
QUALITATIVE STUDY OF THE SELKOV MODEL

JAUME LLIBRE1 AND CHARA PANTAZI2

Abstract. The Selkov oscillator was formulated in 1968 and now it is a classical model for study-
ing the glycolysis. It is a differential system of two equations depending on two parameters in
dimensionless variables. When the two equations are polynomials we prove that the Selkov system
is not Liouvillian integrable. Additionally, we prove that the polynomial Selkov system for any
integer n ≥ 1 has nine distinct phase portraits in the Poincaré disk.

1. Introduction and statement of the main results

The living organisms obtain energy from sugar using a process called glycolysis. Experimental
observations detected that when the input rate of sugar is constant then the subproducts of the
glycolysis oscillate on time. Based on these observations Higgins [13] in 1964 provided a mathe-
matical model in order to understand better this phenomenon. Higgins’ model was improved in
1968 by Selkov [20]. Thus the Selkov model is given by the differential system of two equations

ẋ = 1− xyγ ,
ẏ = ay(−1 + xyγ−1),

depending on two parameters a > 0 and γ in dimensionless variables. In order to avoid technical
complications with differentiability we take γ = n a positive integer. The variables x and y are the
dimensionless concentrations of ATP (adenosine triphosphate) and ADP (adenosine diphosphate),
respectively, while the dot represents the derivative with respect to a dimensionless time variable.

From now on we will work with the system

(1)
ẋ = 1− xyn,
ẏ = ay(−1 + xyn−1),

where n is a positive integer and a is a positive real number.

In his seminal paper Selkov proved that his model admits a Hopf bifurcation, showing the
existence of a periodic motion which allowed to explain the oscillations observed experimentally.
In 2010 d’Onofrio [10] studied the stability and uniqueness of these periodic orbits.

Since some of the solutions of the Selkov model are unbounded in order to understand them it
is necessary to study the neighborhood of the infinity. In 2018 Brechmann and Rendall [3] used
the technique of Poincaré compactification for studying those unbounded solutions. Additionally
these authors also showed that if the unique equilibrium point of the Selkov model is stable, then
any bounded solution converges to it in forward time. If this equilibrium is unstable and there
exist a periodic orbit then this periodic orbit is unique and all bounded solutions different from the
equilibrium converge to the periodic solution in forward time. If the equilibrium is unstable and
does not exist a periodic orbit then all solutions distinct from the equilibrium are unbounded.

Selkov in [20] claimed that his system admits solutions which oscillate with an amplitude which
grows without limit in forward time. These solutions are called solutions with unbounded oscil-
lations. In 2020 Brechmann and Rendall [4] proved the existence of solutions with unbounded
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oscillations. In [5] the authors prove the existence and uniqueness of a limit cycle trasforming
system (1) into Liénard system.

We associate to the differential system (1) the vector field

(2) X = (1− xyn)
∂

∂x
+ ay(−1 + xyn−1)

∂

∂y
.

The two main objectives of this paper on the Selkov model (1) are essentially mathematical, but
of course they have biological implications. The first one is to decide if system (1) is Liouvillian
integrable for some values of its parameters, the answer is negative, see Theorem 1. The second
objective is to classify, for all n ≥ 1, the topological phase portraits of system (1) in the Poincaré
disc, see Theorem 2. This second objective was solved in the particular cases n = 2 by Artés et al
[2] and Chen and Tang [6], and for n = 3, 4, 5, 6 see [15].

Theorem 1. System (1) for a > 0 is not Liouvillian integrable.

Theorem 1 is proved in Section 2.

Theorem 1 says that the differential system (1) has neither a first integral nor an integrating
factor given by a Darboux function, see for more details the subsection 4.1 of the Appendix.

In order to understand the behaviour of system (1) we need to draw the phase portraits in the
Poincaré disc, see subsection 4.2 of the Appendix. Roughly speaking, the Poincaré disc is the
closed unit disc centered at the origin of R2, its interior is identified with the whole plane R2 and
the circle of its boundary is identified with the infinity of R2. In the plane we can go to infinity in
as many directions as points has the circle. There is a unique analytic way to extend a polynomial
differential system defined in R2 to the Poincaré disc. Working with this extended system defined
in the Poincaré disc, we can study how the orbits of the polynomial differential system goes or come
from infinity. For more details on the so called Poincaré compactification see for instance chapter
5 of [11].

We recall that our second objective is to present the topological classification of all phase portraits
of system (1) for all n ≥ 1. Thus, we follow the works of Markus, Neumann and Peixoto [16, 17, 18]
and the notion of separatrix configuration (see also subsection 4.3 of the Appendix). In what follows
we denote by S the number of separatrices and by R the number of the canonical regions. If there
does not exist a homeomorphism to bring the separatrix configuration of one phase portrait to
the separatrix configuration of the other, we say that the two phase portraits are not topological
equivalent. Next theorem classify the topological phase portraits of system (1).

Theorem 2. For the Selkov system (1) with a > 0 and n ≥ 1, there are exactly nine non–topological
equivalent phase portraits in the Poincaré disc:

(a) For n = 1 see Figure 1(e) with S = 15 and R = 2.
(b) For n ≥ 2 and n odd (resp. even)

(i) Figure 1(a) (resp. 2(a)) with a ∈ (0, 1/(n− 1)) and S = 17 and R = 4.
(ii) Figure 1(b)(resp. 2(b)) with a ∈ (1/(n − 1), a∗) and a∗ is a unique constant in the

interval
(

1
n−1 ,

2n−1
2n−2

)
. In this case, S = 18 and R = 5.

(iii) Figure 1(c) (resp. 2(c)) with a = a∗ and S = 16 and R = 4.
(iv) Figure 1(d) (resp. 2(d)) with a > a∗ and S = 17 and R = 4.

Theorem 2 is proved in Section 3.
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Figure 1. The phase portraits of systems (1) for n odd, n ≥ 1.

The applications to biology from the phase portraits given in Figures 1 and 2 are restricted
to the positive quadrant inside the Poincaré disk because x and y are concentrations. The more
interesting results corresponds to (a),(b) and (e) of Figure 1 and of (a) and (b) of Figure 2 where
are attractors formed by an equilibrium point or a limit cycle. Hence, in the case of an attractor
equilibrium point the concentrations tends to a fixed value, while in the case of a limit cycle the
concentrations change periodically.

2. Proof of Theorem 1

In the proof of Theorem 1 we shall use Lemmas 3 and 4.

Lemma 3. The unique irreducible invariant algebraic curve of system (1) is y = 0.

Proof. From (1) we have that ẏ|y=0 = 0, therefore the straight line y = 0 is invariant under the
flow of system (1). Now we must prove that there is no other irreducible invariant algebraic curve.

Consider an irreducible polynomial F (x, y) distinct of the polynomial y. We write F (x, y) =
F0(x) +F1(x)y+F2(x)y2 + · · ·+Fk(x)yk where Fi is a polynomial in the variable x for i = 0, · · · , k
with Fk(x) 6= 0. Note that F0(x) 6= 0, otherwise F is not irreducible because y would be a
factor of F . We assume that F = 0 is an invariant algebraic curve of system (1) with cofactor
K = K0(x) + K1(x)y + · · · + Kn−1(x)yn−1 + kny

n with Ki polynomials in the variable x for
i = 0, · · · , n − 1. Since system (1) is of degree n + 1 we have that the degree of the cofactor K is
at most n and consequently kn must be a constant.
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Figure 2. The phase portraits of systems (1) for n even, n ≥ 2.

Since F = 0 is an invariant algebraic curve of system (1) we have that

(3) (1− xyn)F ′0(x) = (K0(x) +K1(x)y + · · ·+Kn−1(x)yn−1 + kny
n)F0(x),

if k = 0; and
(4)

(1− xyn)(F ′0(x) + F ′1(x)y + · · ·+ F ′k(x)yk)− a(y − xyn)(F1(x) + 2F2(x)y + · · ·+ kFk(x)yk−1)
= (K0(x) +K1(x)y + · · ·+Kn−1(x)yn−1 + kny

n)(F0(x) + F1(x)y + · · ·+ Fk(x)yk).

if k ≥ 1.

We consider the coefficients of y0 in (3) and (4) and we obtain F ′0(x) = K0(x)F0(x), and so
K0(x) = 0 and F0(x) = f0 ∈ R with f0 6= 0. Therefore, F (x, y) = f0 + yH(x, y) and since
K0(x) = 0 the cofactor K is divisible by y.

In summary if k = 0 then F (x, y) = F0(x) = f0 6= 0, in contradiction with the fact that
F (x, y) = 0 is an invariant algebraic curve. Hence k ≥ 1.

We separate the rest of the proof in two cases.

Case 1: n = 1. Then from (4) we have

(5)
(1− xy)(F ′1(x)y + · · ·+ F ′k(x)yk)− a(y − xy)(F1(x) + 2F2(x)y + · · ·+ kFk(x)yk−1)

= k1y(f0 + F1(x)y + · · ·+ Fk(x)yk).

The coefficient of y in (5) is
F ′1(x)− a(1− x)F1(x) = k1f0.
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The solution of this linear differential equation is

F1(x) = eax−
ax2

2

(
C1 +

√
π

2a
k1f0e

−a
2 erfi

(√
a(x− 1)√

2

))
,

where C1 is a constant and erfi is the imaginary error function, see [22]. Since F1(x) must be a
polynomial, we have that the C1 = k1 = 0 and F1(x) = 0. Then (5) becomes

(6) (1− xy)(F ′2(x)y2 + · · ·+ F ′k(x)yk)− a(y − xy)(2F2(x)y + · · ·+ kFk(x)yk−1) = 0.

Now the coefficient of y2 in (6) is

F ′2(x)− 2a(1− x)F2(x) = 0.

Therefore F2(x) = C2e
ax(2−x) where C2 is a constant. Since F2(x) must be a polynomial, we have

that C2 = 0 and F2(x) = 0. Repeating this process we obtain that Fj(x) = 0 for j = 3, . . . , k, a
contradiction with the assumption that Fk(x) 6= 0. So the lemma is proved if n = 1.

Case 2: n > 1. Now we write the irreducicle invariant algebraic curve F (x, y) = 0 of system
(1) as F (x, y) = G0(y) + G1(y)x + G2(y)x2 + · · · + G`(y)x`, where Gi is a polynomial in the
variable y for i = 0, . . . , ` with G`(y) 6= 0. Since F is irreducible G0(y) 6= 0. And we write
its cofactor as K(x, y) = k0(y) + k1(y)x + · · · + kn−1(y)xn−1 + knx

n with ki a polynomial in the
variable y for i = 0, · · · , n. Since the degree of the cofactor K is at most n we have that kn is
a constant. But since the cofactor K is divisible by y it follows that kn = 0 and y divides ki(y)
for i = 0, 1, . . . , k − 1. Moreover, since F (x, y) = f0 + yH(x, y) we have that y divides Gj(y) for
j = 1, . . . , ` and G0(y) = f0 + g(y) with f0 6= 0.

Since F = 0 is an invariant algebraic curve of system (1) we have that

(7) −a(y − xyn)G′0(y) = (k0(y) + k1(y)x+ · · ·+ kn−1(y)xn−1)G0(y),

if ` = 0; and
(8)

(1− xyn)(G1(y) + 2G2(y)x+ · · ·+ `G`(y)x`−1)− a(y − xyn)(G′0(y) +G′1(y)x+ · · ·+G′`(y)x`)
= (k0(y) + k1(y)x+ · · ·+ kn−1(y)xn−1)(G0(y) +G1(y)x+ · · ·+G`(y)x`),

if ` ≥ 1.

Assume ` = 0, then from (7) we get

(9) −a(y − xyn)G′0(y) = (k0(y) + k1(y)x)G0(y),

or equivalently

(10) −ayG′0(y) = k0(y)G0(y), aynG′0(y) = k1(y)G0(y).

Dividing the second of these equations by the first one we have that k1(y) = −k0(y)yn−1. Solving
(10) we obtain

G0(y) = C0e
−

∫ k0(y)
ay

dy
,

where C0 is a constant. Since G0(y) 6= 0 and it must be a polynomial we have that k0(y) = k0
must be a constant. Then G0(y) = C0y

−k0/a, and since G0(y) = f0 + g(y) with f0 6= 0 we have
that k0 = 0 and so G0 = C0 = f0 and g(y) = 0. But then F (x, y) = G0 = f0, a contradiction, the
invariant curve cannot be a constant number.

From now on we assume that ` ≥ 1.

The coefficient of xn+`−1 in the polynomial (8) must satisfy

(11) kn−1(y)G`(y) = 0 if n+ `− 1 > 1 + `,
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or

(12) kn−1(y)G`(y) = aynG′`(y) if n+ `− 1 = 1 + `.

If (12) holds, then n = 2 and

G`(y) = C`e
∫ k1(y)

ay2 dy,

where C` is a constant. Since G`(y) 6= 0 must be a polynomial, we get that k1(y) = ky and so

G`(y) = C`y
k/a with k/a ≥ 1 a non-negative integer and C` 6= 0, because y divides G`(y). Therefore

from (8) we obtain

(13)

(1− xy2)(G1(y) + 2G2(y)x+ · · ·+ `C`y
k/ax`−1)

−a(y − xy2)(G′0(y) +G′1(y)x+ · · ·+G′`−1(y)x`−1 +G′`(y)x`)

= (k0(y) + kyx)(G0(y) +G1(y)x+ · · ·+ C`y
k/ax`).

Here k0(y) = k01y + k02y
2, because n = 2 and the cofactor must be divisible by y.

The coefficient of x0 of the polynomial (13) is

G1(y)− ayG′o(y) = (k01y + k02y
2)G0(y).

So

G0(y) = e−
1
a(k01y+ 1

2
k02y2)

(
C0 +

1

a

∫
y−1G1(y)e

1
a(k01y+ 1

2
k02y2)dy

)
.

where C0 is a constant. Since G0(y) and G1(y) are polynomials we have that k01 = k02 = 0.
Therefore

G0(y) = C0 +
1

a

∫
y−1G1(y)dy.

Consequently C0 = f0 6= 0 and we know that G1(y) is divisible by y.

The coefficient of x` of the polynomial (13) is −`C`yk/a+2− kC`yk/a + ay2G′`−1(y) = kyG`−1(y).
Therefore we obtain

G`−1(y) =
C`
a

(
`y − k

y

)
y

k
a + C`−1y

k
a .

Hence if ` > 1 the integer k/a > 1 because y divides G`−1(y), and if ` = 1 then k/a = 1 because
G0(y) = f0 + yg(y) and consequently f0 = −kC`/a = −C` = −C1.

Assume ` > 1. Denoting the integer k/a = m > 1. Then (13) becomes
(14)

(1− xy2)
(
G1(y) + 2G2(y)x+ · · ·+ (`− 1)

(
C`

(
`

a
ym+1 −mym−1

)
+ C`−1y

m

)
x`−2

+`C`y
mx`−1

)
− a(y − xy2)

(
G′0(y) +G′1(y)x+ · · ·+

(
C`

(
`(m+ 1)

a
ym −m(m− 1)ym−2

)
+mC`−1y

m−1)x`−1 +mC`y
m−1x`

)
= mayx

(
G0(y) +G1(y)x+ · · ·+

(
C`

(
`

a
ym+1 −mym−1

)
+ C`−1y

m

)
x`−1 + C`y

mx`
)
.

The coefficient of x`−1 in (14) is

`C`y
m − (`− 1)

(
C`

(
`

a
ym+3 −mym+1

)
+ C`−1y

m+2

)
−a
(
C`

(
`(m+ 1)

a
ym+1 −m(m− 1)ym−1

)
+mC`−1y

m

)
+ ay2G′`−2(y) = mayG`−2(y).
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So

G`−2(y) = C`−2y
m +

ym−2

2a2

(
(`− 1)`C`y

4 + a2m(C`(m− 1)− 2C`−1y)

+2ay(`C` + (`− 1)C`−1y
2) + 2aC`(`+m)y2 log y

)
.

Since the coefficient of log y cannot be zero, and G`−2(y) must be a polynomial we have a contra-
diction.

Assume ` = 1. Then recall that k/a = 1 and so F (x, y) = G0(y) + C1yx and equality (13)
becomes

C1y(1− xy2)− a(y − xy2)(G′0(y) + C1x) = ayx(G0(y) + C1yx).

Considering the terms without x and we have that C1y−ayG′0(y) = 0 and so G0(y) = (C1/a)y+C
with C a constant. Now the terms of x gives −C1y

3−aC1y+ay2G′0(y) = ayG0(y) and substituting
the expression of G0 we obtain C1 = 0, a contradiction. Hence the lemma is proved for n = 2.

Now we can assume that (11) holds. Therefore kn−1(y) = 0 because G`(y) 6= 0. Then the
coefficient of xn+`−2 in the polynomial (8) must satisfy

(15) kn−2(y)G`(y) = 0 if n+ `− 2 > 1 + `,

or

(16) kn−2(y)G`(y) = aynG′`(y) if n+ `− 2 = 1 + `.

If (16) holds, then n = 3 and

G`(y) = C`e
∫ k1(y)

ay3 dy,

where C` is a constant. Since G`(y) 6= 0 must be a polynomial, we get that G`(y) = C` 6= 0 and

k1(y) = ky2. Therefore G`(y) = C`y
k/a with k/a ≥ 1 a non-negative integer and C` 6= 0, because

y divides G`(y). Therefore from (8) we obtain

(17)

(1− xy3)(G1(y) + 2G2(y)x+ · · ·+ `C`y
k/ax`−1)

−a(y − xy3)
(
G′0(y) +G′1(y)x+ · · ·+G′`−1(y)x`−1 +

k

a
C`y

k/a−1x`
)

= (k0(y) + ky2x)(G0(y) +G1(y)x+ · · ·+ C`y
k/ax`).

Here k0(y) = k01y + k02y
2 + k03y

3, because n = 3 and the cofactor must be divisible by y.

The coefficient of x0 of the polynomial (17) is

G1(y)− ayG′o(y) = (k01y + k02y
2 + k03y

3)G0(y).

So

G0(y) = e−
1
a(k01y+ 1

2
k02y2+

1
3
k03y3)

(
C0 +

1

a

∫
y−1G1(y)e(k01y+

1
2
k02y2+

1
3
k03y3)dy

)
.

where C0 is a constant. Since G0(y) and G1(y) are polynomials we have that k01 = k02 = k03 = 0.
Therefore

G0(y) = C0 +
1

a

∫
y−1G1(y)dy.

Consequently C0 = f0 6= 0 and we know that G1(y) is divisible by y.

The coefficient of x` in the polynomial (17) is −`C`yk/a+3−kC`yk/a+ay3G′`−1(y) = ky2G`−1(y).
Therefore we obtain

G`−1 (y) =
C`
a

(
`y − k

2y2

)
y

k
a + C`−1y

k
a
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Hence if ` > 1 the integer k/a > 2 because y divides G`−1(y), and if ` = 1 then k/a = 2 because
G0(y) = f0 + yg(y) and consequently f0 = −kC1/(2a) = −C1.

Assume ` > 1. The coefficient of x`−1 in the polynomial (17) is

`C`y
k/a − (`− 1)y3G`−1(y)− ayG′`−1(y) + ay3G′`−2(y) = ky2G`−2(y).

Solving this equation with respect to G`−2(y) we obtain

G`−2(y) =
yk/a−4

8a2

(
(−C`(2a− k)k + 4a(`C` − kC`−1)y2 − 4C`(2a`+ k + `k)y3

+8a2C`−2y
4 + 8aC`−1(−1 + `)y5 + 4C`(−1 + `)`y6)

)
.

Since k > 0 then C`(k + k2) 6= 0, and consequently the integer k/a ≥ 4 because G`−2(y) must
be a polynomial. We note that ` 6= 2, otherwise we have a contradiction with G0(y) = f0 + yg(y).
Hence ` > 2.

The coefficient of x`−2 in the polynomial (17) is

(`− 1)G`−1(y)− (`− 2)y3G`−2(y)− ayG′`−2(y) + ay3G′`−3(y) = ky2G`−3(y).

Solving this differential equation with respect to G`−3(y) we obtain

G`−3(y) =
yk/a−6

48a3

(
a polynomial in the variable y

)
+

1

a3
C`(a`+ k)yk/a log y.

Since a`+ k > 0 we get a contradiction with the fact that G`−3(y) is a polynomial.

Assume ` = 1. Then recall that k/a = 2 and so F (x, y) = G0(y) + C1y
2x and equality (17)

becomes

C1y
2(1− xy3)− a(y − xy3)(G′0(y) + 2C1yx) = 2ay2x(G0(y) + C1y

2x).

Taking the coefficient without x we have C1y
2 − ayG′0(y) = 0 and so G0(y) = (C1/(2a))y2 + C0

with C0 a constant. From the coefficients of x we have

−C1y
5 + ay3G′0(y)− 2aC1y

2 = 2ay2G0(y),

and substituting the expression of G0 we have that C1 = 0, a contradiction. Hence the lemma is
proved for n = 3.

We have kn−1(y) = 0 and we can assume that n > 3 and that (15) holds. Therefore kn−2(y) = 0.
Now the coefficient of of xn+`−3 in the polynomial (8) must satisfy

(18) kn−3(y)G`(y) = 0 if n+ `− 3 > 1 + `,

or

(19) kn−3(y)G`(y) = aynG′`(y) if n+ `− 3 = 1 + `.

In a similar way as in the previous cases we get a contradiction. Repeating this process until the
iteration r = n− 1 we shall arrive to the case n+ `− r = 1 + ` with

kn−r(y)G`(y) = aynG′`(y).

and we get again a contradiction. So the lemma is proved. �

Lemma 4. The invariant line at infinity has multiplicity n + 1. The only exponential factors of
system (1) are Gi = exp

(
(ax+ y)i

)
for i = 1, · · · , n.
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Proof. Applying the definition of the exponential factor (see Appendix) we can see directly that
Gi = exp

(
(ax+ y)i

)
are exponential factors for the vector field (2) with cofactors Li = −ia(y −

1)(ax+ y)i−1 for i = 1, · · · , n.

We claim that the algebraic multiplicity of the line at infinity for the vector field (2) is n + 1.
Consider the expression of the vector field (2) in the chart (U1, F1) (see for details chapter 5 of [11])

Y =
(
−z2n+1z1 + z1

n+1 − z2naz1 + az1
n
) ∂

∂z1
+ z2

(
z1
n − z2n+1

) ∂

∂z2
.

We set v1 = 1, v2 = z1 and v3 = z2. Then the extactic curve E1 of Y is

(20)
E1 =

∣∣∣∣∣∣
v1 v2 v3

Y (v1) Y (v2) Y (v3)
Y (Y (v1))) Y (Y (v2)) Y (Y (v3))

∣∣∣∣∣∣
= azn+1

2

[
z2 z1

2n−1na+ z1
2n+1 + (a (n− 1)− z2) z2nz1n+1

+ ((−n+ 1) a− z2) z12nz22nz2 z1 a+
(
(−n− 1) z2 az2

n + z2
n+2
)
z1
n
]

= 0.

Note that zn+1
2 divides E1 and zn+2

2 does not divide E1. Then by Proposition 7 of the Appendix,
the lemma follows. �

Proof of Theorem 1. Clearly the cofactor of y = 0 is K = a(−1+xyn−1). Additionally, by Lemma 3
there is no other irreducible invariant algebraic curves of system (1). Since the algebraic multiplicity
of y = 0 is one it turns out that there is no exponential factors associated to the invariant straight
line y = 0, see Proposition 7 of the Appendix. According to Lemma 4 the straight line at infinity has
multiplicity n+1. So the infinity provides n exponential factors Gi = exp

(
(ax+ y)i

)
with cofactors

Li = −ia(y−1)(ax+y)i−1 for i = 1, · · · , n. System (1) has divergence div(X) = anxyn−1−yn−a.
According to statement (a) of Theorem 8 of the Appendix there is a linear combination between
the cofactors K and Li, if and only if there exists a Darboux first integral, or from its statement
(b) there is a linear combination between the cofactors K and Li and the divergence of the system,
if and only if there exists a Darboux integrating factor (24). But we can check easily that there is
no such linear combinations. Indeed, considering the linear combination of the cofactors we obtain

0 = λK +

n∑
i=1

µiLi = λa(−1 + xyn−1)−
n∑
i=1

µiia(y − 1)(ax+ y)i−1.

For n ≥ 2, the coefficient of the monomial xn−1 must be zero. So µn = 0. Now the coefficient
of the monomial xn−2 must be zero, so µn−1 = 0. Continuing in this way, at the end we obtain
µn = µn−1 = · · · = µ2 = 0. The linear combination now becomes

λa(−1 + xyn−1)− µ1a(y − 1) = 0,

and so λ = µ1 = 0.

For n = 1, the linear combination becomes 0 = λK+µ1L1 = λa(−1+x)+µ1a(y−1) and therefore
λ = µ1 = 0.

Now we consider the linear combination of the cofactors and the divergence of the vector field. We
have

0 = λK +

n∑
i=1

µiLi − div(X) = λa(−1 + xyn−1)−
n∑
i=1

µiia(y − 1)(ax+ y)i−1 + anxyn−1 − yn − a.

For n ≥ 2, similar arguments yields to µn = µn−1 = · · · = µ2 = 0 and so the linear combination
now becomes

λa(−1 + xyn−1)− µ1a(y − 1) + anxyn−1 − yn − a = 0,
9



and for n ≥ 2 cannot be satisfied. For n = 1, the linear combination becomes

0 = λK + µ1L1 + div(X) = λa(−1 + x)− µ1a(y − 1) + ax− y − a

and cannot be satisfied.

In summary, system (1) is not Liouvillian integrable. �

3. Proof of Theorem 2

In order to prove Theorem 2 we need to study the behaviour of the finite and infinite equilibrium
points, and the existence of periodic orbits and limit cycles.

3.1. The finite equilibrium point, periodic orbits and limit cycles. System (1) has only
one finite equilibrium point, namely P = (1, 1). The Jacobian matrix of the system at P is(

−1 −n
a a (n− 1)

)
.

The eigenvalues of the Jacobian matrix are

a (n− 1)− 1±
√

(a(n− 1)− 1)2 − 4a

2
.

For n = 1 the point P is a stable node when a ≤ 1/4 and is a stable focus when a > 1/4.

Now we consider that n > 1. We set R(a) = (a (n− 1)− 1) /2 and D = (a(n − 1) − 1)2 − 4a).
Then R(a) = 0 gives a = 1/(n− 1) and relation D = 0 gives

a =

(√
n− 1

n− 1

)2

.

Hence for n > 1 the equilibrium point P = (1, 1) is (see also [20, 3, 15])

• a stable hyperbolic node if a ∈
(

0,
(√

n−1
n−1

)2]
.

• a stable hyperbolic focus if a ∈
((√

n−1
n−1

)2
, 1
n−1

)
.

• a stable weak focus if a = 1
n−1 and there is a Hopf bifurcation.

• an unstable hyperbolic focus if a ∈
(

1
n−1 ,

(√
n+1
n−1

)2)
.

• an unstable hyperbolic node if a ≥
(√

n+1
n−1

)2
.

Note that R′(a) = (n − 1)/2 > 0 for n > 1. In particular, R′(a) > 0 for a = 1/(n − 1). Then
from Theorem 3.4.2 of [12] appears a Hopf bifurcation. So there is a periodic orbit. In order to
study the stability of the periodic orbit we need to calculate the first Lyapunov constant at P . By
relation (3.4.11) of [12] the first Lyapunov coefficient is equal to −1/16. So, there is a supercritical
bifurcation for a ≥ 1/(n − 1) and close to 1/(n − 1). So the unique bifurcated limit cycle in the
Hopf bifurcation must be stable.

The following theorem characterize the existence of periodic orbits and limit cycles, for a proof
see [5, 6]. We recall that here we consider a > 0.
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Theorem 5. For every positive integer n ≥ 2, there exists a unique constant a∗ ∈
(

1
n−1 ,

2n−1
2n−2

)
such that system (1) has no periodic orbits when a ∈ (−∞, 1/(n− 1)]

⋃
[a∗, +∞) and has a unique

limit cycle when a ∈ (1/(n−1), a∗), which is stable and hyperbolic. Moreover, when the limit cycle
exists, its amplitude increases with a.

3.2. The infinite equilibrium points. In order to understand the behaviour of the infinite equi-
librium points of system (1) we need to study the corresponding compactified vector field on the
local charts of the Poincaré disc, see subsection 4.2 of the Appendix.

The expression of system (1) in the local chart (U1, F1) is

(21)
ż1 = −z2n+1z1 + z1

n+1 − z2naz1 + az1
n,

ż2 = −z2n+2 + z2 z1
n,

and there are two infinite equilibrium points (0, 0) and (−a, 0). For n = 1 the origin is a semi–
hyperbolic saddle and the point (−a, 0) is a hyperbolic stable node.

For n > 1 the Jacobian matrix at the origin is linearly zero and the blow up technique is applied
(see [3] and [15]). For n odd the origin of the chart (U1, F1) in the Poincaré sphere is the union of
one parabolic and four hyperbolic sectors, the line of infinity separates the four hyperbolic sectors
two in each side, see the origin of the local chart U1 in Figure 1. Whereas for n even is the union
of two hyperbolic and two parabolic sectors separated by the line of the infinity as it is indicated
in Figure 2.

For n > 1 the Jacobian matrix at the point (−a, 0) is(
(−a)n 0

0 (−a)n

)
.

So the point (−a, 0) is a hyperbolic node. For n even is unstable whereas for n odd is stable.

In the local chart (U2, F2) system (1) is written

(22)
ż1 = −z1 (az1 + 1) + z2

naz1 + z2
n+1,

ż2 = az2 (z2
n − z1) ,

and the origin has eigenvalues 0 and −1. Since the origin is a semi–hyperbolic equilibrium point
we apply Theorem 2.19 of [11] and for n = 1 is a saddle–node. For n > 1 and n odd the origin of
the chart (U2, F2) is a saddle node whereas for n > 1 and n even it is a saddle.

Combine all these previous results we are ready to prove Theorem 2.

For n = 1 and a ∈ (0, 1/4] the point P is a stable node and the phase portrait is given in Figure
1(e). Note that for a > 1/4 the point P is a stable focus and in this case the phase portrait is
equivalent to Figure 1(e).

Now consider that n > 1 and n is odd. Then for a ∈ (0, (
√
n − 1)2/(n − 1)2] the finite

equilibrium point is a stable node. Since the stable node is topological equivalent with a stable
focus we obtain the same phase portrait as the one for a ∈

(
(
√
n− 1)2/(n− 1)2, 1/(n− 1)

)
where

the finite equilibrium point is now a stable focus. This corresponds to Figure 1(a). Moreover, the
separatrix configuration in Figure 1(a) is different from the separatrix configuration in Figure 1(d).
Hence these two phase portraits are not topological equivalent. In addition, the numbers R and S
are distinct in the rest of the cases, so we obtain five different phase portraits for n odd, see Figure
1.
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For n even using similar arguments we obtain four distinct phase portraits, see Figure 2. More-
over, these new four phase portraits have different separatrix configuration than the ones for n odd
because of the different behaviour of the origin of the chart (U1, F1). This completes the proof of
Theorem 2.

4. Appendix

This Appendix has three subsections.

4.1. Invariant curves, multiplicity and Liouvillian integrability. Consider the polynomial
differential system

(23) ẋ = P (x, y), ẏ = Q(x, y).

We say that this system has degree d if d is the maximum of the degrees of the polynomials P and
Q. The associated vector field to system (23) is

X = P
∂

∂x
+Q

∂

∂y
,

and we denote by div(X) the divergence of X, namely, div(X) = ∂P/∂x+ ∂Q/∂y.

Let f = f(x, y) be a polynomial in the variables x and y. The algebraic curve f(x, y) = 0 is an
invariant algebraic curve of system (23) if

P
∂f

∂x
+Q

∂f

∂y
= Kf,

for some polynomial K = K(x, y) called the cofactor of the invariant algebraic curve f = 0. The
polynomial structure of system (23) forces that the degree of the cofactor is at most d − 1. Note
that the curve f = 0 is formed by orbits of the differential system (23), and consequently it is
invariant under the flow of this system.

The m−th extactic curve of X, Em(X) is given by the polynomial equation

Em(X) = det


v1 v2 · · · v`

X(v1) X(v2) · · · X(v`)
...

... · · ·
...

X`−1(v1) X`−1(v2) · · · X`−1(v`)

 = 0,

where v1, · · · , v` is a basis of Cm[x, y] (the C vector space of polynomials in C[x, y] of degree at
most m) and consequently ` = (m+ 1)(m+ 2)/2.

Proposition 6. Every algebraic curve of degree m invariant by the vector field X is a factor of
Em(X).

An invariant algebraic curve f of degree m for the vector field X has algebraic multiplicity k
when k is the greatest positive integer such that fk divides Em(X). For more details about the
multiplicity of an invariant curve and other properties of the extactic curve see [8].

The algebraic multiplicity of a curve is connected with an object called exponential factor. Expo-
nential factors also provide cofactors and appear when invariant algebraic curves collide, i.e. when
they have multiplicity larger than one. Let F (x, y) = exp(g(x, y)/f(x, y)) where f, g polynomials.
Then F is an exponential factor of system (23) if

P
∂F

∂x
+Q

∂F

∂y
= LF,
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for some polynomial L of degree at most d− 1 called the cofactor of the exponential factor F . The
next result is proved in [8].

Proposition 7. Let f = 0 be an irreducible invariant algebraic curve of degree m of the polynomial
vector field X with cofactor K. Then the algebraic multiplicity of the curve f = 0 is k if and only
if X has k − 1 exponential factors of the form exp(gi/f

i) for i = 1, · · · , k − 1 and the degree of gi
is at most im.

A Darboux function of a vector field X is a function of the form

(24) D =
∏

fλii F
µj
j ,

where the fi = 0 are invariant algebraic curves and Fj are exponential factors of X.

The first integrals given by functions (24) are called Darboux first integrals and the integrating
factors given by (24) are called Darboux integrating factors.

By definition a Liouvillian function is an element in the Liouvillian field extension of the field
of rational functions C(x, y). For a good review about Darboux and Liouvillian integrability see
chapter 3 of [24], and chapter 8 of [11]. In 1992 Singer [21] and later on in 1999 Christopher [7]
proved that for a planar polynomial differential system, the existence of Liouvillian first integrals
is equivalent to the existence of a Darboux integrating factor. So now we can say that system (1)
is Liouvillian integrable if has a first integral or an integrating factor given by a Darboux function.
The following result started with Darboux [9], for the present version see for instance [11].

Theorem 8. Suppose that a polynomial system (23) admits p irreducible invariant algebraic curves
fi = 0 with cofactors Ki and q exponential factors Fj with cofactors Lj. Then the following
statements hold.

(a) There exist λi’s and µj’s in C not all zero such that
p∑
i=1

λiKi +
q∑
j=1

µjLj = 0, if and only if

the Darboux function (24) is a first integral of system (23).

(b) There exist λi’s and µj’s in C not all zero such that
p∑
i=1

λiKi +
q∑
j=1

µjLj = −div(X), if and

only if the Darboux function (24) is an integrating factor of system (23).

4.2. Poincaré compactification. Consider the polynomial differential system (23) of degree d
and its corresponding vector field X . We also consider the Poincaré compactification of system
(23) in order to control the orbits that come or escape at infinity. For more details on this com-
pactification see Chapter 5 of [11].

Let R2 be the plane in R3 defined by (y1, y2, y3) = (x1, x2, 1). We define the Poincaré sphere
S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1} and T(0,0,1)S2 is the tangent space to S2 at the

point (0, 0, 1) (see [19]). We consider now the central projection f± : R2 → S2 with f±(x1, x2, 1) =

±(x1, x2, 1)/
√
x21 + x22 + 1. We see that f± defines two copies of X , one in the northern hemisphere

{y ∈ S2 : y3 > 0} and the other in the southern hemisphere. Denote by X̂ = Df ◦ X and X̂ is
defined on S2 except on its equator S1. Note that the points at infinity of R2 are in bijective
correspondence with the equator of S2, namely S1 = {y ∈ S2 : y3 = 0}. Thus, S1 is identified
with the infinity of R2. Then the Poincaré compactified vector field p(X ) of X will be the analytic

vector field induced on S2 as follows: We multiply X̂ by the factor yd3 and so the vector field yd3X̂
is defined in the whole S2.

Now on S2\S1 there are two symmetric copies of X . So the behavior of p(X ) around S1 describes
the behavior of X near the infinity. The Poincaré disc D is the projection of the closed northern
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hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2). Additionally, S1 is invariant under the
flow of p(X ).

Two polynomial vector fields X and Y on R2 are topologically equivalent if there exists a homeo-
morphism on S2 preserving the infinity S1 carrying orbits of the flow induced by p(X ) into orbits of
the flow induced by p(Y). Moreover, the homeomorphism should preserve or reverse simultaneously
the sense of all orbits of the two compactified vector fields p(X ) and p(Y).

Since S2 is a differentiable manifold we consider the six local charts Ui = {y ∈ S2 : yi > 0},
and Vi = {y ∈ S2 : yi < 0} for i = 1, 2, 3 with the diffeomorphisms Fi : Vi −→ R2 and Gi :
Vi −→ R2, which are the inverses of the central projections from the planes tangent at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. Let z = (z1, z2) be the
value of Fi(y) or Gi(y) for any i = 1, 2, 3. Then the expressions of the compactified vector field
p(X ) of X are

zd2∆(z)

(
Q
( 1

z2
,
z1
z2

)
− z1P

( 1

z2
,
z1
z2

)
, −z2P

( 1

z2
,
z1
z2

))
in U1,

zd2∆(z)

(
P
(z1
z2
,

1

z2

)
− z1Q

(z1
z2
,

1

z2

)
, −z2Q

(z1
z2
,

1

z2

))
in U2,

∆(z)
(
P (z1, z2), Q(z1, z2)

)
in U3,

with ∆(z) = (z21 + z22 + 1)
− 1

2(d−1) . Note that the expressions of the vector field p(X ) in the local
chart Vi is the same as in the chart Ui multiplying by the factor (−1)d−1. In these coordinates,
z2 = 0 denotes the points of S1. We can omit the factor ∆(z) by rescaling the vector field p(X ),
and therefore we obtain a polynomial vector field in each local chart. Note that the infinity S1 is
invariant with p(X ).

4.3. Separatrix configuration. Let p(X ) be the Poincaré compactification in S2 of a polynomial
vector field X in R2.

The separatrices of the vector field p(X ) in the Poincaré disc D are

(i) all the orbits of p(X ) which are in the boundary S1 of the Poincaré disc (recall that S1 is
the infinity of R2);

(ii) all the finite singular points of p(X );
(iii) all the limit cycles of p(X ); and
(iv) all the separatrices of the hyperbolic sectors of the finite and infinite singular points of p(X ).

We also consider the definition of parallel flows given by Markus [16] and Neumann in [17]. Let
φ be a Cω local flow on the two dimensional manifold R2 or R2 \ {0}. The flow (M,φ) is Ck parallel
if it is Cω-equivalent to one of the following ones:

(1) strip: (R2, φ) with the flow φ defined by ẋ = 1, ẏ = 0;

(2) annular: (R2 \ {0}, φ) with the flow φ defined (in polar coordinates) by ṙ = 0, θ̇ = 1;

(3) spiral: (R2 \ {0}, φ) with the flow φ defined by ṙ = r, θ̇ = 1.

We denote by Σ the union of all separatrices of the flow (D, φ) defined by the compactified
vector field p(X ) in the Poincaré disc D. Then Σ is a closed invariant subset of D. Every connected
component of D \ Σ, with the restricted flow, is called a canonical region of φ.

For a proof of the following result see [14] and [17].
14



Theorem 9. Let φ be a Cω flow in the Poincaré disc with finitely many separatrices, and let Σ be
the union of all its separatrices. Then the flow restricted to every canonical region is Cω parallel.

The separatrix configuration Σc of a flow (D,φ) is the union of all the separatrices Σ of the flow
together with an orbit belonging to each canonical region. The separatrix configuration Σc of the
flow (D,φ) is said to be topologically equivalent to the separatrix configuration Σ̃c of the flow (D, φ̃)

if there exists a homeomorphism from Σc to Σc which transforms orbits of Σc into orbits of Σ̃c, and
orbits of Σ into orbits of Σ̃.

The following theorem and its proof appears in [16, 17, 18].

Theorem 10. Let (D,φ) and (D, φ̃) be two compactified Poincaré flows with finitely many separa-
trices coming from two polynomial vector fields. Then they are topologically equivalent if and only
if their separatrix configurations are topologically equivalent.

So in order to classify the phase portraits in the Poincaré disc of a planar polynomial differential
system having finitely many separatrices, it is enough to describe their separatrix configuration and
an orbit inside each canonical region.
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