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Abstract. We consider planar piecewise discontinuous differen-
tial systems formed by either linear centers or linear Hamiltonian
saddles and separated by the algebraic curve y = xn with n ≥ 2.
We provide in a very short way an upper bound of the number
of limit cycles that these differential systems can have in terms
of n, proving the extended 16th Hilbert problem in this case. In
particular, we show that for n = 2 this bound can be reached.

1. Introduction and statement of the main result

The dynamics of piecewise linear differential systems started with
Andronov et al [1] in 1930. Since then and taking into account that
they are used to model many phenomena in mechanics, electronics,
economy, neuroscience, ..., see for more details the papers [3, 18, 20,
21, 36, 38, 40, 43, 42] and the references therein.

One of the main problems in the qualitative theory of differential
equations is to bound the number of the limit cycles, which are peri-
odic orbits isolated in the set of all periodic orbits of the differential
system. This problem on the number of limit cycles for a class of given
differential systems restricted to polynomial differential systems is the
famous 16th Hilbert’s problem, see for more details in [14, 17, 22]. Al-
though this problem was formulated originally for smooth differential
systems in the last years, many authors have studied this problem for
different classes of discontinuous piecewise linear differential systems
in R2.
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The simplest piecewise linear differential systems in R2 are the ones
having only two pieces separated by a curve, and when this curve is
a straight line. For this class of discontinuous piecewise differential
systems many results have been obtained (see [2, 4, 6, 7, 9, 10, 11,
12, 13, 15, 16, 23, 26, 27, 28, 31, 34, 39]) and up to now there are
examples of planar discontinuous piecewise linear differential systems
separated by a straight line having 3 crossing limit cycles (see below
for a precise definition), but it is an open problem to know if 3 is in
fact the maximum number of crossing limit cycles that these systems
can have.

When the curve of discontinuity between the two pieces is not a
straight line the number of crossing limit cycles can change and this
number can increase arbitrarily with the number of oscillations of that
curve (see for details [5, 19, 24, 25, 29, 37, 44]). We recall however
that the discontinuity curves considered in these three papers are not
algebraic and we want to study the case of algebraic curves. More
precisely we want to study the maximum number of crossing limit
cycles of discontinuous piecewise linear differential systems with only
two pieces in function of the degree of the discontinuity curve when
this curve is algebraic. However, since there are many computations
involved and too many linear systems we will restrict our study to
differential systems formed by two linear differential systems having
only centers or Hamiltonian saddles and such that the algebraic curve
is of the form y = xn where n ≥ 2. When n = 1 and so the discontinuity
curve is a straight line and both systems are either linear centers or
linear Hamiltonian saddles, it was proved in [30, 32, 33] that they do
not have limit cycles. So we restrict to the cases n ≥ 2.

For a discontinuous piecewise differential system we follow the Filip-
pov’s convention to define the vector fields on its discontinuous bound-
ary (see [8]). Thus given a discontinuous piecewise differential system
ẋ = F±(x), x ∈ Σ± := R2 \ Σ, where Σ is the line of discontinuity,
Σ± are open sets and F± are continuous functions in Σ± respectively.
The vector field at each point of Σ± is defined by F±, respectively. We
call a point x0 ∈ Σ a crossing point if F±(x0) point into Σ+ or Σ−
simultaneously. In this case an orbit of the system near x0 is a con-
catenation of the orbits of the two subsystems. The collection of all
crossing points forms the crossing region. If a closed curve is formed by
concatenating the orbits of the two subsystems and it intersects with Σ
only at crossing points then we call the closed curve a crossing periodic
orbit. The so-called crossing limit cycle is an isolated crossing periodic
orbit in the set of all crossing periodic orbits of the system.
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Our main theorem is the following.

Figure 1. The three limit cycles of the discontinuous
piecewise linear differential system formed by a linear
Hamiltonian saddle and a linear center and separated by
the parabola y = x2.

Theorem 1. Let n ≥ 2 be a positive integer. Consider discontinuous
piecewise differential systems in R2 separated by the algebraic curve
y = xn and formed by linear centers or linear Hamiltonian saddles.
For these systems we denote by U(n) the upper bound for the maximum
number of crossing limit cycles that intersect the line of discontinuity
in two points.

(a) For n > 2, we have

U(n) =


2n2 − n− 1

2
if n is odd,

2n2 − n

2
if n is even.

(b) When n = 2 there are discontinuous piecewise linear differen-
tial systems which reach the upper bound of 3 limit cycles, see
Figure 1.

Theorem 1 is proved in section 2. We recall that in the particular
case in which the two linear systems are centers the upper bound U(n)
for n ≥ 3 was already obtained in [35] with the additional assumption
that one of the linear centers is in a given particular normal form. We
point out that this is not the general case of a discontinuous piecewise
system with two linear centers separated by the algebraic curve y = xn

since not all of them can be brought into a canonical normal form
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without destroying the curve y = xn. Also in [35] the example for
n = 2 that they provide only has two limit cycles instead of three as
claimed by the authors and so it is not a rigorous proof that the upper
bound provided by the main theorem in this case is reached. Also in
[35] the proof of the main theorem requires more than 12 pages and
is very complicated needing to preform a big amount of computations
to obtain the degree of a resultant which makes it at some point hard
to follow. In the present paper we generalize the study done in [35] in
several directions: we study the case in which the two linear systems
can be either centers or linear Hamiltonian saddles and thus not only
we provide a rigorous proof in the case of both systems being centers
(since we treat the general case without the assumption that one of
them is in normal form) but we also consider all the other situations in
which one of the linear systems can be a linear Hamiltonian saddle or
both linear differential systems are Hamiltonian saddles. Moreover we
provide a rigorous example of a system with three crossing limit cycles
and so we provide a rigorous proof that when n = 2 the upper bound
given in the main theorem is indeed reached. Finally we stress that
our proof is very short.

We remark that from Theorem 1 it is an open question if for n ≥ 3
the upper bounds provided are reached.

The tools used in this paper for providing upper bound on the num-
ber of limit cycles of discontinuous piecewise differential systems in the
plane can be also used for all the discontinuous piecewise differential
systems in dimension two or higher, if we know first integrals for the
differential systems forming the piecewise differential system.

2. Proof of Theorem 1

Through the proof of Theorem 1 we will use the following results
which provide a normal form for a general linear differential Hamilton-
ian saddle (for a proof see [32]) and for a general linear center (for a
proof see [30]).

Lemma 2. Any linear differential system having a Hamiltonian saddle
can be written as

ẋ = −bx− δy + d, ẏ = αx+ by + c,

with α ∈ {0, 1}, b, δ, c, d ∈ R. Moreover, if α = 1 then δ = b2 − ω with
ω > 0 and if α = 0 then b = 1. A first integral of this system is

(1) H(x, y) = −α

2
x2 − bxy − δ

2
y2 − cx+ dy.
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Proposition 3. Any linear differential system having a center can be
written as

(2) ẋ = −bx− δy + d, ẏ = x+ by + c,

where δ = b
2
+ ω with ω > 0. A first integral of system (2) is

(3) F (x, y) = −1

2
x2 − bxy − δ

2
y2 − cx+ dy.

Note that any of the Hamiltonians (1) and (3) can be written as

G(x, y) = −A

2
x2 −Bxy − ∆

2
y2 − Cx+Dy,

where A = 1 and ∆ = B2 + ω with ω > 0 if we have a linear center,
and in the case we have a linear Hamiltonian saddle then A ∈ {0, 1},
so that if A = 1 then ∆ = B2−ω with ω > 0, and if A = 0 then B = 1
and ∆ ∈ R. Moreover we will consider the regions R1 and R2 where

R1 = {(x, y) ∈ R2 : y ≥ xn}, R2 = {(x, y) ∈ R2 : y ≤ xn}.

Proof of statement (a) Theorem 1. In order that the piecewise linear
differential system formed by two linear differential systems with Hamil-
tonian G1 in the region R1 and Hamiltonian G2 in the region R2 has a
crossing limit cycle Γ, it must intersect the discontinuous curve y = xn

in two points. Let (x1, x
n
1 ) and (x2, x

n
2 ) be these two intersecting points.

Then, taking into account that G1 and G2 are first integrals these two
points must satisfy the equations

(4)
e1 := G1(x1, x

n
1 )−G1(x2, x

n
2 ) = 0,

e2 := G2(x1, x
n
1 )−G2(x2, x

n
2 ) = 0,

where Gi = −Ai

2
x2 −Bixy − ∆i

2
y2 − Cix+Diy for i = 1, 2.

Note that e1 and e2 are two polynomials of degree 2n in the variables
x1 and x2. Clearly x1 − x2 is a factor of both e1 and e2. Note that

e1 = ∆1(x
2n
2 −x2n

1 )+2B1(x
n+1
2 −xn+1

1 )+2D1(x
n
1−xn

2 )+A1(x
2
2−x2

1)+2C1(x2−x1),

and

e2 = ∆2(x
2n
2 −x12n)+2B2(x

n+1
2 −xn+1

1 )+2D2(x
n
1−xn

2 )+A2(x
2
2−x2

1)+2C2(x2−x1).
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Some direct calculations show that E1 = e1/(x2−x1) and E2 = e2/(x2−
x1) are given by

E1 =∆1

(
x2n−1
1 + x2x

2n−2
1 + . . .+ x1x

2n−2
2 + x2n−1

2

)
+ 2B1

(
xn
1 + x2x

n−1
1 + . . .+ x1x

n−1
2 + xn

2

)
− 2D1

(
xn−1
1 + x2x

n−2
1 + . . .+ x1x

n−2
2 + xn−1

2

)
+ A1(x1 + x2) + 2C1

and

E2 =∆2

(
x2n−1
2 + x1x

2n−2
2 + . . .+ x2x

2n−2
1 + x2n−1

1

)
+ 2B2

(
xn
2 + x1x

n−1
2 + . . .+ x2x

n−1
1 + xn

1

)
− 2D2

(
xn−1
2 + x1x

n−2
2 + . . .+ x2x

n−2
1 + xn−1

1

)
+ A2(x2 + x1) + 2C2.

Note that

E1 −
∆1

∆2

E2 = ∆1

(
2(B1 −B2)

(
xn
1 + x2x

n−1
1 + . . .+ x1x

n−1
2 + xn

2

)
− 2(D1 −D2)

(
xn−1
1 + x2x

n−2
1 + . . .+ x1x

n−2
2 + xn−1

2

)
+ (A1 − A2)(x1 + x2) + 2(C1 − C2)

)
,

which is a polynomial of degree n.

In order to provide an upper bound for the number of limit cycles of
our planar discontinuous piecewise differential systems, we note that
for each solution (x1, x2) with x1 ̸= x2 of the polynomial system E1 =
E2 = 0, we can have a crossing limit cycle of the discontinuous piecewise
linear differential system which intersects the curve y = xn at the two
points (x1, x

n
1 ) and (x2, x

n
2 ). If (x1, x2) is a solution of the polynomial

system E1 = E2 = 0, with x1 ̸= x2, then it is also a solution of the
polynomial system E1 −∆1E2/∆2 = E2 = 0. But system E1 = 0 and
E2 = 0 have the same roots because these two polynomials are the
same (we pass from one to the other interchanging x1 and x2) and so
the possible values of x1 and x2 are the same. This implies that the
number of crossing limit cycles that intersect the curve y = xn is at
most the number of solutions of the system E1 −∆1E2/∆2 = E2 = 0
divided by two. Since E1 has degree 2n − 1 and E1 − ∆1E2/∆2 has
degree n it follows from Bézout’s theorem that the system E1 = E2 = 0
has at most 2n2 − n isolated solutions, and by the observation above
the number of crossing limit cycles that intersect the curve y = xn is at
most the integer part of (2n2−2)/2, that is (2n2−n)/2 if n is even and
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(2n2 − n− 1)/2 if n is odd. This completes the proof of the statement
(a) of theorem 1 □

Proof of statement (b) Theorem 1. We provide an example showing that
the upper bound U(2) = 3 is reached. In the region R1 we consider the
linear center

ẋ =
21145

522
+

4

3
x− 20

9
y, ẏ =

508

87
+ 8x− 4

3
y,

with the first integral

G1(x, y) =
1

522
(3048x+ 2088x2 − 21145y − 696xy + 580y2).

In the region R2 we consider the linear Hamiltonian saddle

ẋ = 2x− 2464

663
y, ẏ = −81322

663
x− 2y

with the first integral

G2(x, y) = −40661

663
x2 − 2xy +

1232

663
y2.

This discontinuous piecewise differential system has three crossing limit
cycles, because the unique real solutions (x1, x2) of system (4) (with
n = 2) are (x1

1, x
1
2) = (6, 2), (x2

1, x
2
2) = (−5,−3/2) and (x3

1, x
3
2) where

x3
1 =

1

116
(51−

√
577921) and x3

2 =
1

116
(51 +

√
577921).

See these three crossing limit cycles in Figure 1, which are travelled in
couterclockwise sense. □
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