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Abstract. We consider the generalized van der Pol systems

ẋ = y, ẏ = −x+ (1− x2)f(y),

where f ∈ R[y]. The classical van der Pol systems have f(y) = y. We first

characterize when the origin of the generalized van der Pol systems is a center,

and second we provide the global phase portraits in the Poincaré disc of the
generalized van der Pol when f(y) = a1y + a2y2 for all a1, a2 ∈ R.

1. Introduction and statement of the main results

In this paper we deal with the generalized van der Pol systems

(1) ẋ = y, ẏ = −x+ (1− x2)f(y),

where f(y) is the polynomial
∑n

i=1 aiy
i with n ≥ 1. The classical van der Pol

equation has f(y) = a1y. There is no doubt about the importance of this differential
system and this is one of the reasons why it has been studied for so many authors.
For instance, if one enters the four words van der Pol, differential, equation or
system in MathSciNet, one would receive 768 articles at the time that paper is
being written. For instance some four recent papers on variations on the van der
Pol system are [3, 7, 8, 9].

The main two theorems of this paper are the following ones.

Theorem 1. System (1) has a center at the origin if and only if the polynomial
f(y) is even.

The proof of Theorem 1 will be given in section 3.

Theorem 2. The global phase portrait of system (1) with f(y) = a1y + a2y
2 with

a1, a2 ∈ R is topologically equivalent to the one of :

(i) Figure 1(a) if a2 = 0 and a1 ̸= 0;
(ii) Figure 1(b) if a2 ̸= 0 and a1 = 0.

Moreover, there are systems (1) with a2a1 ̸= 0 whose global phase portrait is topo-
logically equivalent to the one of Figure 1(c).
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(a) a2 = 0, a1 ̸= 0 (b) a2 ̸= 0, a1 = 0 (c) a2a1 ̸= 0

Figure 1. The three phase portraits in the Poincaré disc of Theorem 2.

The proof of Theorem 2 will be given in section 4. It was proved in [6, 10] that
system (1) with a2a1 = 0 has always a unique limit cycle. Based in numerical
evidence it seems that system (1) with a2a1 ̸= 0 has also a unique limit cycle, so we
conjecture that system (1) has always a unique limit cycle which allows us to state
the following conjecture on the global phase portraits of system (1) with a2a1 ̸= 0.

Conjecture 3. The global phase portrait of system (1) with f(y) = a1y+a2y
2 and

a2a1 ̸= 0 is topologically equivalent to the one of Figure 1(c).

Before proving Theorems 1 and 2 we have a preliminary section, section 2, where
we have the notions and results for proving such theorems.

2. Preliminary results

2.1. Singular points. Consider a differential system of the form

(2) ẋ = p(x, y), ẏ = q(x, y)

being p, q ∈ R[x, y].

The point (a, b) is a singular point of the differential system (2) if p(a, b) =
q(a, b) = 0.

The singular point (a, b) is hyperbolic if the eigenvalues of the Jacobian matrix
of the function (p, q) evaluated at (a, b) have non-zero real part. The classification
of the local phase portraits of the hyperbolic singular points is well known, see for
instance [4, Theorem 2.15]. In this paper when we characterize the local phase
portrait of a hyperbolic singular point we will use that theorem.

The singular point (a, b) is semi-hyperbolic if one and only one of the eigenvalues
of the Jacobian matrix of the function (p, q) evaluated at (a, b) is zero. Also the
classification of the local phase portraits of the semi-hyperbolic singular points
is well known, see for instance [4, Theorem 2.19]. Again in this paper when we
characterize the local phase portrait of a semi-hyperbolic singular point we will use
that theorem.

Consider the differential system

(3) ẋ =

∞∑
i=1

pi(x, y), ẏ =

∞∑
i=1

qi(x, y),
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where pi and qi are homogeneous polynomials of degree i, for i ≥ 1. The character-
istic directions of the singular point localized at the origin of coordinates of system
(3) are given by the straight lines trough the origin defined by the real linear factors
of the homogeneous polynomial pk(x, y)y− qk(x, y)x, where k is the minimum i for
which the polynomials pi or qi are non-zero. It is known that the orbits which end
or start at the origin of coordinates must arrive or exit tangent to these straight
lines. For more details on the characteristic directions see for example [2].

When the Jacobian matrix of the function (p, q) evaluated at the singular point
(a, b) of the differential system (2) is identically zero, then the singular point is
called linearly zero and the local phase portrait at this singular point can be studied
doing special changes of variables called blow ups, see for instance [1]. Here we use
vertical blow ups and when the vertical direction is a characteristic direction we
twist it to another direction in order that in the new variables the vertical axis is
not a characteristic direction.

Let Φt be a smooth flow on a manifold M and let C be a submanifold of M
consisting entirely of singular points of the flow. C is called normally hyperbolic
if the tangent bundle to M over C splits into three subbundles TC, Es and Eu

invariant under the differential dΦt and satisfying

(i) dΦt contracts E
s exponentially,

(ii) dΦt expandsE
u exponentially,

(iii) TC is the tangent bundle of C.

For normally hyperbolic submanifolds one has the usual existence of smooth stable
and unstable manifolds together with the persistence of these invariant manifolds
under small perturbations. More precisely, we have the following theorem, for a
proof see [5].

Theorem 4. Let C be a normally hyperbolic submanifold of singular points for the
flow Φt. Then there exist smooth stable and unstable manifolds tangent along C to
Es ⊕TC and Eu ⊕TC, respectively. Moreover, both C and the stable and unstable
manifolds are persistent under small perturbations of the flow.

2.2. The Poincaré compactification. Roughly speaking the Poincaré compact-
ification consists in identifying the plane R2 with the interior of a closed unit disc
centered at the origin of coordinates, called the Poincaré disc. Then the boundary
of this disc (the unit circle centered at the origin) is identified with the infinity of
R2. Note that in R2 we can go or come from the infinity in as many as directions
as points has that circle.

In order to classify the global dynamics of a polynomial differential system one
of the main steps is to characterize the local phase portraits of its finite and infinite
singular points in the Poincaré disc. For doing this we need the equations of our
polynomial differential systems initially in R2 in the Poincaré disc.

Consider the differential system (2) in R2, where p and q are real polynomials
in the variables x and y of degrees d1 and d2, respectively. Then the degree of the
polynomial differential system (2) is d = max{d1, d2}.
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Denote by TpS2 be the tangent space to the 2-dimensional sphere

S2 = {s = (s1, s2, s3) ∈ R3 : s21 + s22 + s23 = 1}

at the point p, we call this sphere the Poincaré sphere. We consider that the
polynomial differential system (2) is defined in the tangent plane to S2 at the
point (0, 0, 1), i.e. we have identified R2 with T(0,0,1)S2. The central projection

f : T(0,0,1)S2 → S2 send each point p of T(0,0,1)S2 to two points of S2, one in the
northern hemisphere and the other in the southern hemisphere. These two points
are the intersection of the straight line through p and the origin of coordinates (the
center of the sphere). So the map f defines two copies of the polynomial differential
system (2) on the sphere, one in the open northern hemisphere and the other in
the open southern hemisphere.

If X = (p, q) is the vector field associated to the polynomial differential system
(2), we denote by X ′ the vector field Df ◦X defined on S2 except on its equator
S1 = {s ∈ S2 : s3 = 0}. Clearly S1 can be identified with the infinity of R2. If the
degree of the polynomial vector fiedlX is d, then p(X) is the only analytic extension

of sd−1
3 X ′ to S2. The vector field p(X) on S2 is called the Poincaré compactification

of the vector field X, for more details see [4, chapter 5].

On the Poincaré sphere S2 we use the following six local charts, which are given
by Ui = {s ∈ S2 : si > 0} and Vi = {s ∈ S2 : si < 0}, for i = 1, 2, 3, with the
corresponding diffeomorphisms

φi : Ui → R2, ψi : Vi → R2,

defined by φi(s) = ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n ̸= i. Thus
the coordinates (u, v) will play different roles in the distinct local charts. The
expressions of the vector field p(X) are

(u̇, v̇) =

(
vd

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
,−vd+1P

(
1

v
,
u

v

))
in U1,

(u̇, v̇) =

(
vd

(
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

))
,−vd+1Q

(
u

v
,
1

v

))
in U2,

(u̇, v̇) = (P (u, v), Q(u, v)) in U3.

We note that the expressions of the vector field p(X) in the local chart (Vi, ψi)
is equal to the expression in the local chart (Ui, ϕi) multiplied by (−1)d−1 for
i = 1, 2, 3.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed northern
hemisphere of S2 onto the plane s3 = 0 is a closed disc D2 of radius one centered
at the origin of coordinates called the Poincaré disc. Since a copy of the vector
field X on the plane R2 is in the open northern hemisphere of S2, the interior of
the Poincaré disc D2 is identified with R2 and the boundary of D2, the equator S1
of S2, is identified with the infinity of R2. Consequently the phase portrait of the
vector field X extended to the infinity corresponds to the projection of the phase
portrait of the vector field p(X) on the Poincaré disc D2.

The singular points of p(X) in the Poincaré disc lying on S1 are the infinite
singular points of the vector field X. The singular points of p(X) in the interior of
the Poincaré disc, i.e. on D2 \ S1, are the finite singular points. We note that in
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the local charts U1, U2, V1 and V2 the infinite singular points have their coordinate
v = 0.

For a polynomial differential system (2) if s ∈ S1 is an infinite singular point,
then −s ∈ S1 is another infinite singular point. Thus the number of infinite singular
points is even.

2.3. The Poincaré-Bendixson Theorem. In what follows we are going to as-
sume that ∆ is an open subset of R2 and X is a vector field of class Cr with r ≥ 1.
Also, in ∆, γ+p denotes a positive semi–orbit passing through the point p.

Let φ(t) = φ(t, p) = φp(t) be the integral curve of X passing through the point
p, defined on its maximal interval Ip = (α, ω). If ω = ∞ we define the set

ω(p) = {q ∈ ∆ : there exist {tn} with tn → ∞ and φ(tn) → q when n→ ∞}.

In the same way, if α = −∞ we define the set

α(p) = {q ∈ ∆ : there exist {tn} with tn → −∞ and φ(tn) → q when n→ ∞}.

The sets ω(p) and α(p) are called the ω–limit set and the α–limit set of p, respec-
tively.

Theorem 5 (Poincaré–Bendixson Theorem). Let φ(t) = φ(t, p) be an orbit of X
defined for all t ≥ 0, such that γ+p is contained in a compact set K ⊂ ∆. Assume
that the vector field X has at most a finite number of singularities in K. Then one
of the following statements holds.

(i) If ω(p) contains only regular points, then ω(p) is a periodic orbit.
(ii) If ω(p) contains both regular and singular points, then ω(p) is formed by a

set of orbits, every one of which tends to one of the singular points in ω(p)
as t→ ±∞.

(iii) If ω(p) does not contain regular points, then ω(p) is a unique singular point.

For a proof of the Poincaré–Bendixson Theorem see for instance [4, Theorem
1.25].

2.4. Uniqueness of limit cycles. The next result is proved in [6], see also [10,
Theorem 4.1].

Theorem 6. Consider the differential system

(4) ẋ = y, ẏ = −g(x)− f(x)y.

Let F (x) =

∫ x

0

f(s)ds. Assume that the following conditions hold.

(i) f : R → R is continuous and there exist a < 0 < b such that f(x) < 0 if
x ∈ (a, b), and f(x) > 0 if x < a and x > b;

(ii) there exists c > 0 such that F (c) = F (−c) = 0;
(iii) F (+∞) = +∞, or F (−∞) = −∞.

Then the differential system (4) has a unique limit cycles which is stable.
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3. Proof of Theorem 1

Assume that the polynomial f(y) is even. Then the differential system (1) is
invariant under the change of variables (x, y, t) 7→ (x,−y,−t). Therefore, since the
origin is monodromic in a neighborhood of it, the origin must be a center.

Now assume that the polynomial f(y) is not even, so we can write it as f(y) =
fe(y)+fo(y), where fe(y) and fo(y) are the even and the odd part of the polynomial
f(y), respectively. Consider the determinant∣∣∣∣ y −x+ fe(y)(1− x2)

y −x+ (fe(y) + fo(y))(1− x2)

∣∣∣∣ = yfo(y)(1− x2).

Since yfo(y)(1−x2) has a constant sign in a convenient sufficiently small neighbor-
hood U of the origen, at any point of U the oriented angle between the vector field
(y,−x+ fe(y)(1− x2)) having a center in U and the vector field (y,−x+ (fe(y) +
fo(y))(1− x2)) has the same sign. Consequently the vector field (y,−x+ (fe(y) +
fo(y))(1− x2)) has an unstable focus at the origin if yfo(y)(1− x2) < 0 in U , and
it has a stable focus at the origin if yfo(y)(1 − x2) > 0. Consequently the vector
field has a center at the origin if and only if fo(y) = 0. This completes the proof of
Theorem 1.

4. Proof of Theorem 2

The unique finite singular point of system (1) is the origin. If a1 ∈ (−2, 2) it is a
strong focus if a1 ̸= 0, and if a1 = 0 in view of Theorem 1 it is a center. Moreover
if |a2| > 2 then the origin is a node. More precisely, the origin is a stable node if
a1 ∈ (−∞, 2], a stable focus if a1 ∈ (−2, 0), a center if a1 = 0, an unstable focus if
a1 ∈ (0, 2) and an unstable node if a1 ∈ [2,+∞).

Now we study the infinite singular points for each of the cases in the statements
of the theorem.

4.1. The infinite singular points of the local charts U1 and U2 when a2 = 0
and a1 ̸= 0. Now we shall study the infinite singular points of the differential
system (1) in the local charts U1 and U2. We note that in this case doing the
change of variables (x, y, t) → (x,−y,−t) we can assume without loss of generality
that a1 > 0.

4.1.1. The local chart U1. System (1) in the chart U1 writes

(5) u̇ = −a1u− v2 + a1uv
2 − u2v2, v̇ = −uv3.

The unique infinite singular point in this chart is the origin. The eigenvalues of
the linear part of system (5) at the singular point (0, 0) are 0 and −a1 and so it is
semi-hyperbolic singular point. Applying [4, Theorem 2.19] we obtain that it is a
semi-hyperbolic saddle.
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4.1.2. The local chart U2. System (1) in the chart U2 writes

(6) u̇ = v2 + a1u
3 − a1uv

2 + u2v2, v̇ = v(a1u
2 − a1v

2 + uv2).

The origin is a singular point. The linear part of system (6) at the origin is iden-
tically zero, so in order to determine its local phase portrait we must do blow ups.
The characteristic directions at the origin of U2 are given by the real linear factors
of v3. Since u = 0 is not a characteristic direction we do the vertical blow up
(u, v) → (u1, u1v1) and system (6) writes in the new variables

u̇1 = −u21(−a1u1 − v21 + a1u1v
2
1 − u21v

2
1),

v̇1 = −u1v31 .

Doing a rescaling of the independent variable we eliminate the common factor u1
between u̇1 and v̇1 and we obtain the system

(7)
u̇1 = −u1(−a1u1 − v21 + a1u1v

2
1 − u21v

2
1),

v̇1 = −v31 .

The unique singular point of system (7) on the straight line u1 = 0 is (0, 0). The
linear part of system (7) evaluated at (0, 0) is linearly zero so we must do another
blow up. Then the vertical axis u1 = 0 is a characteristic direction at the origin
of the local chart U2. Therefore before doing a vertical blow up we translate the
direction u1 = 0 to u1 = v1 doing the change of variables (u1, v1) = (u2 − v2, v2).
Then system (7) becomes
(8)
u̇2 = a1u

2
2 − 2a1u2v2 + a1v

2
2 + u2v

2
2 − a1u

2
2v

2
2 + u32v

2
2 − 2v32 + 2a1u2v

3
2 − 3u22v

3
2

−a1v42 + 3u2v
4
2 − v52 ,

v̇2 = −v32 .

Now we do the vertical blow up (u2, v2) → (u3, u3v3) and system (8) writes in the
new variables

u̇3 = −u23(−a1 + 2a1v3 − a1v
2
3 − u3v

2
3 + a1u

2
3v

2
3 − u33v

2
3 + 2u3v

3
3 − 2a1u

2
3v

3
3

+3u33v
3
3 + a1u

2
3v

4
3 − 3u33v

4
3 + u33v

5
3),

v̇3 = u3(v3 − 1)v3(a1 − a1v3 + 2u3v
2
3 − a1u

2
3v

2
3 + u33v

2
3 + a1u

2
3v

3
3 − 2u33v

3
3 + u33v

4
3).

Doing a rescaling of the time we eliminate the common factor u3 between (u̇3, v̇3)
and we get the system
(9)

u̇3 = −u3(−a1 + 2a1v3 − a1v
2
3 − u3v

2
3 + a1u

2
3v

2
3 − u33v

2
3 + 2u3v

3
3 − 2a1u

2
3v

3
3

+3u33v
3
3 + a1u

2
3v

4
3 − 3u33v

4
3 + u33v

5
3),

v̇3 = (v3 − 1)v3(a1 − a1v3 + 2u3v
2
3 − a1u

2
3v

2
3 + u33v

2
3 + a1u

2
3v

3
3 − 2u33v

3
3

+u33v
4
3).

The singular points of system (9) on the straight line u3 = 0 are (0, 0) and (0, 1).
The eigenvalues of the linear part of system (9) evaluated at the singular point (0, 0)
are −a1 and a1, and so it is a saddle. The linear part of system (9) evaluated at
(0, 1) is linearly zero so we must do another blow-up. First we translate the singular
point (0, 1) to the origin of coordinates in order to study its local phase portrait
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doing the change (u3, v3) = (u4, 1 + v4). Therefore system (9) in the variables
(u4, v4) becomes
(10)
u̇4 = −u4(u4 + 4u4v4 − a1v

2
4 + 5u4v

2
4 + a1u

2
4v

2
4 + 2u4v

3
4 + 2a1u

2
4v

3
4 + u34v

3
4

+a1u
2
4v

4
4 + 2u34v

4
4 + u34v

5
4),

v̇4 = 2u4v4 − a1v
2
4 + 6u4v

2
4 + a1u

2
4v

2
4 − a1v

3
4 + 6u4v

3
4 + 3a1u

2
4v

3
4 + u34v

3
4 + 2u4v

4
4

+3a1u
2
4v

4
4 + 3u34v

4
4 + a1u

2
4v

5
4 + 3u34v

5
4 + u34v

6
4 .

The characteristic directions at the origin are the real linear factors of u4v4(a1v4 −
3u4) = 0. Then the vertical axis u4 = 0 is a characteristic direction at the origin
of system (10). Before doing a vertical blow up we translate the direction u4 = 0
to u4 = v4 doing the change of variables (u4, v4) = (u5 − v5, v5). Then system (10)
becomes
(11)
u̇5 = −u25 + 4u5v5 − 4u25v5 − 3v25 − a1v

2
5 + 14u5v

2
5 + a1u5v

2
5 − 5u25v

2
5 + a1u

2
5v

2
5

−a1u35v25 − 10v35 − 2a1v
3
5 + 16u5v

3
5 − 2a1u5v

3
5 − 2u25v

3
5 + 6a1u

2
5v

3
5 + u35v

3
5

−2a1u
3
5v

3
5 − u45v

3
5 − 11v45 + a1v

4
5 + 6u5v

4
5 − 9a1u5v

4
5 − 3u25v

4
5 + 9a1u

2
5v

4
5

+7u35v
4
5 − a1u

3
5v

4
5 − 2u45v

4
5 − 4v55 + 4a1v

5
5 + 3u5v

5
5 − 12a1u5v

5
5 − 15u25v

5
5

+4a1u
2
5v

5
5 + 11u35v

5
5 − u45v

5
5 − v65 + 5a1v

6
5 + 13u5v

6
5 − 5a1u5v

6
5 − 21u25v

6
5

+5u35v
6
5 − 4v75 + 2a1v

7
5 + 17u5v

7
5 − 9u25v

7
5 − 5v85 + 7u5v

8
5 − 2v95 ,

v̇5 = 2u5v5 − 2v25 − a1v
2
5 + 6u5v

2
5 + a1u

2
5v

2
5 − 6v35 − a1v

3
5 + 6u5v

3
5 − 2a1u5v

3
5

+3a1u
2
5v

3
5 + u35v

3
5 − 6v45 + a1v

4
5 + 2u5v

4
5 − 6a1u5v

4
5 − 3u25v

4
5 + 3a1u

2
5v

4
5

+3u35v
4
5 − 2v55 + 3a1v

5
5 + 3u5v

5
5 − 6a1u5v

5
5 − 9u25v

5
5 + a1u

2
5v

5
5 + 3u35v

5
5 − v65

+3a1v
6
5 + 9u5v

6
5 − 2a1u5v

6
5 − 9u25v

6
5 + u35v

6
5 − 3v75 + a1v

7
5 + 9u5v

7
5 − 3u25v

7
5

−3v85 + 3u5v
8
5 − v95 .

Now we do the vertical blow up (u5, v5) → (u6, u6v6) and system (11) writes

u̇6 = −u26
(
1− 4v6 + 4u6v6 + 3v26 + a1v

2
6 − 14u6v

2
6 − a1u6v

2
6 + 5u26v

2
6 − a1u

2
6v

2
6

+a1u
3
6v

2
6 + 10u6v

3
6 + 2a1u6v

3
6 − 16u26v

3
6 + 2a1u

2
6v

3
6 + 2u36v

3
6 − 6a1u

3
6v

3
6 − u46v

3
6

+2a1u
4
6v

3
6 + u56v

3
6 + 11u26v

4
6 − a1u

2
6v

4
6 − 6u36v

4
6 + 9a1u

3
6v

4
6 + 3u46v

4
6 − 9a1u

4
6v

4
6

−7u56v
4
6 + a1u

5
6v

4
6 + 2u66v

4
6 + 4u36v

5
6 − 4a1u

3
6v

5
6 − 3u46v

5
6 + 12a1u

4
6v

5
6 + 15u56v

5
6

−4a1u
5
6v

5
6 − 11u66v

5
6 + u76v

5
6 + u46v

6
6 − 5a1u

4
6v

6
6 − 13u56v

6
6 + 5a1u

5
6v

6
6 + 21u66v

6
6

−5u76v
6
6 + 4u56v

7
6 − 2a1u

5
6v

7
6 − 17u66v

7
6 + 9u76v

7
6 + 5u66v

8
6 − 7u76v

8
6 + 2u76v

9
6

)
,

v̇6 = u6(v6 − 1)v6
(
− 3 + 3v6 + a1v6 − 10u6v6 − a1u

2
6v6 + 10u6v

2
6 + 2a1u6v

2
6

−11u26v
2
6 + 2a1u

2
6v

2
6 − 4a1u

3
6v

2
6 − u46v

2
6 + 11u26v

3
6 − a1u

2
6v

3
6 − 4u36v

3
6 + 8a1u

3
6v

3
6

+3u46v
3
6 − 5a1u

4
6v

3
6 − 4u56v

3
6 + 4u36v

4
6 − 4a1u

3
6v

4
6 − 3u46v

4
6 + 10a1u

4
6v

4
6 + 12u56v

4
6

−2a1u
5
6v

4
6 − 5u66v

4
6 + u46v

5
6 − 5a1u

4
6v

5
6 − 12u56v

5
6 + 4a1u

5
6v

5
6 + 15u66v

5
6 − 2u76v

5
6

+4u56v
6
6 − 2a1u

5
6v

6
6 − 15u66v

6
6 + 6u76v

6
6 + 5u66v

7
6 − 6u76v

7
6 + 2u76v

8
6

)
.
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Eliminating the common factor u6 between u̇6 and v̇6 rescaling the time we obtain
the system
(12)
u̇6 = −u6

(
1− 4v6 + 4u6v6 + 3v26 + a1v

2
6 − 14u6v

2
6 − a1u6v

2
6 + 5u26v

2
6 − a1u

2
6v

2
6

+a1u
3
6v

2
6 + 10u6v

3
6 + 2a1u6v

3
6 − 16u26v

3
6 + 2a1u

2
6v

3
6 + 2u36v

3
6 − 6a1u

3
6v

3
6 − u46v

3
6

+2a1u
4
6v

3
6 + u56v

3
6 + 11u26v

4
6 − a1u

2
6v

4
6 − 6u36v

4
6 + 9a1u

3
6v

4
6 + 3u46v

4
6 − 9a1u

4
6v

4
6

−7u56v
4
6 + a1u

5
6v

4
6 + 2u66v

4
6 + 4u36v

5
6 − 4a1u

3
6v

5
6 − 3u46v

5
6 + 12a1u

4
6v

5
6 + 15u56v

5
6

−4a1u
5
6v

5
6 − 11u66v

5
6 + u76v

5
6 + u46v

6
6 − 5a1u

4
6v

6
6 − 13u56v

6
6 + 5a1u

5
6v

6
6 + 21u66v

6
6

−5u76v
6
6 + 4u56v

7
6 − 2a1u

5
6v

7
6 − 17u66v

7
6 + 9u76v

7
6 + 5u66v

8
6 − 7u76v

8
6 + 2u76v

9
6

)
,

v̇6 = (v6 − 1)v6
(
− 3 + 3v6 + a1v6 − 10u6v6 − a1u

2
6v6 + 10u6v

2
6 + 2a1u6v

2
6

−11u26v
2
6 + 2a1u

2
6v

2
6 − 4a1u

3
6v

2
6 − u46v

2
6 + 11u26v

3
6 − a1u

2
6v

3
6 − 4u36v

3
6 + 8a1u

3
6v

3
6

+3u46v
3
6 − 5a1u

4
6v

3
6 − 4u56v

3
6 + 4u36v

4
6 − 4a1u

3
6v

4
6 − 3u46v

4
6 + 10a1u

4
6v

4
6 + 12u56v

4
6

−2a1u
5
6v

4
6 − 5u66v

4
6 + u46v

5
6 − 5a1u

4
6v

5
6 − 12u56v

5
6 + 4a1u

5
6v

5
6 + 15u66v

5
6 − 2u76v

5
6

+4u56v
6
6 − 2a1u

5
6v

6
6 − 15u66v

6
6 + 6u76v

6
6 + 5u66v

7
6 − 6u76v

7
6 + 2u76v

8
6

)
.

The unique singular points of system (12) on the straight line u6 = 0 are (0, 0),
(0, 1) and (0, 3/(a1+3)). The eigenvalues of the linear part of system (12) evaluated
at the singular point (0, 0) are 3 and −1, and so it is a hyperbolic saddle. Moreover
the eigenvalues of the linear part of system (12) evaluated at the singular point
(0, 1) are −a1 and a1, and so it is also a hyperbolic saddle. Finally the eigenvalues
of the linear part of system (12) evaluated at the singular point (0, 3/(a1 + 3)) are
−3a1/(3+a1) and −a1/(3+a1) and so it is a stable node. Therefore the local phase
portrait near the straight line u6 = 0 for system (12) is topologically equivalent to
the one of Figure 2(a).

Undoing the rescaling dt3 = u6dt2 we get the phase portrait of Figure 2(b).
Going back through the changes of variables from the phase portrait of Figure 2(b),
we obtain the local phase portrait at the origin of system (11) which is topologically
equivalent to the one of Figure 2(c).

Going back through the changes of variables from the phase portrait of Fig-
ure 2(c), we obtain the local phase portrait at the origin of system (10) which is
topologically equivalent to the one of Figure 2(d).

Going back through the changes of variables from the phase portrait of Figure
2(d), we obtain the local phase portrait around the straight line u3 = 0 which is
topologically equivalent to the one of Figure 2(e).

Again undoing the rescaling dt2 = u3dt1 we obtain the phase portrait of Fig-
ure 2(f). Going back through the changes of variables from the phase portrait of
Figure 2(f), we obtain the local phase portrait at he origin of system (8) which is
topologically equivalent to the one of Figure 2(g).

Going back through the changes of variables from the phase portrait of Fig-
ure 2(g), we obtain the local phase portrait at he origin of system (7) which is
topologically equivalent to the one of Figure 2(h).
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Undoing the rescaling dt1 = u1dt we get the phase portrait of Figure 2(i).

Finally going back through the changes of variables from the phase portrait of
Figure 2(i), we obtain the local phase portrait at the origin of system (6) which
is topologically equivalent to the one of Figure 2(j). Hence the origin of the local
chart U2 has a local phase portrait which is topologically equivalent to an unstable
node.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 2. Figures of the blow up of the singular point located at the

origin of the local chart U2 of system (5).

4.2. The infinite singular points of the local charts U1 and U2 when a2 ̸= 0
and a1 = 0. We shall study the infinite singular points of the differential system (1)
in the local charts U1 and U2. Note that in this case doing the change of variables
(x, y) → (−x,−y) we can assume, without loss of generality, that a2 > 0.

4.2.1. The local chart U1. System (1) in the chart U1 writes

(13) u̇ = −v3 + u2(−a2 + a2v
2 − v3), v̇ = −uv4
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The unique infinite singular point in this chart is the origin. The linear part of
system (13) at the origin is identically zero, so in order to determine its local phase
portrait we must do blow ups. The characteristic directions at the origin of U2 are
given by the real linear factors of u2v = 0. Since u = 0 is a characteristic direction
before doing a vertical blow up we translate the direction u = 0 to u = v doing the
change of variables (u, v) = (u1 − v1, v1). Then system (13) becomes
(14)
u̇1 = −a2u21 + 2a2u1v1 − a2v

2
1 + a2u

2
1v

2
1 − v31 − 2a2u1v

3
1 − u21v

3
1 + a2v

4
1 + u1v

4
1 ,

v̇1 = −u1v41 + v51 .

Now we do the vertical blow up (u1, v1) → (u2, u2v2) and system (14) writes in the
new variables

u̇2 = u22(−a2 + 2a2v2 − a2v
2
2 + a2u

2
2v

2
2 − u2v

3
2 − 2a2u

2
2v

3
2 − u32v

3
2 + a2u

2
2v

4
2 + u32v

4
2),

v̇2 = −u2v2(−a2 + 2a2v2 − a2v
2
2 + a2u

2
2v

2
2 − u2v

3
2 − 2a2u

2
2v

3
2 + a2u

2
2v

4
2).

Eliminating the common factor u2 between u̇2 and v̇2 rescaling the time we obtain
the system
(15)

u̇2 = u2(−a2 + 2a2v2 − a2v
2
2 + a2u

2
2v

2
2 − u2v

3
2 − 2a2u

2
2v

3
2 − u32v

3
2 + a2u

2
2v

4
2

+u32v
4
2),

v̇2 = −v2(−a2 + 2a2v2 − a2v
2
2 + a2u

2
2v

2
2 − u2v

3
2 − 2a2u

2
2v

3
2 + a2u

2
2v

4
2).

The singular points of system (15) on the straight line u2 = 0 are (0, 0) and (0, 1).
The eigenvalues of the linear part of system (15) evaluated at the singular point
(0, 0) are −a2 and a2, and so it is a hyperbolic saddle. The eigenvalues of the
linear part of system (15) evaluated at the singular point (0, 1) are both 0 but the
linear part of system (15) evaluated at (0, 1) is not linearly zero, so it is a nilpotent
singular point.

Before studying it we translate the point (0, 1) to the origin by doing the change
(u2, v2) = (u3, 1 + v3). Therefore system (15) in the variables (u3, v3) becomes

u̇3 = −u23 − 3u23v3 + u43v3 − a2u3v
2
3 − 3u23v

2
3 + a2u

3
3v

2
3 + 3u43v

2
3 − u23v

3
3 + 2a2u

3
3v

3
3

+3u43v
3
3 + a2u

3
3v

4
3 + u43v

4
3 ,

v̇3 = u3 + 4u3v3 + a2v
2
3 + 6u3v

2
3 − a2u

2
3v

2
3 + a2v

3
3 + 4u3v

3
3 − 3a2u

2
3v

3
3 + u3v

4
3

−3a2u
2
3v

4
3 − a2u

2
3v

5
3 .

Applying [4, Theorem 3.5] we get that it is a nilpotent saddle. Therefore the
local phase portrait near the straight line u2 = 0 for system (15) is topologically
equivalent to the one of Figure 3(a).

Undoing the rescaling dt1 = u2dt we get the local phase portrait of Figure
3(b). Going back through the changes of variables from the phase portrait of
Figure 3(b), we obtain the local phase portrait at the origin of system (14) which
is topologically equivalent to the one of Figure 3(c). Again going back through
the changes of variables from the phase portrait of Figure 3(c), we obtain the local
phase portrait around the origin of system (13) which is topologically equivalent
to the one of Figure 3(d). Hence the origin of the local chart U1 has a nilpotent
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saddle having two separatrices (one stable and one unstable) on the infinite circle
and two separatrices (one stable and one unstable) in v < 0.

(a) (b) (c) (d)

Figure 3. Figures of the blow up of the singular point located at the

origin of the local chart U1 of system (13).

4.2.2. The local chart U2. System (1) in the chart U2 writes

(16) u̇ = a2u
3 − a2uv

2 + v3 + u2v3, v̇ = v(a2u
2 − a2v

2 + uv3).

The origin is an infinite singular point in this chart. The linear part of system (16)
at the origin is identically zero, so in order to determine its local phase portrait we
must do blow ups. The characteristic directions at the origin of U2 are given by the
real linear factors of v4 = 0. Since u = 0 is not a characteristic direction, we do the
vertical blow up (u, v) → (u1, u1v1), and system (16) writes in the new variables

u̇1 = −u31(−a2 + a2v
2
1 − v31 − u21v

3
1), v̇1 = −u21v41 .

Eliminating the common factor u21 between u̇1 and v̇1 rescaling the time we obtain
the system

(17) u̇1 = −u1(−a2 + a2v
2
1 − v31 − u21v

3
1), v̇1 = −v41 .

The unique singular point of system (17) on the straight line u1 = 0 is (0, 0).

The eigenvalues of the linear part of system (17) at the singular point (0, 0) are
0 and a2 and so it is semi-hyperbolic. Applying [4, Theorem 2.19] we obtain that
it is a saddle-node. Therefore the local phase portrait near the straight line u1 = 0
for system (17) is topologically equivalent to the one of Figure 4(a). Undoing the
rescaling dt1 = u21dt we get the phase portrait of Figure 4(b). Going back through
the changes of variables from the phase portrait of Figure 4(b), we obtain the local
phase portrait at the origin of system (16) which is topologically equivalent to the
one of Figure 4(c). Hence the origin of the local chart U2 is topologically equivalent
to an unstable node.

4.3. The infinite singular points of the local charts U1 and U2 when a2a1 ̸=
0. We shall study the infinite singular points of the differential system (1) in the
local charts U1 and U2. We note that in this case doing the change of variables
(x, y) → (−x,−y) we can assume, without loss of generality, that a2a1 < 0.
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(a) (b) (c)

Figure 4. Figures of the blow up of the singular point located at the

origin of the local chart U2 of system (16).

4.3.1. The local chart U1. System (1) in the chart U1 writes

(18) u̇ = −a2u2 − a1uv + a2u
2v2 − v3 + a1uv

3 − u2v3, v̇ = −uv4.

The unique infinite singular point in this chart is the origin. The linear part of
system (18) at the origin is identically zero, so in order to determine its local phase
portrait we must do blow ups. The characteristic directions at the origin are the
real linear factors of uv(a2u + a1v) = 0. Since u = 0 is a characteristic direction
before doing a vertical blow up we translate the direction u = 0 to u = v doing the
change of variables (u, v) = (u1 − v1, v1). Then system (18) becomes

(19)

u̇1 = −a2u21 − a1u1v1 + 2a2u1v1 + a1v
2
1 − a2v

2
1 + a2u

2
1v

2
1 − v31 + a1u1v

3
1

−2a2u1v
3
1 − u21v

3
1 − a1v

4
1 + a2v

4
1 + u1v

4
1 ,

v̇1 = −u1v41 + v51 .

Now we do the vertical blow up (u1, v1) → (u2, u2v2) and system (19) writes in the
new variables

u̇2 = u22(−a2 − a1v2 + 2a2v2 + a1v
2
2 − a2v

2
2 + a2u

2
2v

2
2 − u2v

3
2 + a1u

2
2v

3
2 − 2a2u

2
2v

3
2

−u32v32 − a1u
2
2v

4
2 + a2u

2
2v

4
2 + u32v

4
2),

v̇2 = −u2v2(−a2 − a1v2 + 2a2v2 + a1v
2
2 − a2v

2
2 + a2u

2
2v

2
2 − u2v

3
2 + a1u

2
2v

3
2 − 2a2u

2
2v

3
2

−a1u22v42 + a2u
2
2v

4
2).

Eliminating the common factor u2 between u̇2 and v̇2 rescaling the time we obtain
the system

(20)

u̇2 = u2(−a2 − a1v2 + 2a2v2 + a1v
2
2 − a2v

2
2 + a2u

2
2v

2
2 − u2v

3
2 + a1u

2
2v

3
2

−2a2u
2
2v

3
2 − u32v

3
2 − a1u

2
2v

4
2 + a2u

2
2v

4
2 + u32v

4
2),

v̇2 = −v2(−a2 − a1v2 + 2a2v2 + a1v
2
2 − a2v

2
2 + a2u

2
2v

2
2 − u2v

3
2 + a1u

2
2v

3
2

−2a2u
2
2v

3
2 − a1u

2
2v

4
2 + a2u

2
2v

4
2).

The singular points of system (20) on the straight line u2 = 0 are (0, 0), (0, 1) and
(0, a2/(a2 − a1)). The eigenvalues of the linear part of system (20) evaluated at
the singular point (0, 0) are −a2 and a2, and so it is a hyperbolic saddle. The
eigenvalues of the linear part of system (20) evaluated at the singular point (0, 1)
are 0 and −a1 and so it is semi-hyperbolic. Before studying it we translate the
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point (0, 1) to the origin by doing the change (u2, v2) = (u3, 1 + v3). Therefore
system (20) in the variables (u3, v3) becomes

u̇3 = −u23 + a1u3v3 − 3u23v3 − a1u
3
3v3 + u43v3 + a1u3v

2
3 − a2u3v

2
3 − 3u23v

2
3 − 3a1u

3
3v

2
3

+a2u
3
3v

2
3 + 3u43v

2
3 − u23v

3
3 − 3a1u

3
3v

3
3 + 2a2u

3
3v

3
3 + 3u43v

3
3 − a1u

3
3v

4
3 + a2u

3
3v

4
3 + u43v

4
3 ,

v̇3 = u3 − a1v3 + 4u3v3 + a1u
2
3v3 − 2a1v

2
3 + a2v

2
3 + 6u3v

2
3 + 4a1u

2
3v

2
3 − a2u

2
3v

2
3 − a1v

3
3

+a2v
3
3 + 4u3v

3
3 + 6a1u

2
3v

3
3 − 3a2u

2
3v

3
3 + u3v

4
3 + 4a1u

2
3v

4
3 − 3a2u

2
3v

4
3 + a1u

2
3v

5
3

−a2u23v53 .

Now applying [4, Theorem 2.19] we get that it is a semi-hyperbolic saddle. The
eigenvalues of the linear part of system (20) evaluated at the singular point (0, a2/(a2−
a1)) are 0 and a1a2/(a2 − a1), and so it is semi-hyperbolic. Before studying it we
translate that point to the origin by doing the change (u2, v2) = (u3,

a2

a2−a1
+ v3).

Therefore system (20) in the variables (u3, v3) after multiplied by (a2 − a1)
4 doing

a convenient rescaling, we obtain

u̇3 = u3
(
a1a

3
2u3 − a42u3 + a1a

3
2u

3
3 − a51v3 + 4a41a2v3 − 6a31a

2
2v3 + 4a21a

3
2v3 − a1a

4
2v3

−3a21a
2
2u3v3 + 6a1a

3
2u3v3 − 3a42u3v3 + a31a

2
2u

2
3v3 − 2a21a

3
2u

2
3v3 + a1a

4
2u

2
3v3

−3a21a
2
2u

3
3v3 + 2a1a

3
2u

3
3v3 + a42u

3
3v3 + a51v

2
3 − 5a41a2v

2
3 + 10a31a

2
2v

2
3 − 10a21a

3
2v

2
3

+5a1a
4
2v

2
3 − a52v

2
3 + 3a31a2u3v

2
3 − 9a21a

2
2u3v

2
3 + 9a1a

3
2u3v

2
3 − 3a42u3v

2
3 − 2a41a2u

2
3v

2
3

+5a31a
2
2u

2
3v

2
3 − 3a21a

3
2u

2
3v

2
3 − a1a

4
2u

2
3v

2
3 + a52u

2
3v

2
3 + 3a31a2u

3
3v

2
3 − 3a21a

2
2u

3
3v

2
3

−3a1a
3
2u

3
3v

2
3 + 3a42u

3
3v

2
3 − a41u3v

3
3 + 4a31a2u3v

3
3 − 6a21a

2
2u3v

3
3 + 4a1a

3
2u3v

3
3 − a42u3v

3
3

+a51u
2
3v

3
3 − 2a41a2u

2
3v

3
3 − 2a31a

2
2u

2
3v

3
3 + 8a21a

3
2u

2
3v

3
3 − 7a1a

4
2u

2
3v

3
3 + 2a52u

2
3v

3
3 − a41u

3
3v

3
3

+6a21a
2
2u

3
3v

3
3 − 8a1a

3
2u

3
3v

3
3 + 3a42u

3
3v

3
3 − a51u

2
3v

4
3 + 5a41a2u

2
3v

4
3 − 10a31a

2
2u

2
3v

4
3

+10a21a
3
2u

2
3v

4
3 − 5a1a

4
2u

2
3v

4
3 + a52u

2
3v

4
3 + a41u

3
3v

4
3 − 4a31a2u

3
3v

4
3 + 6a21a

2
2u

3
3v

4
3

−4a1a
3
2u

3
3v

4
3 + a42u

3
3v

4
3

)
,

v̇3 = (a2 + (a2 − a1)v3)
(
− a32u3 + a41v3 − 3a31a2v3 + 3a21a

2
2v3 − a1a

3
2v3 + 3a1a

2
2u3v3

−3a32u3v3 − a21a
2
2u

2
3v3 + a1a

3
2u

2
3v3 − a41v

2
3 + 4a31a2v

2
3 − 6a21a

2
2v

2
3 + 4a1a

3
2v

2
3 − a42v

2
3

−3a21a2u3v
2
3 + 6a1a

2
2u3v

2
3 − 3a32u3v

2
3 + 2a31a2u

2
3v

2
3 − 3a21a

2
2u

2
3v

2
3 + a42u

2
3v

2
3 + a31u3v

3
3

−3a21a2u3v
3
3 + 3a1a

2
2u3v

3
3 − a32u3v

3
3 − a41u

2
3v

3
3 + a31a2u

2
3v

3
3 + 3a21a

2
2u

2
3v

3
3 − 5a1a

3
2u

2
3v

3
3

+2a42u
2
3v

3
3 + a41u

2
3v

4
3 − 4a31a2u

2
3v

4
3 + 6a21a

2
2u

2
3v

4
3 − 4a1a

3
2u

2
3v

4
3 + a42u

2
3v

4
3

)
.

Now applying [4, Theorem 2.19] we get that it is a saddle-node. In this case the
local phase portrait near the straight line u2 = 0 for system (20) is topologically
equivalent to the one of Figure 5(a). Undoing the rescaling dt1 = u2dt we get the
phase portrait of Figure 5(b). Going back through the changes of variables from
the phase portrait of Figure 5(b), we obtain the local phase portrait of system (19)
in Figure 5(c). Finally, going back through the changes of variables from the local
phase of Figure 5(c), we obtain the local phase portrait at the origin of system (18)
which is topologically equivalent to the one of Figure 5(d). Hence the origin of the
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local chart U1 is formed by four hyperbolic sectors (two stable and two unstable)
separated by one parabolic sector.

(a) (b) (c) (d)

Figure 5. Figures of the blow up of the singular point located at the

origin of the local chart U1 of system (18).

4.3.2. The local chart U2. System (1) in the chart U2 writes
(21)
u̇ = a2u

3+a1u
3v−a2uv2+v3−a1uv3+u2v3, v̇ = a2u

2v+a1u
2v2−a2v3−a1v4+uv4.

The origin is an infinite singular point in this chart. The linear part of system (21)
at the origin is identically zero, so in order to determine its local phase portrait we
must do blow ups. The characteristic directions at the origin of U2 are given by the
real linear factors of v4 = 0. Since u = 0 is not a characteristic direction, we do the
vertical blow up (u, v) → (u1, u1v1) and system (21) writes in the new variables

u̇1 = −u31(−a2 − a1u1v1 + a2v
2
1 − v31 + a1u1v

3
1 − u21v

3
1), v̇1 = −u21v41 .

Eliminating the common factor u21 between u̇1 and v̇1 rescaling the time we obtain
the system

(22) u̇1 = −u1(−a2 − a1u1v1 + a2v
2
1 − v31 + a1u1v

3
1 − u21v

3
1), v̇1 = −v41

The unique singular point of system (22) on the straight line u1 = 0 is (0, 0).

The eigenvalues of the linear part of system (22) at the singular point (0, 0) are
0 and a2 and so it is semi-hyperbolic. Applying [4, Theorem 2.19] we obtain that it
is a saddle-node. Going back through the changes of variables and reascaling of the
time we get that the origin of the local chart U2 is topologically equivalent to the
one provided in Figure 4(c) when a2 > 0 and Figure 4(c) reversing the orientation
of the orbits when a2 < 0.

Proof of Theorem 2. When a2 = 0 and a1 > 0 the two stable separatrices of the
origins of U1 and V1 are at infinity, and their unstable separatrices go to the finite
part of the Poincaré disc. Moreover the origins of the local charts U2 and V2
are unstable nodes. Since the origin is an unstable focus if a1 ∈ (0, 2) and an
unstable node if a1 ≥ 2 the Poincaré Bendixson Theorem forces the existence of
at least one limit cycle. In view of Theorem 6 with f(x) = a1(x

2 − 1), g(x) = x,

F (x) = a1(x
3/3 − x), a = −1, b = 1 and c =

√
3, we get that the limit cycle is

unique. Combining all this information we obtain that the global phase portrait of
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system (1) when a2 = 0 is topologically equivalent to the one of Figure 1(a) and so
statement (i) is proved.

When a1 = 0 and a2 > 0 taking into account the local phase portraits at the
origin of coordinates (which is a center), at the origins of U1 and V1 that are formed
by the four hyperbolic sectors of the nilpotent saddle of Figure 3(d), the unstable
node at the origin of U2, the stable node at the origin of V2, and that the global
phase portrait is symmetric with respect to the x-axis (because the differential
system (1) is invariant under the change (x, y, t) → (x,−y,−t)) we get that the
phase portrait in the Poincaré disc is topologically equivalent to the one of Figure
1(b). Hence statement (ii) is proved.

Finally, when a1a2 ̸= 0 and a1a2 < 0 with a2 > 0, taking into account the local
phase portraits at the origin of coordinates (which is a either a stable focus or a
stable node), at the origins of U1 and V1 that are formed by the four hyperbolic
sectors separated by parabolic sectors of Figure 5(d), the unstable node at the origin
of U2 and the stable node at the origin of V2 we get that a possible phase portrait
in the Poincaré disc is topologically equivalent to the one of Figure 1(c) and we
see that there are numerical values such that this phase portrait is realizable. Note
that in this phase portrait there is a limit cycle. Hence the theorem is proved. In
the case of a2 < 0 we get the same global phase portrait reverting the orientation
of the orbits. There are topologically two more possible global phase portraits but
numerical evidence seem to show that they are not realizable. □
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