theorem 2. Consider discontinuous piecewise differential systems separated by the non-regular line R and
formed by either arbitrary linear centers or arbitrary linear Hamiltonian saddles. The mazimum number
of limit cycles of type 114 of these discontinuous piecewise linear differential systems is one and there exist
systems of this form with exactly one limit cycle of type 114 (see Figure 2(a), (b) and (c) respectively).

The proof of Theorem 1 is given in section 3 and the proof of Theorem 2 is given in section 4.

2. Preliminaries

Through the proofs of Theorem 1 we will use the following two results which provide a normal form for a
linear differential Hamiltonian saddle (for a proof see [Llibre & Valls, 2021, 2022]) and for a linear center
(for a proof see [Llibre & Teixeira, 2018]).

Proposition 1. Any linear differential system having a Hamiltonian saddle can be written as

T=-br—9dy+d, vy=oar+by+ec, (2)



(a)The limit cycle of
type 114 for the cen-
ter (18) in Ri and
the saddle (19) in

-

(b)The limit cycle of
type 114 for the sad-
dle (21) in R and the
center (22) in Rao.

(¢)The limit cycle
of type Il for the
saddles (23) in Ry
and (24) in Ra.

Ra.

Fig. 2. All these limit cycle are travelled in counter-clockwise sense.

with o € {0,1}, b,0,c,d € R. Moreover, if a =1 then § = b> — w with w > 0 and if « =0 then b= 1. A
first integral of this system is

1)
H(xz,y) = —%3:2 — bry — 53/2 —cx +dy. (3)
Proposition 2. Any linear differential system having a center can be written as
t=—br—0y+d, =x+by+c, (4)

where § = b + W withw > 0. A first integral of system (4) is
1 - K _
F(z,y) = —5352 — bry — §y2 —cz +dy. (5)
Note that any of the Hamiltonians (3) and (5) can be written as

A A
G(z,y) = =" — Bay — Sy’ = Cx + Dy,

where A =1 and A = B? + w with w > 0 if we have a linear center, and in the case that we have a linear
Hamiltonian saddle then A € {0,1}, so that A =1 then A = B? — w with w > 0 and if A =0 then B =1
and A € R.

3. Proof of Theorem 1

Without loss of generality we can assume that in R1 we have either a linear center or a linear Hamiltonian
saddle with first integral

A A
Gi(z,y) = —71302 — Bixy — %yQ — Cix + Dy, (6)
and in the region Ry we have either a linear center or a linear Hamiltonian saddle with first integral
A A
Ga(z,y) = —72952 — By — 72y2 — Coz + Day. (7)

If there exists a crossing limit cycle of type I, then it must intersect the non-regular separation curve R
in two points of the form (z,0) and (0,y), both different from the origin. Since the functions G; and G»
are first integrals, these points must satisfy the equations

[ Gl (l‘, 0) — Gl((), y) = —2011‘1 — All'% — 2D1y1 + y%Al = 0,
es = Gao(z,0) — G(0,y) = —2Coz1 — Asa] — 2Doys + yiAs = 0.

It follows from Bézout theorem that system (8) has at most four real solutions, but since one solution is
(0,0) which cannot produce a limit cycle, we conclude that system (8) has at most three real solutions
that without loss of generality we can assume that they are (z;,0), (0,y;) with i = 1,2, 3 satisfying

(8)

O<zi<z9<zy3 and 0<y; <y <3



(otherwise the solutions would intersect which is not possible by the uniqueness of solutions of a differential
system).

We consider four different cases.

If Ay = A = A1 = Ay = 0, then equations e; = 0 and e; = 0 are two straight lines that intersect at
most in one point, and so there is at most one limit cycle.

If Ay = Ay =0 and A? + A2 # 0, then e; = 0 is either a straight line passing through the origin or a
parabola symmetric with respect to some horizontal straight line and passing through the origin. Moreover,
Ey = Aseq — Ajes = 0 become

EQ = 2(A16‘2 — AgCl)a:l + 2(D2A1 — DlAg)yl =0

which is a straight line. Since a parabola and a straight line intersect at most at two points we have that
e1 = Fo = 0 intersect at most in two points satisfying 0 < 1 < x2 and 0 < y; < yo, and so at most two
limit cycles.

If Ay = Ay =0 and A? + A2 # 0, then e; = 0 is either a straight line passing through the origin or a
parabola symmetric with respect to some vertical straight line and passing through the origin. Moreover,
FE1 = Ase; — Ajes = 0 become

E1 = 2(A1(JQ — Azcl)xl + 2(D2A1 — _DlAQ)yl = O,

which is a straight line. Since a parabola and a straight line intersect at most at two points we have that
FE1 = es = 0 intersect at most in two points satisfying 0 < x1 < x9 and 0 < y; < 2, and so at most two
limit cycles.

Finally consider that A%+A% 2 0 and A%—l—A% 2% 0. It follows from e; = eo = 0 that Fy = Ase;—Ajes =
0 and EFy = Age; — Ajes = 0 become

By :=2(A1Cy — ACy)xy + 2(D2 Ay — D1 Ag)yr + (A2A; — A1 Ag)y? =0,
E2 = 2(A102 — AQCl)l‘l + 2(D2A1 — D1A2)yl + (A2A1 — AlAQ)l'% = 0,

If AsA; — A1 Ay = 0 then equations £y = F5 = 0 have at most two solutions and so there are at most
two limit cycles.

Assume now that AsA; — A1As # 0.

If A;Cy — AsCy = 0 then E; = 0 reduces to either one horizontal straight line, or two horizontal
parallel straight lines passing one of these two straight lines through the origin. The equation Fy = 0 is
either a parabola symmetric with respect to some vertical straight line, or one vertical straight line, or two
vertical parallel straight lines passing one of these two straight lines through the origin. Since Fy = F3 =0
pass through the origin, there are at most two intersection points satisfying 0 < 1 < z2 and 0 < y1 < ¥
and so at most two limit cycles.

If DoAy — D1As = 0 then Fo = 0 reduces to either one vertical straight line, or two vertical parallel
straight lines passing one of these two straight lines through the origin. The equation F; = 0 is either
a parabola symmetric with respect to some horizontal straight line, or one horizontal straight line, or
two horizontal parallel straight lines passing one of these two straight lines through the origin. Since
FE1 = Es = 0 pass through the origin, there are at most two intersection points satisfying 0 < 1 < 2 and
0 < y; < y2 and so at most two limit cycles.

Finally, assume that A;Cy — AsCy # 0 and DaA; — DAy # 0. In this case F1 = 0 is a parabola
symmetric with respect to some horizontal straight line and Fo = 0 is a parabola symmetric with respect
to some vertical line. Since both parabolas intersect at the origin, there are at most two intersection points
satisfying 0 < x1 < z2 and 0 < y; < y2, and so at most two limit cycles.

In summary, the maximum number of limit cycles of type Il for our family of discontinuous piecewise
linear differential systems is two. Now we give three examples of discontinuous piecewise linear differential
systems in our class having exactly two limit cycles of type I, the first having a center in R and a saddle
in R9, the second having a saddle in R and a center in Ro, and the third having two saddles in R and
Ro. This will conclude the proof of Theorem 1.



Case 1: In the region Rq1 we have a linear center and in the region Ro we have a linear Hamiltonian
saddle. In region R, we consider the linear differential center

T =—2x— 4y, y:g+2w+2y, (9)
with the first integral
Hy(z,y) =y + gcﬂ +(z+y)%
and in region Ry we consider the linear differential saddle
P 3l 3y 5 3ly 1

"1t VTtTm e (0

with the first integral

HQ(xay) =——+

The two solutions of equations (8) for the discontinuous piecewise differential system (9)—(10) are

@ = (31). = (13). (1)

and the corresponding limit cycles are shown in Figure 1(a).

Case 2: In the region Ry we have a linear Hamiltonian saddle and in the region Ro we have a linear
center. In region R we consider the linear Hamiltonian saddle

1 13
P =2x—3y — — )=z — 2 — 12
T=2r-3y—-, y=r-2+, (12)
with the first integral
2 13z 3y® y
H =——42xy———— -2
1(2,y) 5 T2y — SEE
and in region Ry we consider the linear differential center
7
T = —2x — 4y, y:2m+2y+§, (13)

with the first integral
7
Hy(z,y) =" + Jo + (v +9)°.
The two solutions of equations (8) for the discontinuous piecewise differential system (12)—(13) are given
in (11), and the corresponding limit cycles are shown in Figure 1(b).

Case 3: In both regions R1 and Ro we have a linear Hamiltonian saddle. In region R we consider the
linear Hamiltonian saddle

1 13
t=2x — 3y — — ) = — 2 — 14
T=2r-3y-, y=r-2+, (14)
with the first integral
x? 13z 3y y
H =—— 42y — — — — — Z;
1(2,y) 5 T2y —— SEE
and in region Ry we consider the linear Hamiltonian saddle
. 3lz 3y 5 . 3ly 1
_ _ —r— 7 _Z 15
TR a1 VTR (15)
with the first integral
2 2
31 3 5

The two solutions of equations (8) for the discontinuous piecewise differential system (14)—(15) are given
in (11), and the corresponding limit cycles are shown in Figure 1(c).



4. Proof of Theorem 2

Without loss of generality we can assume that in R; we have either a linear center or a linear Hamiltonian
saddle with first integral (6) and in the region Ry we have either a linear center or a linear Hamiltonian
saddle with first integral (7). Note that if there exists a periodic solution candidate to be a limit cycle of
type 114, then this periodic solution has four intersection points on the discontinuity line R of the form
(21,0), (z2,0), (0,y1) and (0, y2), satisfying 0 < x1 < x2, 0 < y1 < y2 and so the following equations must
be satisfied

G1(z1,0) — G1(0,y1) = —2C1z1 — 2D1y; — Araf + Ayyf =0,

G1(2,0) — G1(0,y2) = —2C1z3 — 2Dy — Ar23 + Ayy3 = 0, (16)
Go(x1,0) — Ga(x2,0) = (21 — x2)(2C2 + Agwy + Asxe) =0,

G2(0,y1) — G2(0,y2) = (y1 — y2)(2D2 — Aay1 — Agy2) = 0.

We consider three different cases.

Case 1: A2 = 0. In this case from the third equation of (16) we get that Cy = 0. If additionally Ay =0
then it follows from the fourth equation of (16) that Da = 0 but, then the first and second equations in (16)
yield a continuum of solutions. If Ag # 0 then from the four equation of (16) we get yo = —y; + 2D2/Ag,
and substituting y, into the first and second equations in (16) we get a continuum of solutions. Therefore
there are no limit cycles in this case.

Case 2: Ag = 0. Then from the third and four equations of (16) we get Dy = 0 and x9 = —x1 —2Co/As.
Substituting these two conditions into the first and second equations of (16) we get a continuum of solutions.
Hence there are no limit cycles in this case.

Case 3: A2A9 # 0 In this case from the third and fourth equations of (16) we get that

2C5 2D,

= - — = - — 1
T2 a4, =N, U (17)

Using these last expressions we can write the first and second equations of (16) in terms of x; and y;, and
we get
Ei(x1,51) = —2C121 — 2D1y1 — A} + Agyi = 0,
Ea(21,y1) = 4(A2D3A | — A3D1 Doy + AsC1CaA3 — A1 C3A3)
+ 245 A%(ACy — 2A,Co)zy — 2A§A2(2D2A1 — D1 Aoy
— Ay ASAZeY + ASA ALy =

Setting E3(z,y) = AJAZE) (x,y) — Ea(x,y) = 0 we get

Eg(I, y) = *4(A%D%A1 — A%DlDQAZ + AgCngAg — AlCSAg)
— 4A2(A201 — Ang)Agscl + 4A%A2(D2A1 — D]_AQ)y]_ =0.

If DeA1—D1 Ay = 0 it follows from E3(x,y) = 0 that 27 = —Cy/Ag, but then from (17) we get zo = —Cy /A2
which is not possible. Hence, Do A; — D1 Ay # 0 and solving Fs3(x,y) = 0 in the variable y; we obtain

1
AZA5(D1Agy — DyAy) (
+ A1022A§ - AQA%(AQCl - AlCQ)xl).

Y1 = — AZD3A + A3D1 DAy — AyCrCo A3

Now we introduce y; into Eq(z,y) = 0 and we get

R(ml) =Co+Cix1 + Czl‘% =0,



where
Co =(A3D3A| — A3D1 Doy + AyC1CaA3 — A1C3A3)(AZD3A?
— 3A3D1 Dy A1 Ay 4 2A3D3A3 + AyC1Co AL A3 — A1CIA1A3),
C1 =2A5C5A3(— A1 AZD3A? + 241 A3D 1 Dy A1 Ay — AjASDIA2
+ AJCEALAS — 241 A,C1CHA A + ATCFALA3),
Co =A3A5(— A1 ASD3AT + 241 A3D1 Dy A Ay — AjASDIAS + ASCTAAS
— 241 A5C1Co AL A3 + A2C2A 1 A2) 22,
The polynomial R(x;) is quadratic in the variable 1, whose roots 1 4, are

Cy | AZVA

where
A =A3(DsAy — D1A2)?(A1A3D3AT — 241 A3D1 Do Ay As + (A1 A3D3
— (A0 — A1C)2A1)A3)(242C1C A3 — A1 CE A2
+ A3Ds (Do Ay — 2D1A)).
Note that from (17) we get

20, Cy AWA _
X = — — X = —— — .
2,+ A, 1,+ A, + s 1,7

Since xo > x1 there is at most one solution of the two possible solutions x1 4. Therefore the maximum
number of limit cycles of type I, that our discontinuous piecewise linear differential system can have is
one.

Now we give examples of discontinuous piecewise differential systems in our class having exactly one
limit cycle of type Ily. As in the proof of Theorem 1 we consider the following three different cases, the
first having a center in Rq and a saddle in Rg, the second having a saddle in R; and a center in Ro, and
the third having two saddles in R and Rs. This will conclude the proof of Theorem 2.

Case 1: In the region R1 we have a linear center and in the region Re we have a linear Hamiltonian
saddle. In region R1 we consider the linear differential center

17 191
p=— — 27 —4 j=——— 4+ 27 +2 1
t=r-2r—dy, y=—om T2y, (18)
with the first integral
191 17
2 2
- :
Hi(z,y) =y = 2500 + 2y + (@ +y)5
and in region Ry we consider the linear differential saddle
561 3
= — — - )= —1 — 19
TSl Ty YT TETY (19)
with the first integral
1 561 3
H =z — -2+ — — 2
2@, y) =2 — 52"+ gyt ay - gy

In this case the two solutions of equations (16) are

r) - (135528 852474110 133331 — 632474110
Ly = 1825283 ) 182528 )

o) — [ 13228 852474110 133331 + 631/2474110
T2, 92) = 1825283 ) 1825283 )
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and the corresponding limit cycle of the discontinuous piecewise differential system (18)—(19) is shown in
Figure 2(a).

Case 2: In the region Rq1 we have a linear Hamiltonian saddle and in the region Ro we have a linear
center. In region R we consider the linear Hamiltonian saddle

52157003 &9 644918 . ) 89
Yy=——+x+

_ 89 89 21
42917504 64" 3352037 64 647 (21)

with the first integral
55 52157003 1 89 322459
H D 2
@9) = 53+ orms0a? ~ 2%~ 6a®? " 335203
and in region Ry we consider the linear differential center

2048

L ;= 22
z=38 157 ¥ Y 8 + 8z, (22)
with the first integral
1024
H. = 42° — 8(x 2

In this case the two solutions of equations (16) are (z1,y1) and (x2,y2) given in (20) and the corresponding
limit cycle of the discontinuous piecewise differential system (21)—(22) is shown in Figure 2(b).

Case 3: In both regions R1 and Ry we have a linear Hamiltonian saddle. In region R we consider the
linear Hamiltonian saddle

_ 52157003 89 644918 _ 55 8 (23
T 12017504 647 3352037 YT Toa 64Y"

with the first integral

Hi(z,y) = 95 vt 52157003 1372 _ @ 322459 "3
Y= 64 429175047 ~ 2 64"Y ~ 335203

and in region Ry we consider the linear Hamiltonian saddle

561 3
= 42 j=—14z— 24
124 TP Y Y Ty, (24)
with the first integral
561 1 3
H. O~ a2 — 22
2@ y) =@+ 1oy — 52ty — oyt

In this case the two solutions of equations (16) are (z1,y1) and (z2,y2) given in (20) and and the corre-
sponding limit cycle of the discontinuous piecewise differential system (23)—(24) is shown in Figure 2(c).
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