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Abstract. Let f(x) and g(x) be complex polynomials. We characterize
all Kukles polynomial differential systems of the form

x′ = y, y′ = −y2 − f(x)y − g(x)

having an invariant algebraic curve. We show that expanding an invari-
ant algebraic curve of these differential systems as a polynomial in the
variable y, the first four higher coefficients of the polynomial defining the
invariant algebraic curve determine completely these Kukles systems. In
particular if the second and third higher coefficients of the polynomial
defining the invariant algebraic curve satisfy a simple relation between
them the invariant algebraic curve is of the form (y + p(x))n = 0 for
some polynomial p(x) and y + p(x) = 0 is an invariant algebraic curve
of the Kukles system for any complex polynomial f(x).

1. Introduction and statement of the main results

Consider the Kukles system

x′ = y, y′ = −y2 − f(x)y − g(x), (1)

where f(x), g(x) ∈ C[x], being C[x] the ring of polynomials in the variable
x with coefficients in C. Moreover we assume that f and g are not the
zero polynomial. We also assume that system (1) has an invariant algebraic
curve F (x, y) = 0, that we write as

F (x, y) =
n∑

j=0

aj(x)y
n−j , a0(x) ̸= 0, n ≥ 2. (2)

Without loss of generality we can assume that the coefficient of the highest
degree of a0(x) in the variable x is 1, because we can always divide the
invariant curve by such highest coefficient.
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We recall that a polynomial F (x, y) = 0 is an invariant algebraic curve
of system (1) if it satisfies

y
∂F

∂x
− (y2 + f(x)y + g(x))

∂F

∂y
= KF,

for some polynomial K = K(x, y) called the cofactor of F .

The invariant algebraic curves are crucial elements in the study of the
qualitative theory and integrability theory of the polynomial differential
systems (see for instance [2, Chapter 8] and the references therein). In
fact the existence of several invariant algebraic curves is a measure of the
integrability of a polynomial differential system. The invariant algebraic
curves are the main elements in the Darboux theory of integrability. This
theory was started by Darboux [4], and developed later on for several authors
as [1, 2, 3, 6, 7, 8, 9, 10, 11].

We introduce the main result of this paper.

Theorem 1. Assume that the Kukles system (1) has an invariant algebraic
curve F (x, y) = 0 of the form (2) with n ≥ 2. Then K(x, y) = K0(x) +
yK1(x), a0(x) = 1, K1(x) = −n, K0(x) = a′1(x) + a1(x)− nf(x), and

g(x) =
−a1(x)a

′
1(x) + a′2(x)− a21(x) + 2a2(x) + a1(x)f(x)

n
. (3)

Moreover the following hold:

(a) If (1− n)a1(x)
2 + 2na2(x) ̸= 0, then

(a.1) if n = 2, write a2(x)− a21(x)/4 in irreducible polynomials as

a2(x)− a21(x)/4 = α

r∏
j=0

(x− xj)
βj , (4)

for some α ∈ C, r ≥ 1 and positive integers βj. Then there
exists Q(x) ∈ C[x] such that

f(x) =
a′1(x)

2
+ a1(x) +

1

4
Q(x)

r∑
j=0

βj

r∏
k=0,k ̸=j

(x− xk),

and

a1(x) = Q(x)
r∏

j=0

(x− xj);

(a.2) if n ≥ 3, then

f(x) = − A(x)

(1− n)a1(x)2 + 2na2(x)
,

where

A(x) = na′3(x) + 3na3(x) + (n− 1)a1(x)
2a′1(x)− (n− 1)a1(x)a

′
2(x)

+ (n− 1)a1(x)
3 − (3n− 2)a1(x)a2(x)− na′1(x)a2(x),
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and (1− n)a1(x)
2 + 2na2(x) must divide A(x).

(b) If (1− n)a1(x)
2 + 2na2(x) = 0, then

F (x) =
(
y +

a1(x)

n

)n
,

and f(x) is an arbitrary polynomial of C[x].

Theorem 1 is proved in section 2. Note that it characterizes completely
the possible invariant algebraic curves of system (1) when (1 − n)a1(x)

2 +
2a2(x)n = 0. In this case, there is a unique possible invariant algebraic curve
which is irreducible and it is an invariant algebraic curve of system (1) for any
f ∈ C[x]. In other words, the first two coefficients of the invariant algebraic
curve determine completely the invariant algebraic curve for any system (1)
independently of f(x) ∈ C[x] and g(x) = − 1

n(a1(x)+a′1(x))− 1
nf(x) for any

f ∈ C[x].

As a concrete example of the application of Theorem 1 in the following
proposition we characterize all the Kukles system (1) which has an invariant
algebraic curve F (x, y) = 0 of the form (2) with n = 2 as in the statement
(a.1) of Theorem 1 and being ai(x) for i = 1, 2 polynomials of degree two in
the variable x.

Proposition 2. Assume that the Kukles system (1) has an invariant alge-
braic curve F (x, y) = 0 of the form (2) with n = 2, with 4a2(x)−a1(x)

2 ̸= 0

and ai(x) =
∑2

j=0 aijx
j for i = 1, 2.

(a) If a12 ̸= 0, then f(x) = a12x
2 + (a11 + 2a12)x+ a10 + a11 and

F (x, y) = y2 + (a10 + a11x+ a12x
2)y;

(b) If a12 = 0, then we have

(b.1) f(x) = a11x+
1

2
(2a10 + a11) and

F (x, y) = y2 + (a10 + a11x)y +
a211
4

x2 +
a10a11

2
x+ a20;

(b.2) a11 ̸= 0, f(x) = a11x+
1

4
(4a10 + 3a11) and

F (x, y) = y2 + (a10 + a11x)y +
a211
4

x2 + a21x+
4a10a21 − a210a11

4a11
;

(b.3) f(x) = a10 and F (y) = y2 + a10y + a20;
(b.4) a11 ̸= 0, f(x) = a11x+ a10 + a11 and

F (x, y) = y2 + (a10 + a11x)y + a22x
2 +

2a10a22
a11

x+
a210a22
a211

.

The proof of Proposition 2 is given in section 3.

Similar results obtained for the generalized Liénard differential systems
x′ = y, y′ = −f(x)y − g(x) can be found in [5].
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2. Proof of Theorem 1

We separate the proof of Theorem 1 into different lemmas.

Lemma 1. Assume that the Kukles system (1) has an invariant algebraic
curve F (x, y) = 0 of the form (2) with n ≥ 2. Then K(x, y), a0(x), K1(x),
K0(x) and g(x) are as in the statement of Theorem 1.

Proof. Let F (x, y) = 0 be an invariant algebraic curve of system (1) as in
(2). Then we have

n∑
j=0

a′j(x)y
n+1−j −

n∑
j=0

(n− j)aj(x)y
n−j+1

−
n∑

j=0

(n− j)aj(x)y
n−jf(x)−

n∑
j=0

(n− j)aj(x)y
n−j−1g(x)

=

( s∑
l=0

Kl(x)y
l

)( n∑
j=0

aj(x)y
n−j

)
.

(5)

Note that it follows from (5) that s ≤ 1. Therefore K(x, y) = K0(x) +
K1(x)y.

Computing the coefficient of yn+1 in (5) we get

a′0(x)− na0(x) = K1(x)a0(x) that is a′0(x) = (K1(x) + n)a0(x).

Since K1(x) must be a polynomial we must have that a0(x) is constant and
so a0(x) = 1. Moreover K1(x) = −n.

Computing the coefficient of yn in (5) using that a0(x) = 1 and K1(x) =
−n we get

a′1(x)− (n− 1)a1(x)− nf(x) = K1(x)a1(x) +K0(x) = −na1(x) +K0(x),

which yields K0(x) = a′1(x) + a1(x) − nf(x). Computing the coefficient of
yn−1 in (5) we get

a′2(x)− (n− 2)a2(x)− (n− 1)f(x)a1(x)− ng(x)

= −na2(x) + (a′1(x) + a1(x)− nf(x))a1(x),

which provides g(x) given in (3). Note that since f is a polynomial, so it is
g. □

Lemma 2. Assume that the Kukles system (1) has an invariant algebraic
curve F (x, y) = 0 of the form (2) with n = 2 and 4a2(x) − a1(x)

2 ̸= 0.
Write a2(x)− a21(x)/4 into irreducible polynomials in C[x] as in (4). Then
f(x) and a1(x) are as in the statement (a.1) of Theorem 1.
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Proof. It follows from Lemma 1 thatK(x, y) = K0(x)+K1(x)y withK1(x) =
−2 and K0(x) and g(x) as in the statement of Lemma 1 with n = 2. Com-
puting the independent term (coefficient of y0 in (5)) we get

−g(x)a1(x) = (a′1(x) + a1(x)− 2f(x))a2(x). (6)

Introducing the value of g(x) obtained in Lemma 1 in (12) we obtain

a1(x)
3 + a1(x)

2a′1(x)− 4a1(x)a2(x)− 2a′1(x)a2(x)− a1(x)a
′
2(x)

+ (4a2(x)− a1(x)
2)f(x) = 0.

(7)

Since by hypothesis a2(x) ̸= a21(x)/4, we have that

f(x) = −a1(x)
3 + a1(x)

2a′1(x)− 4a1(x)a2(x)− 2a′1(x)a2(x)− a1(x)a
′
2(x)

4a2(x)− a1(x)2

=
a′1(x)

2
+ a1(x) +

1

4
a1(x)

(a2(x)− a1(x)
2/4)′

a2(x)− a21(x)/4
.

Taking into account that f(x) must be a polynomial, we must have that
expanding a2(x)−a21(x)/4 in irreducible factors in C[x] as in (4), then there
exists Q(x) ∈ C[x] such that f(x) and a1(x) are as in the statement (a.1) of
Theorem 1. This concludes the proof of the lemma. □

Lemma 3. Assume that the Kukles system (1) has an invariant algebraic
curve F (x, y) = 0 of the form (2) with n ≥ 3 and (1−n)a1(x)

2+2na2(x) ̸= 0.
Then f(x) is as in the statement (a.2) of Theorem 1.

Proof. It follows from Lemma 1 thatK(x, y) = K0(x)+K1(x)y withK1(x) =
−n and K0(x) and g(x) as in the statement of Lemma 1. Computing the
coefficient of yn−2 in (5) we get

a′3(x)− (n− 3)a3(x)− (n− 2)f(x)a2(x)− (n− 1)g(x)a1(x)

= −na3(x) + (a′1(x) + a1(x)− nf(x))a2(x),

and so

a′3(x)+3a3(x)+2f(x)a2(x)− (n−1)g(x)a1(x) = (a′1(x)+a1(x))a2(x). (8)

Substituting g(x) given in Lemma 1 into (13) we obtain

f(x)((1− n)a1(x)
2 + 2na2(x)n) +A(x) = 0, (9)

with A(x) as in statement (a.2) of Theorem 1. Taking into account that f(x)
is a polynomial, (1− n)a1(x)

2 + 2na2(x) must divide A(x). This completes
the proof of the lemma. □

Lemma 4. Assume that the Kukles system (1) has an invariant algebraic
curve F (x, y) = 0 of the form (2) with n ≥ 2 and (1−n)a1(x)

2+2na2(x)n =
0. Then F (x) is as in statement (b) of Theorem 1 for any arbitrary polyno-
mial f(x) ∈ C[x].
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Proof. We first study the case n = 2. In this case 4a2(x) − a1(x)
2 = 0 and

so 4a′2(x) = 2a1(x)a
′
1(x) implying that (7) is automatically satisfied for any

f(x) ∈ C[x]. Hence,

F (x) = y2 + a1(x)y + a2(x) = y2 + a1(x)y +
a1(x)

2

4
=

(
y +

a1(x)

2

)2
,

yielding the lemma for n = 2.

Now assume n ≥ 3. Note that from Lemma 1 we have

g(x) = −a1(x)

n2
(a1(x) + a′1(x)) +

a1(x)

n
f(x). (10)

We will first show by induction that

ak(x) =

(
n

k

)
a1(x)

k

nk
, for k ≥ 2. (11)

Note that a2(x) =
(
n
2

)
a1(x)

2/n2 by induction hypothesis.

Now we prove it for a3(x). It follows from (13) after introducing the value
of g(x) given in (10) that

a′3(x) + 3a3(x)−
(n− 1)(n− 2)

2n2
a1(x)

2(a1(x) + a′1(x)) = 0

and so

a3(x) =

(
n

3

)
a1(x)

3

n3
.

Assume that (11) holds for until k − 1 and we shall prove it for k.

Computing the coefficient of yn−k+1 in (5) we get

a′k(x)− (n− k)ak(x)− (n− k + 1)f(x)ak−1(x)− (n− k + 2)g(x)ak−2(x)

= −nak(x) + (a′1(x) + a1(x)− nf(x))ak−1(x),

or equivalently, introducing the value of g(x) given in (10),

a′k(x) + kak(x) +
(
(k − 1)ak−1(x)−

n− k + 2

n
a1(x)ak−2(x)

)
f(x)

+
(n− k + 2

n2
a1(x)ak−2(x)− ak−1(x)

)
(a1(x) + a′1(x)) = 0

(12)

Note that by induction hypotheses we have

(k − 1)ak−1(x)−
n− k + 2

n
a1(x)ak−2(x)

= (k − 1)

(
n

k − 1

)
a1(x)

k−1

nk−1
− (n− k + 2)

(
n

k − 2

)
a1(x)

k−1

nk−1
= 0



KUKLES POLYNOMIAL SYSTEMS 7

and

n− k + 2

n2
a1(x)ak−2(x)− ak−1(x) =

k − 1− n

n
ak−1(x)

= −n− k − 1

n

(
n

k − 1

)
a1(x)

k−1

nk−1
= −k

(
n

k

)
a1(x)

k−1

nk
,

and so (12) becomes

a′k(x) + kak(x)− k

(
n

k

)
a1(x)

k−1

nk
(a1(x) + a′1(x)) = 0,

which yields

ak(x) =

(
n

k

)
a1(x)

k

nk
.

So the induction hypothesis holds.

Computing the term of degree y0 in (5) we get

− g(x)an−1(x)− (a′1(x) + a1(x)− nf(x))an(x)

=
(a1(x)

n2
(a′1(x) + a1(x))−

a1(x)

n
f(x)

)( n

n− 1

)
a1(x)

n−1

nn−1

− (a′1(x) + a1(x)− nf(x))

(
n

n

)
a1(x)

n

nn

=
( 1

n
(a′1(x) + a1(x))− f(x)

)
n
a1(x)

n

nn
− (a′1(x) + a1(x)− nf(x))

a1(x)
n

nn
= 0,

which is automatically satisfied.

Therefore for any f(x) ∈ C[x] and g(x) given in (10) the unique possible
invariant algebraic curve is

F (x) =
n∑

k=0

ak(x)y
n−k =

n∑
k=0

(
n

k

)
a1(x)

k

nk
yn−k =

(
y +

a1(x)

n

)n
.

This completes the proof of the lemma. □

Proof of Theorem 1. The proof of Theorem 1 (a) follows from Lemmas 1, 2
and 3. The proof of Theorem 1 (b) follows from Lemma 4. □

3. Proof of Proposition 2

It follows from (7) that the function f(x) has degree at most 2 in the
variable x. We write it as f(x) = b0 + b1x + b2x

2. Introducing it into
(5) with K1 = −2, K0 = a′1(x) + a1(x) − 2f(x) and g(x) = (−a1a

′
1(x) +

a′2(x) − a21(x) + 2a2(x) + a1(x)f(x))/2 we get that equation (5) multiplied
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by 2 becomes

a310 + a210a11 − 4a10a20 − 2a11a20 − a10a21 − a210b0 + 4a20b0

+ (3a210a11 + 2a10a
2
11 + 2a210a12 − 4a11a20 − 4a12a20 − 4a10a21

− 3a11a21 − 2a10a22 − 2a10a11b0 + 4a21b0 − a210b1 + 4a20b1)x

+ (3a10a
2
11 + a311 + 3a210a12 + 6a10a11a12 − 4a12a20 − 4a11a21

− 5a12a21 − 4a10a22 − 4a11a22 − a211b0 − 2a10a12b0 + 4a22b0

− 2a10a11b1 + 4a21b1 − a210b2 + 4a20b2)x
2 + (a311 + 6a10a11a12

+ 4a211a12 + 4a10a
2
12 − 4a12a21 − 4a11a22 − 6a12a22 − 2a11a12b0

− a211b1 − 2a10a12b1 + 4a22b1 − 2a10a11b2 + 4a21b2)x
3 + (3a211a12

+ 3a10a
2
12 + 5a11a

2
12 − 4a12a22 − a212b0 − 2a11a12b1 − a211b2

− 2a10a12b2 + 4a22b2)x
4 + a12(3a11a12 + 2a212 − a212b1 − 2a11b2)x

5

+ a212(a12 − b2)x
6 = 0.

(13)

We consider two cases: either a12 ̸= 0 and b2 = a12, or a12 = 0.

In the first case, imposing b2 = a12 and a12 ̸= 0 in (13), we obtain readily
the solution in statement (a) of the proposition.

In the second case, imposing b2 = 0 in (13) and using that 4a2(x) −
a1(x)

2 ̸= 0 we get that b2 = 0, b1 = a11 and (13) becomes

(a310 + a210a11 − 4a10a20 − 2a11a20 − a10a21 − a210b0 + 4a20b0)

+ (2a210a11 + 2a10a
2
11 − 4a10a21 − 3a11a21 − 2a10a22 − 2a10a11b0

+ 4a21b0)x+ (a211 − 4a22)(a10 + a11 − b0)x
2 = 0.

(14)

We have two possibilities: either a22 = a211/4, or b0 = a10 + a11.

If a22 = a211/4 then (14) becomes

(a310 + a210a11 − 4a10a20 − 2a11a20 − a10a21 − a210b0 + 4a20b0)

+
1

2
(a10a11 − 2a21)(4a10 + 3a11 − 4b0)x = 0,

and we have two possible solutions: either a21 = a10a11/2, or b0 = (4a10 +
3a11)/4. In the first case we get the solution as in statement (b.1) in the
proposition. In the second case we get the condition a210a11 + 4a11a20 −
4a10a21 = 0. Taking into account that f(x) is not the zero polynomial, we
obtain the solutions (b.2) and (b.3) as in the statement of the proposition.

If b0 = a10 + a11, then (14) becomes

(2a11a20 − a10a21) + (a11a21 − 2a10a22)x = 0.
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Taking into account that f(x) is not the zero polynomial, we get the two so-
lutions (b.4) and (b.3) as in the statement of the proposition. This concludes
the proof of the proposition.
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