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Abstract. A center of a differential system in the plane R2 is an
equilibrium point p having a neighbourhood U such that U \ {p}
is filled of periodic orbits. A global center is a center p such that
R2 \ {p} is filled of periodic orbits. To determine when a given
differential system has a center is in general a difficult problem,
but to determine if a given differential system has a global center
is even more difficult.

We deal with the class of polynomial differential systems of the
form

(1) ẋ = −y + P (x, y), ẏ = x+Q(x, y),

with P and Q homogeneous polynomials of degree n. It is known
that these systems only can have global centers if n is odd. The
global centers when n is 1 or 3 have been characterized.

Here for n = 5 we classify the global centers of a four parameter
family of systems (1). In particular we illustrate how to study the
local phase portraits of the singular points whose linear part is
identically zero using only vertical blow ups.

1. Introduction and statement of the main result

The rigorous notion of a center appeared in the works of Poincaré
[17] in 1881 and Dulac [6] in 1908. But informally the notion of a center
can be found already in the work of Huygens in 1656 on the pendulum
clock, see [12, 16].

A polynomial differential system in the plane R2 is a differential sys-
tem

(2) ẋ = p(x, y), ẏ = q(x, y),

with p and q polynomials in the variables x and y with real coefficients,
and the dot denotes derivate with respect to the time t. A polynomial
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differential system has degree n if n is the maximum of the degrees of
the polynomials p and q.

If a polynomial differential system has a center at the origin, then
after a linear change of variables and a rescaling of the time variable,
it can be written in one of the following three forms:

ẋ = −y +X2(x, y), ẏ = x+ Y2(x, y),

called a linear type center,

ẋ = y +X2(x, y), ẏ = Y2(x, y),

called a nilpotent center,

ẋ = X2(x, y), ẏ = Y2(x, y),

called a degenerate center, where X2(x, y) and Y2(x, y) are real analytic
functions without constant and linear terms, defined in a neighborhood
of the origin. Here we only will work with linear type centers.

The easiest global centers are the linear differential centers, which
after an affine change of variables can be written as ẋ = −y, ẏ = x.

It is known that if the degree of a polynomial differential system
is even then it cannot have global centers because these differetnial
systems always have some orbit which escape or come from the infinity,
see Galeotti and Villarini [8], or [14] for two different proofs.

Conti also studied the global centers in [4, 5]. In fact he stated the
following problem: Identify all polynomial diffeential systems (of odd
degree) having a global center, see the Problem 14.1 of [5].

The classification of the centers of the polynomial differential systems
is a very difficult problem, in fact only the centers of the polynomial
differential systems of degree 2 have been classified, see Kapteyn [13]
and Bautin [3]. For polynomial differential systems of degree higher
than 2 there are only partial results.

We consider the particular class of polynomial differential systems
of the form

(3) ẋ = −y + P (x, y), ẏ = x+Q(x, y),

with P and Q homogeneous polynomials of degree n.

Note that all polynomial differential systems of degree 2 can be writ-
ten in the form (3).
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The centers of the polynomial differential systems of degree 3 of
the particular class (3) were classified by Malkin [15] and Vulpe and
Sibirskii [18].

The global centers of the polynomial differential systems (3) of degree
3 have been classified recently in [9].

The objective of this paper would be to classify the global centers of
the polynomial differential systems (3) of degree 5. But unfortunately
at the present moment we do not have the complete classification of
the centers of these class of differential systems. Such classification de-
pends on the computation of all the independent Liapunov constants
of these systems, see for more details chapter 5 of [7]. So we restrict
our attention to the classification of the global centers of the subclass
of polynomial differential systems (3) of degree 5 having a reversible
center. More precisely, we restrict our attention to the subclass of poly-
nomial differential systems (3) of degree 5 which are invariant under
the symmetry (x, y, t) → (x,−y,−t).

A first result is the following.

Proposition 1. Polynomial differential systems (3) of degree 5 which
are invariant under the symmetry (x, y, t) → (x,−y,−t) and that can
have a global center can be written as

(4) ẋ = −y + ax4y + bx2y3 − r2y5, ẏ = x+ s2x5 + cx3y2 + dxy4,

with a, b, c, d, r, s ∈ R.

The classification of the reversible global centers of the polynomial
differential systems (4) depending on six parameters is not possible
at the present moment due to the huge computations for doing it.
So in this paper we shall classify the reversible global centers of the
polynomial differential systems (4) when r = s = 0, i.e. of the system

(5) ẋ = −y + ax4y + bx2y3, ẏ = x+ cx3y2 + dxy4,

with a, b, c, d ∈ R.
The following result characterize systems (5) having the origin of

coordinates as the unique finite singular point.

Proposition 2. The unique finite singular point of system (5) is the
origin of coordinates if and only if one of the following two sets of
conditions holds:

(a) −ad(bc− ad) > 0 and −d(bc− ad)(2ad− bc− c2) > 0;
(b) d(bc− ad) = 0 and either a = 0, or 2ad− bc− c2 = 0.
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The global centers of systems (5) are classified in the next result.

Theorem 3. Polynomial differential systems (5) have a global center
at the origin of coordinates if and only if one of the following five sets
of conditions holds:

(i) a = 0, c = 0 and 0 ≤ d ≤ −b;
(ii) a ≤ 0, b = 0, c > 0, d = 0 and c+ a > 0;
(iii) b < 0, c > 0, |c| > |a|, and |b| ≥ |d|;
(iv) b < 0, c > 0, c+ a = 0, and |b| ≥ |d|;
(v) c = a > 0, b < 0, d > b and b+ d ≤ 0.

In section 2 we provide some definitions and preliminary results that
we need for proving Theorem 3. In section 3 we prove Propositions 1
and 2, and we do the blow ups for stuying the infinite singular points.
Finally in section 4 we prove Theorem 3.

2. Preliminary results

2.1. Singular points. The point (a, b) is a singular point of the dif-
ferential system (2) if p(a, b) = q(a, b) = 0.

The singular point (a, b) is hyperbolic if the eigenvalues of the Jaco-
bian matrix of the function (p, q) evaluated at (a, b) have non-zero real
part. The classification of the local phase portraits of the hyperbolic
singular points is well known, see for instance Theorem 2.15 of [7]. In
this paper when we characterize the local phase portrait of a hyperbolic
singular point we will be using that theorem.

The singular point (a, b) is semi-hyperbolic if one and only one of
the eigenvalues of the Jacobian matrix of the function (p, q) evaluated
at (a, b) is zero. Also the classification of the local phase portraits
of the semi-hyperbolic singular points is well known, see for instance
Theorem 2.19 of [7]. Again in this paper when we characterize the local
phase portrait of a semi-hyperbolic singular point we will be using that
theorem.

Consider the differential system

(6) ẋ =
∞∑
i=1

pi(x, y), ẏ =
∞∑
i=1

qi(x, y),

where pi and qi are homogeneous polynomials of degree i, for i ≥ 1.
The characteristic directions of the singular point localized at the ori-
gin of coordinates of system (6) are given by the straight lines trough
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the origin defined by the real linear factors of the homogeneous poly-
nomial pk(x, y)y − qk(x, y)x, where k is the minimum i for which the
polynomials pi or qi are non-zero. It is known that the orbits which
end or start at the origin of coordinates must arrive or exit tangent to
these straigh lines. For more details on the characteristic directions see
for example [2].

When the Jacobian matrix of the function (p, q) evaluated at the
singular point (a, b) of the differential system (2) is identically zero,
then the local phase portrait at this singular points can be studied
doing special changes of variables called blow ups, see for instance [1].
Here we only shall use vertical blow ups, and when the vertical direction
is a characteristic direction we twist it to the diagonal direction.

Let Φt be a smooth flow on a manifoldM and let C be a submanifold
of M consisting entirely of singular points of the flow. C is called
normally hyperbolic if the tangent bundle toM over C splits into three
subbundles TC, Es and Eu invariant under the differential dΦt and
satisfying

(i) dΦt contracts E
s exponentially,

(ii) dΦt expandsE
u exponentially,

(iii) TC is the tangent bundle of C.

For normally hyperbolic submanifolds one has the usual existence of
smooth stable and unstable manifolds together with the persistence of
these invariant manifolds under small perturbations. More precisely,
we have the following theorem, for a proof see [11].

Theorem 4. Let C be a normally hyperbolic submanifold of singular
points for the flow Φt. Then there exist smooth stable and unstable
manifolds tangent along C to Es ⊕ TC and Eu ⊕ TC, respectively.
Moreover, both C and the stable and unstable manifolds are permanent
under small perturbations of the flow.

2.2. The Poincaré compactification. Roughly speaking the Poincaré
compactification consists in identifying the plane R2 with the interior
of a closed unit disc centered at the origin of coordinates, called the
Poincaré disc. Then the boundary of this disc (the unit circle centered
at the origin) is identified with the infinity of R2. Note that in R2 we
can go or come from the infinity in as many as directions as points has
that circle.
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In order to classify the global dynamics of a polynomial differential
system one of the main steps is to characterize the local phase por-
traits of its finite and infinite singular points in the Poincaré disc. For
doing this we need the equations of our polynomial differential systems
initially in R2 in the Poincaré disc.

Consider the differential system (2) in R2, where p and q are real
polynomials in the variables x and y of degrees d1 and d2, respec-
tively. Then the degree of the polynomial differential system (2) is
d = max{d1, d2}.

Denote by TpS2 be the tangent space to the 2-dimensional sphere

S2 = {s = (s1, s2, s3) ∈ R3 : s21 + s22 + s23 = 1}

at the point p, we call this sphere the Poincaré sphere. We consider that
the polynomial differential system (2) is defined in the tangent plane
to S2 at the point (0, 0, 1), i.e. we have identified R2 with T(0,0,1)S2.
The central projection f : T(0,0,1)S2 → S2 send each point p of T(0,0,1)S2

to two points of S2, one in the northern hemisphere and the other in
the southern hemisphere. These two points are the intersection of the
straight line through p and the origin of coordinates (the center of the
sphere). So the map f defines two copies of the polynomial differential
system (2) on the sphere, one in the open northern hemisphere and the
other in the open southern hemisphere.

If X = (p, q) is the vector field associated to the polynomial differ-
ential system (2), we denote by X ′ the vector field Df ◦X defined on
S2 except on its equator S1 = {s ∈ S2 : s3 = 0}. Clearly S1 can be
identified with the infinity of R2. If the degree of the polynomial vector
fiedl X is d, then p(X) is the only analytic extension of sd−1

3 X ′ to S2.
The vector field p(X) on S2 is called the Poincaré compactification of
the vector field X, for more details see [7, chapter 5].

On the Poincaré sphere S2 we use the following six local charts, which
are given by Ui = {s ∈ S2 : si > 0} and Vi = {s ∈ S2 : si < 0}, for
i = 1, 2, 3, with the corresponding diffeomorphisms

φi : Ui → R2, ψi : Vi → R2,

defined by φi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and
m,n ̸= i. Thus the coordinates (u, v) will play different roles in the
distinct local charts. The expressions of the vector field p(X) are

(u̇, v̇) =

(
vd

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
,−vd+1P

(
1

v
,
u

v

))
in U1,
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(u̇, v̇) =

(
vd

(
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

))
,−vd+1Q

(
u

v
,
1

v

))
in U2,

(u̇, v̇) = (P (u, v), Q(u, v)) in U3.

We note that the expressions of the vector field p(X) in the local chart
(Vi, ψi) is equal to the expression in the local chart (Ui, ϕi) multiplied
by (−1)d−1 for i = 1, 2, 3.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed
northern hemisphere of S2 onto the plane s3 = 0 is a closed disc D2

of radius one centered at the origin of coordinates called the Poincaré
disc. Since a copy of the vector field X on the plane R2 is in the
open northern hemisphere of S2, the interior of the Poincaré disc D2

is identified with R2 and the boundary of D2, the equator S1 of S2, is
identified with the infinity of R2. Consequently the phase portrait of
the vector fieldX extended to the infinity corresponds to the projection
of the phase portrait of the vector field p(X) on the Poincaré disc D2.

The singular points of p(X) in the Poincaré disc lying on S1 are the
infinite singular points of the vector field X. The singular points of
p(X) in the interior of the Poincaré disc, i.e. on D2 \ S1, are the finite
singular points. We note that in the local charts U1, U2, V1 and V2 the
infinite singular points have their coordinate v = 0.

For a polynomial differential system (2) if s ∈ S1 is an infinite sin-
gular point, then −s ∈ S1 is another infinite singular point. Thus the
number of infinite singular points is even and the local phase portrait
of one is that of the other multiplied by (−1)d−1.

3. Proof of Propositions 1 and 5 and the blow ups

Proof of Proposition 1. We write the polynomial differential systems
(3) of degree 5 as follows

(7)
ẋ = −y + a1x

5 + a2x
4y + a3x

3y2 + a4x
2y3 + a5xy

4 + a6y
5,

ẏ = x+ b1x
5 + b2x

4y + b3x
3y2 + b4x

2y3 + b5xy
4 + b6y

5.

Since this differential system is invariant with respect to the symmetry
(x, y, t) → (x,−y,−t), i.e. its phase portrait is symmetric with respect
the y-axis, we obtain that a1 = a3 = a5 = b2 = b4 = b6 = 0. So system
(7) reduces to

(8)
ẋ = −y + a2x

4y + a4x
2y3 + a6y

5,

ẏ = x+ b1x
5 + b3x

3y2 + b5xy
4.
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System (8) has, among others, the singular points(
0,

1
4
√
a6

)
,

(
1

4
√
−b1

, 0

)
.

So in order that the origin of system (8) can be a global center it must
be the unique singular point and so we need that a6 ≤ 0 and b1 ≥ 0.
This completes the proof of the proposition. □

Proof of Proposition 2. For proving the non-existence of finite singular
points distinct from the origin of coordinates of the differential system
(5) we need to show that the system p = −1 + ax4 + bx2y2 = 0 and
q = 1+ cx2y2 + dy4 = 0 has no real solutions. For this we compute the
Gröebner basis of the polyomials p and q with respect to the variables x
and y, and we get an equivalent polynomial system to system p = q = 0
with five polyomial equations, one of these equations is

(9) a+ (−bc− c2 + 2ad)y4 − d(bc− ad)y8 = 0.

Therefore if we prove that equation (10) has no real roots, then the
unique finite singular point of system (5) will be the origin of coordi-
nates. But to prove this is equivalent to prove that all the roots of the
polynomial

(10) a+ (−bc− c2 + 2ad)z − d(bc− ad)z2 = 0,

are non-real or if they are real then they are non-positive.

The Routh-Hurwitz criterion for a polynomial of degree two says:
The polynomial s+rz+z2 has both roots in the open left half complex
plane if and only if r and s are positive, for a proof see the page 14 of
the book [10]. Then appying this criterion to our polynomial (10) the
proposition follows easily. □

3.1. A characterization of the global center. The next result char-
acterizes when a polynomial differential system in R2 has a global cen-
ter.

Proposition 5. A polynomial differential system (ẋ, ẏ) = (p(x, y), q(x, y))
without a line of singular points at infinity, has a global center if and
only if it has a unique finite singular point which is a center and all
the infinite singular points in the Poincaré disc, if they exist, its local
phase portrait is formed by two hyperbolic sectors having all of them
both separatrices on the infinite circle.
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Proof. Assume that we have a global center. Then the exterior bound-
ary of the period annulus of this center is the circle at infinity. Con-
sequently, since the infinite circle is not filled up with singular points,
if there is some infinite singular point this must be formed by two hy-
perbolic sectors having all of them both separatrices on the infinite
circle.

Now assume that the polynomial differential system has a unique
finite singular point which is a center, and that all the infinite singular
points, if they exist, its local phase portrait is formed by two hyperbolic
sectors having all of them both separatrices on the infinite circle. Then
consider the period annulus of the center, its inner boundary is the
center, its outer boundary γ is a curve homeomorphic to a circle. If
the circle γ is contained in R2, since the unique finite singular point is
the center, it must be a periodic orbit, but we claim that this is not
possible. Indeed consider a local transversal section Σ to the periodic
orbit γ and the Poincaré map π defined on Σ. Then π on the part
of Σ contained in the period annulus is the identity. Since π is an
analytic function of one variable (because the polynomial differential
system is an analytic differential system) it follows that π is also the
identity on the part of Σ outside the period annulus. So γ is contained
in the interior of the period annulus, a contradiction. Hence the claim
is proved.

Since the boundary of the period annulus, the circle γ cannot be
contained in R2, this boundary must contain some points of the infinite
circle, but since all the infinite singular points, if they exist, its local
phase portrait is formed by two hyperbolic sectors having all of them
both separatrices on the infinite circle, the boundary γ is the infinite
circle. Hence the center is global. □

3.2. The infinite singular points of the local chart U1 when
c ̸= 0. Now we shall study the infinite singular points of the differential
system (5) in the local chart U1. Thus system (5) in the chart U1 writes

(11) u̇ = (c−a)u2+(d− b)u4+ v4+u2v4, v̇ = −uv(a+ bu2− v4).

The infinite singular points in this chart are

(0, 0), p+ =

(√
c− a

b− d
, 0

)
, p− =

(
−
√
c− a

b− d
, 0

)
.
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The eigenvalues of the linear part of system (11) at the singular point
p+ are

2

√
(c− a)3

b− d
and (bc− ad)

√
(c− a)

(b− d)2
,

and the ones of the singular point p− are the same with a change of
sign.

Assume that the infinite singular points p+ and p− exist, i.e. that
(c − a)(b − d) > 0. If bc − ad ̸= 0 then p+ and p− are hyperbolic
singular points, and since they are infinite singular points they can
only be saddles or nodes, and consequently their local phase portraits
are not formed by two hyperbolic sectors. Therefore system (5) cannot
have a global center. If bc−ad = 0 then p+ and p− are semi-hyperbolic
singular points, so they are saddles, nodes or saddle-nodes. Again
system (5) cannot have a global center.

In summary the infinite singular points p+ and p− cannot exist if we
want that system (5) has a global center, so

(12) (c− a)(b− d) ≤ 0,

and the unique infinite singular point in the local chart U1 is the origin.

The linear part of system (11) at the origin is identically zero, so in
order to determine its local phase portrait we must do blow ups. The
characteristic directions at the origin of U1 are given by the real linear
factors of cu2v.

Here we assume that c ̸= 0. Then the vertical axis u = 0 is a
characteristic direction at the origin of the local chart U1. Therefore
before doing a vertical blow up we translate the direction u = 0 to
u = v doing the change of variables (u, v) = (u1− v1, v1). Then system
(11) becomes
(13)
u̇1 = (c− a)u21 + (a− 2c)u1v1) + cv21 + (d− b)u41 + (3b− 4d)u31v1−

3(b− 2d)u21v
2
1 + (b− 4d)u1v

3
1 + (1 + d)v41 + u21v

4
1 − u1v

5
1,

v̇1 = −au1v1 + av21 − bu31v1 + 3bu21v
2
1 − 3bu1v

3
1 + bv41 + u1v

5
1 − v61.

Now we do the vertical blow up (u1, v1) → (u2, u2v2) and system (13)
writes in the new variables

u̇2 = u22
(
(a− 2c)v2 + (d− b)u22 + cv22 + (3b− 4d)u22v2 − 3(b− 2d)u22v

2
2+

(b− 4d)u22v
3
2 + (1 + d)u22v

4
2 + u42v

4
2 − u42v

5
2

)
,

v̇2 = −u2v2
(
c− 2cv2 + du22 + cv22 − 4du22v2 + 6du22v

2
2 − 4du22v

3
2+

(1 + d)u22v
4
2

)
.
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Doing a rescaling of the time we eliminate the common factor between
(u̇2, v̇2) and we get the system
(14)
u̇2 = u2

(
(a− 2c)v2 + (d− b)u22 + cv22 + (3b− 4d)u22v2 − 3(b− 2d)u22v

2
2+

(b− 4d)u22v
3
2 + (1 + d)u22v

4
2 + u42v

4
2 − u42v

5
2

)
,

v̇2 = −v2
(
c− 2cv2 + du22 + cv22 − 4du22v2 + 6du22v

2
2 − 4du22v

3
2+

(1 + d)u22v
4
2

)
.

The singular points of system (14) on the straight line u2 = 0 are
(0, 0) and (0, 1). The linear part of system (14) evaluated at (0, 0) has
eigenvalues −c and c−a. If −c(c−a) > 0 then the singular point (0, 0)
is a hyperbolic node, and consequently going back through the changes
of variables there would be orbits ending or starting at the origin of
the local chart U1, and consequently system (5) could not be a global
center. Hence we must assume that

(15) −c(c− a) ≤ 0.

Now we consider the following two cases because c ̸= 0.

Case 1: −c(c − a) < 0. Then the singular point (0, 0) is a hyper-
bolic saddle. We translate the singular point (0, 1) to the origin of
coordinates in order to study its local phase portrait doing the change
(u2, v2) = (u3, 1 + v3). Therefore system (14) in the variables (u3, v3)
becomes
(16)
u̇3 = −u3

(
− av3 − u23 − cv23 − 4u23v3 − 6u23v

2
3 + u43v3 − (4 + b)u23v

3
3 + 4u43v

2
3

−(1 + d)u23v
4
3 + 6u43v

3
3 + 4u43v

4
3 + u43v

5
3

)
,

v̇3 = −(1 + v3)
(
u23 + cv23 + 4u23v3 + 6u23v

2
3 + 4u23v

3
3 + (1 + d)u23v

4
3

)
.

The characteristic directions at the origin are the real linear factors of
u3(u

2
3 + (a + c)v23). Then the vertical axis u3 = 0 is a characteristic

direction at the origin of system (16). Therefore before doing a vertical
blow up we translate the direction u3 = 0 to u3 = v3 doing the change
of variables (u3, v3) = (u4 − v4, v4). Then system (16) becomes
(17)
u̇4 = −u24 + 2u4v4 − v24 + u34 − 8u24v4 + 13u4v

2
4 − 6v34 + 4u34v4 − 22u24v

2
4+

32u4v
3
4 − 14v44 + 6u34v

2
4 − 28u24v

3
4 + 38u4v

4
4 − 16v54 − u54v4 + 5u44v

2
4+

(b− 6)u34v
3
4 − (7 + 3b+ d)u24v

4
4 + (17 + 3b+ 2d)u4v

5
4 − (8 + b+ d)v64

−4u54v
2
4 + 20u44v

3
4 + (−39 + d)u34v

4
4 − 4(−9 + d)u24v

5
4 + 5(−3 + d)u4v

6
4

−2(−1 + d)v74 − 6u54v
3
4 + 30u44v

4
4 − 60u34v

5
4 + 60u24v

6
4 − 30u4v

7
4 + 6v84−

4u54v
4
4 + 20u44v

5
4 − 40u34v

6
4 + 40u24v

7
4 − 20u4v

8
4 + 4v94 − u54v

5
4 + 5u44v

6
4−

10u34v
7
4 + 10u24v

8
4 − 5u4v

9
4 + v104 ,
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v̇4 = −u24 + 2u4v4 − v24 − 5u24v4 + 10u4v
2
4 − 5v34 − 10u24v

2
4 + 20u4v

3
4 − 10v44−

10u24v
3
4 + 20u4v

4
4 − 10v54 − (5 + d)u24v

4
4 + 2(5 + d)u4v

5
4 − (5 + d)v64−

(1 + d)u24v
5
4 + 2(1 + d)u4v

6
4 − (1 + d)v74.

Now we do the vertical blow up (u4, v4) → (u5, u5v5) and system (3.2)
writes

u̇5 = u25
(
− 1 + u5 + 2v5 − 8u5v5 − v25 + 4u25v5 + 13u5v

2
5 − 22u25v

2
5 − 6u5v

3
5

−u45v5 + 6u35v
2
5 + 32u25v

3
5 + 5u45v

2
5 − 28u35v

3
5 − 14u25v

4
5 − 4u55v

2
5+

(b− 6)u45v
3
5 + 38u35v

4
5 + 20u55v

3
5 − (7 + 3b+ d)u45v

4
5 − 16u35v

5
5 − 6u65v

3
5

+(d− 39)u55v
4
5 + (17 + 3b+ 2d)u45v

5
5 + 30u65v

4
5 − 4(d− 9)u55v

5
5−

(8 + b+ d)u45v
6
5 − 4u75v

4
5 − 60u65v

5
5 + 5(−3 + d)u55v

6
5 + 20u75v

5
5+

60u65v
6
5 − 2(d− 1)u55v

7
5 − u85v

5
5 − 40u75v

6
5 − 30u65v

7
5 + 5u85v

6
5 + 40u75v

7
5+

6u65v
8
5 − 10u85v

7
5 − 20u75v

8
5 + 10u85v

8
5 + 4u75v

9
5 − 5u85v

9
5 + u85v

10
5

)
,

v̇5 = −u5(v5 − 1)
(
− 1 + 2v5 − 6u5v5 − v25 + 12u5v

2
5 − 14u25v

2
5 − 6u5v

3
5+

28u25v
3
5 + u45v

2
5 − 16u35v

3
5 − 14u25v

4
5 − 4u45v

3
5 + 32u35v

4
5 + 4u55v

3
5−

(3 + b+ d)u45v
4
5 − 16u35v

5
5 − 16u55v

4
5 + 2(7 + b+ d)u45v

5
5 + 6u65v

4
5−

2(d− 11)u55v
5
5 − (8 + b+ d)u45v

6
5 − 24u65v

5
5 + 4(−3 + d)u55v

6
5 + 4u75v

5
5

+36u65v
6
5 − 2(−1 + d)u55v

7
5 − 16u75v

6
5 − 24u65v

7
5 + u85v

6
5 + 24u75v

7
5+

6u65v
8
5 − 4u85v

7
5 − 16u75v

8
5 + 6u85v

8
5 + 4u75v

9
5 − 4u85v

9
5 + u85v

10
5

)
.

Eliminating the common factor u5 between u̇5 and v̇5 rescaling the time
we obtain the system
(18)
u̇5 = u5

(
− 1 + u5 + 2v5 − 8u5v5 − v25 + 4u25v5 + 13u5v

2
5 − 22u25v

2
5 − 6u5v

3
5

−u45v5 + 6u35v
2
5 + 32u25v

3
5 + 5u45v

2
5 − 28u35v

3
5 − 14u25v

4
5 − 4u55v

2
5+

(b− 6)u45v
3
5 + 38u35v

4
5 + 20u55v

3
5 − (7 + 3b+ d)u45v

4
5 − 16u35v

5
5 − 6u65v

3
5

+(d− 39)u55v
4
5 + (17 + 3b+ 2d)u45v

5
5 + 30u65v

4
5 − 4(d− 9)u55v

5
5−

(8 + b+ d)u45v
6
5 − 4u75v

4
5 − 60u65v

5
5 + 5(−3 + d)u55v

6
5 + 20u75v

5
5+

60u65v
6
5 − 2(d− 1)u55v

7
5 − u85v

5
5 − 40u75v

6
5 − 30u65v

7
5 + 5u85v

6
5 + 40u75v

7
5+

6u65v
8
5 − 10u85v

7
5 − 20u75v

8
5 + 10u85v

8
5 + 4u75v

9
5 − 5u85v

9
5 + u85v

10
5

)
,

v̇5 = −(v5 − 1)
(
− 1 + 2v5 − 6u5v5 − v25 + 12u5v

2
5 − 14u25v

2
5 − 6u5v

3
5+

28u25v
3
5 + u45v

2
5 − 16u35v

3
5 − 14u25v

4
5 − 4u45v

3
5 + 32u35v

4
5 + 4u55v

3
5−

(3 + b+ d)u45v
4
5 − 16u35v

5
5 − 16u55v

4
5 + 2(7 + b+ d)u45v

5
5 + 6u65v

4
5−

2(d− 11)u55v
5
5 − (8 + b+ d)u45v

6
5 − 24u65v

5
5 + 4(−3 + d)u55v

6
5 + 4u75v

5
5

+36u65v
6
5 − 2(−1 + d)u55v

7
5 − 16u75v

6
5 − 24u65v

7
5 + u85v

6
5 + 24u75v

7
5+

6u65v
8
5 − 4u85v

7
5 − 16u75v

8
5 + 6u85v

8
5 + 4u75v

9
5 − 4u85v

9
5 + u85v

10
5

)
.

If a+ c ̸= −1 then the singular points of system (18) on the straight
line u5 = 0 are

(19) (0, 1), q− =

(
0,

1−
√
−a− c

a+ c+ 1

)
, q+ =

(
0,

1 +
√
−a− c

a+ c+ 1

)
.
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The eigenvalues of the linear part of system (18) evaluated at the sin-
gular point (0, 1) are −c and c+ a. If −c(c+ a) > 0 then the singular
point (0, 1) is a hyperbolic node, and consequently some orbits start or
end at the origin of the local chart U1, and system (5) could not be a
global center. Hence we must assume that

(20) −c(c+ a) ≤ 0.

If −c(c+ a) < 0 then the singular point (0, 1) is a hyperbolic saddle.

If c+ a > 0 the singular points q− and q+ do not exist. Then going
back through the changes of variables we obtain that the origin of the
local chart U1 is formed by two hyperbolic sectors, see Figure 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Figures of the blow up of the singular point

located at the origin of the local chart U1 of system (11)

when c ̸= 0.

If c+ a < 0 and c+ a ̸= −1 then the determinant of the linear part
of system (18) at the singular points q± is

−
2a

(√
−a− c− 1

)2
(a+ c)

(a+ c+ 1)2
.

If c + a = −1, i.e. c = −1 − a, then the singular points of system
(18) on the straight line u5 = 0 are (0, 1) and (0, 1/2). The eigenvalues
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of the linear part of system (18) at the singular point (0, 1/2) are 1 and
a/2.

If c + a = 0, i.e. a = −c. Then the unique singular point on u5 = 0
of system (18) is (0, 1), whose eigenvalues are 0 and −c. If c < 0 then
(0, 1) is a semi-hyperbolic node, and consequently system (5) cannot
have a global center. If c > 0 then it is a semi-hyperbolic saddle, and
going back through the changes of variables the origin of U1 is formed
by two hyperbolic sectors.

Case 2: −c(c − a) = 0, i.e. c = a ̸= 0. Then system (14) has the two
singular points (0, 0) and (0, 1) on the straight line u2 = 0. The point
(0, 0) is a semi-hyperbolic saddle if a(b− d) < 0 and a semi-hyperbolic
node if a(b − d) > 0 but then the origin of U1 is not formed by two
hyperbolic sectors. If d = b then the infinity is filled of singular points,
and from Theorem 4 there are orbits ending or starting at infinity,
so system (5) cannot have a global center. Therefore we assume that
a(b− d) < 0.

3.3. The infinite singular points of the local chart U2 when
b ̸= 0. Here we shall study the infinite singular points of the differential
system (5) localized at the origin of the local chart U2. We recall that
studying the infinite singular points in the local chart U1 and at the
origin of the local chart U2 when the origin is a singular point, we
are studying all the infinite singular points of a polynomial differential
system.

System (5) in the chart U2 writes

(21) u̇ = (b−d)u2+(a− c)u4− v4−u2v4, v̇ = −uv(d+ cu2+ v4).
So the origin of U2 is an infinite singular point. The linear part of
system (21) at the origin is identically zero, so in order to determine its
local phase portrait we must do blow ups. The characteristic directions
at the origin of U2 are given by the real linear factors of bu2v.

Here we assume that b ̸= 0. Then the vertical axis u = 0 is a
characteristic direction at the origin of the local chart U2. Therefore
before doing a vertical blow up we translate the direction u = 0 to
u = v doing the change of variables (u, v) = (u1− v1, v1). Then system
(21) becomes
(22)
u̇1 = (b− d)u21 − (2b− d)u1v1 + bv21 + (a− c)u41 − (4a− 3c)u31v1+

3(2a− c)u21v
2
1 − (4a− c)u1v

3
1 + (−1 + a)v41 − u21v

4
1 + u1v

5
1,

v̇1 = −du1v1 + dv21 − cu31v1 + 3cu21v
2
1 − 3cu1v

3
1 + cv41 − u1v

5
1 + v61.
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Now we do the vertical blow up (u1, v1) → (u2, u2v2) and system (22),
after eliminating the common factor u2 between u̇2 and v̇2 doing a
rescaling of the time, writes in the new variables
(23)
u̇2 = u2

(
b− d− (2b− d)v2 + (a− c)u22 + bv22 − (4a− 3c)u22v2+

3(2a− c)u22v
2
2 − (4a− c)u22v

3
2 + (−1 + a)u22v

4
2 − u42v

4
2 + u42v

5
2

)
,

v̇2 = −v2
(
b− 2bv2 + au22 + bv22 − 4au22v2 + 6au22v

2
2 − 4au22v

3
2+

(a− 1)u22v
4
2

)
.

The singular points of system (23) on the straight line u2 = 0 are
(0, 0) and (0, 1). The linear part of system (23) evaluated at (0, 0) has
eigenvalues −b and b−d. If −b(b−d) > 0 then the singular point (0, 0)
is a hyperbolic node, and consequently going back through the changes
of variables there would be orbits ending or starting at the origin of
the local chart U2, and consequently system (5) could not be a global
center. Hence we must assume that

(24) −b(b− d) ≤ 0.

We consider the following two cases because b ̸= 0.

Case 1: −b(b − d) < 0. Then the singular point (0, 0) is a hyper-
bolic saddle. We translate the singular point (0, 1) to the origin of
coordenates in order to study its local phase portrait doing the change
(u2, v2) = (u3, 1 + v3). Therefore system (23) in the variables (u3, v3)
becomes
(25)
u̇3 = −u3

(
dv3 − u23 + bv23 − 4u23v3 − 6u23v

2
3 + u43v3 + (c− 4)u23v

3
3 + 4u43v

2
3+

(a− 1)u23v
4
3 + 6u43v

3
3 + 4u43v

4
3 + u43v

5
3

)
,

v̇3 = −(1 + v3)
(
− u23 + bv23 − 4u23v3 − 6u23v

2
3 − 4u23v

3
3 + (a− 1)u23v

4
3

)
.

The characteristic directions at the origin are the real linear factors of
u3(−u23 + (b + d)v23). Then the vertical axis u3 = 0 is a characteristic
direction at the origin of system (25). Therefore before doing the ver-
tical blow up we translate the direction u3 = 0 to u3 = v3 doing the
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change of variables (u3, v3) = (u4 − v4, v4). Then system (25) becomes

u̇4 = u24 + (−2 + d)u4v4 − (b+ d− 1)v24 − u34 + 8u24v4 + (b− 13)u4v
2
4−

2(b− 3)v34 − 4u34v4 + 22u24v
2
4 − 32u4v

3
4 + 14v44 − 6u34v

2
4 + 28u24v

3
4−

38u4v
4
4 + 16v54 + u54v4 − 5u44v

2
4 + (6 + c)u34v

3
4 − (a+ 3c− 7)u24v

4
4+

(2a+ 3c− 17)u4v
5
4 − (a+ c− 8)v64 + 4u54v

2
4 − 20u44v

3
4 + (39 + a)u34v

4
4−

4(9 + a)u24v
5
4 + 5(3 + a)u4v

6
4 − 2(1 + a)v74 + 6u54v

3
4 − 30u44v

4
4+

60u34v
5
4 − 60u24v

6
4 + 30u4v

7
4 − 6v84 + 4u54v

4
4 − 20u44v

5
4 + 40u34v

6
4−

40u24v
7
4 + 20u4v

8
4 − 4v94 + u54v

5
4 − 5u44v

6
4 + 10u34v

7
4 − 10u24v

8
4 + 5u4v

9
4−

v104 ,

v̇4 = u24 − 2u4v4 − (b− 1)v24 + 5u24v4 − 10u4v
2
4 − (b− 5)v34 + 10u24v

2
4−

20u4v
3
4 + 10v44 + 10u24v

3
4 − 20u4v

4
4 + 10v54 − (a− 5)u24v

4
4+

2(a− 5)u4v
5
4 − (a− 5)v64 − (a− 1)u24v

5
4 + 2(a− 1)u4v

6
4 − (a− 1)v74.

Now we do the vertical blow up (u4, v4) → (u5, u5v5), and after elim-
inanting the common factor u5 of u̇5 and v̇5 doing a rescaling of the
time, and system (3.2) writes
(26)
u̇5 = −u5

(
− 1 + u5 − (−2 + d)v5 − 8u5v5 + (b+ d− 1)v25 + 4u25v5−

(b− 13)u5v
2
5 − 22u25v

2
5 + 2(b− 3)u5v

3
5 − u45v5 + 6u35v

2
5 + 32u25v

3
5+

5u45v
2
5 − 28u35v

3
5 − 14u25v

4
5 − 4u55v

2
5 − (6 + c)u45v

3
5 + 38u35v

4
5+

20u55v
3
5 + (a+ 3c− 7)u45v

4
5 − 16u35v

5
5 − 6u65v

3
5 − (39 + a)u55v

4
5−

(2a+ 3c− 17)u45v
5
5 + 30u65v

4
5 + 4(9 + a)u55v

5
5 + (a+ c− 8)u45v

6
5−

4u75v
4
5 − 60u65v

5
5 − 5(3 + a)u55v

6
5 + 20u75v

5
5 + 60u65v

6
5 + 2(1 + a)u55v

7
5−

u85v
5
5 − 40u75v

6
5 − 30u65v

7
5 + 5u85v

6
5 + 40u75v

7
5 + 6u65v

8
5 − 10u85v

7
5−

20u75v
8
5 + 10u85v

8
5 + 4u75v

9
5 − 5u85v

9
5 + u85v

10
5

)
,

v̇5 = (v5 − 1)
(
− 1 + 2v5 − 6u5v5 + (b+ d− 1)v25 + 12u5v

2
5 − 14u25v

2
5+

2(b− 3)u5v
3
5 + 28u25v

3
5 + u45v

2
5 − 16u35v

3
5 − 14u25v

4
5 − 4u45v

3
5+

32u35v
4
5 + 4u55v

3
5 + (a+ c− 3)u45v

4
5 − 16u35v

5
5 − 16u55v

4
5−

2(a+ c− 7)u45v
5
5 + 6u65v

4
5 + 2(11 + a)u55v

5
5 + (a+ c− 8)u45v

6
5−

24u65v
5
5 − 4(3 + a)u55v

6
5 + 4u75v

5
5 + 36u65v

6
5 + 2(1 + a)u55v

7
5 − 16u75v

6
5−

24u65v
7
5 + u85v

6
5 + 24u75v

7
5 + 6u65v

8
5 − 4u85v

7
5 − 16u75v

8
5 + 6u85v

8
5+

4u75v
9
5 − 4u85v

9
5 + u85v

10
5

)
.

If b + d ̸= 1 then the singular points of system (26) on the straight
line u5 = 0 are

(27) (0, 1), r− =

(
0,

−
√
b+ d− 1

b+ d− 1

)
, r+ =

(
0,

√
b+ d− 1

b+ d− 1

)
.

The eigenvalues of the linear part of system (26) evaluated at the sin-
gular point (0, 1) are −b and b+ d. If −b(b+ d) > 0 then the singular
point (0, 1) is a hyperbolic node, and consequently some orbits start or
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end at the origin of the local chart U2, and system (5) could not be a
global center. Hence we must assume that

(28) −b(b+ d) ≤ 0.

If −b(b+ d) < 0 the singular point (0, 1) is a hyperbolic saddle.

If b+ d < 0 the singular points r− and r+ do not exist. Then going
back through the changes of variables we obtain that the origin of the
local chart U2 is formed by two hyperbolic sectors, see again Figure 1.

If b + d > 0 and b + d ̸= 1, then the determinant of the linear part
of system (26) at the singular points r± is

(29) −
2d(b+ d)

(√
b+ d+ 1

)2
(b+ d− 1)2

.

If b+ d = 1, i.e. d = 1− b the singular points of system (26) on the
straight line u5 = 0 are

(30) (0, 1), (0, 1/2).

The eigenvalues of the linear part of system (26) at the singular point
(0, 1/2) are −1 and d/2.

Case 2: b − d = 0. Then the singular point (0, 0) of system (23) is
a semi-hyperbolic node if b > 0, and consequently system (5) cannot
have a global center. But if b < 0 then the singular point (0, 0) of
system (23) is a semi-hyperbolic saddle, and in order to know the local
phase portrait of the origin of U2 we need to study the local phase
portrait of the singular point (0, 1) of system (23). Since d = b < 0
from (27) system (26) on u5 = 0 has a unique singular point the (0, 1).
The linear part of system (26) at (0, 1) has eigenvalues 2b and −b, so
this singular point is a hyperbolic saddle. Again going back through
the changes of variables we get that the origin of the local chart U2 is
formed by two hyperbolic sectors.

4. The proofs

In statement (i) we characterize all systems (5) with c = 0 having a
global center.

Proof of statement (i) of Theorem 3. Assume that c = 0. Then, from
(12), we have that −a(b− d) ≤ 0, otherwise system (5) cannot have a
global center, and the origin of the local chart U1 is the unique infinite
singular point in this chart. First we study its local phase portrait.
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Since the linear part of the singular point localized at the origin of
system (11) is identically zero, we do the blow up (u, v) = (u1, u1v1) to
system (11) and this system becomes

(31) u̇1 = −u21(a+ (b− d)u21 − u21v
4
1 − u41v

4
1), v̇1 = −u31v1(d+ v41).

Doing a rescaling of the time we eliminate the common factor u21 be-
tween u̇1 and v̇1 obtaining the system

(32) u̇1 = −(a+ (b− d)u21 − u21v
4
1 − u41v

4
1), v̇1 = −u1v1(d+ v41).

Going back through these changes of variables we obtain that the origin
of U1 is formed by two elliptic sectors separated by two parabolic ones
if a < 0 (see Figure 2(a)), or by two hyperbolic sectors separated by
two parabolic ones if a > 0 (see Figure 2(b)). So system (31) cannot
have a global center if a is not zero, because there are orbits which end
or start at the origin of the local chart U1 due to the existence of the
parabolic sectors. Hence in what follows we consider a = 0 and the
differential system (5) reduces to

(33) ẋ = y(−1 + bx2y2), ẏ = x(1 + dy4).

Clearly d ≥ 0, otherwise the origin of coordinates would not be the
unique finite singular point, and consequently system (33) could not
have a global center.

Now system (32) is

(34) u̇1 = (d− b)u21 + u21v
4
1 + u41v

4
1, v̇1 = −u1v1(d+ v41).

We consider two cases.

Case 1: d ̸= b. Then we eliminate the common factor u1 between the
two components of system (34) rescaling the time, and we obtain the
system

(35) u̇1 = u1((d− b) + v41 + u21v
4
1), v̇1 = −v1(d+ v41).

The unique singular point on u1 = 0 is the origin.

Subcase 1.1: d > 0. The origin of system (35) is a hyperbolic node if
(d− b)d < 0, and going back through the changes of variables the node
provides orbits which end or start at the origin of the local chart U1,
and again in this case system (5) cannot have a global center.

If (d− b)d > 0 then, since d > 0 we get that d > b, and the origen of
system (35) is a hyperbolic saddle, and going back through the changes
of variables we obtain that the origin of the local chart U1 is formed
by two hyperbolic sectors, see Figure 3.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Figures of the blow up of the singular point

located at the origin of the local chart U1 of system (11)

when c = 0: (a), (b) and (c) for a < 0, and (d), (e) and (f)

for a > 0.

(a) (b) (c)

Figure 3. Figures of the blow up of the singular point

located at the origin of the local chart U1 of system (11)

when c = a = 0.

Now we must study the local phase portrait at the origin of the local
chart U2, and when the local phase portrait of this origin is formed by
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two hyperbolic sectors system (5) will have a global center by Propo-
sition 5.

Since c = a = 0 from (21) system (5) in the local chart U2 writes

(36) u̇ = (b− d)u2 − v4 − u2v4, v̇ = −uv(d+ v4).

Clearly the origin of the chart U2 is an infinite singular point whose
linear part is identically zero. Its characteristic directions are the real
linear factors of bu2v. We consider two subcases.

Subcase 1.1.1: b ̸= 0. Then, from (24) we have that −b(b− d) < 0, and
from (15) we get that −b(b+ d) ≤ 0.

If b+d < 0, from the last part of subsection 3.3, the origin of the local
chart U2 is formed by two hyperbolic sectors. Hence from Proposition
5 system (5) has a global center. Note that under these assumptions
b < 0.

If b + d = 0 then, from (29) the unique singular point on u5 = 0
is (0, 1), which is a semi-hyperbolic saddle. Going back through the
changes of variables we obtain that the origin of the local chart U2 is
formed by two hyperbolic sectors, and system (5) has a global center.

If b+ d > 0 and b+ d ̸= 1, then from (29) the singular points r± are
hyperbolic saddles. Going back through the changes of variables, that
from now on we do not produce in a figure the distinct steps because
they are similar to the ones already described, we get that the origin
of the local chart U2 is formed by two hyperbolic sectors separated by
two parabolic ones. Therefore system (5) cannot have a global center.

If b+d = 1. Then, from (30) the unique singular points on u5 = 0 of
system (26) are (0, 1) and (0, 1/2). Since (d− b)d = (2d− 1)d > 0 we
get that d > 1/2, and from (d− b)d = (1− 2b)d > 0 we have b < 1/2.
The eigenvalues of (0, 1) are 1 and −b = d− 1, and the eigenvalues of
(0, 1/2) are −1 and d/2. So (0, 1/2) always is a hyperbolic saddle. If
d > 1 then (0, 1) is a node, and system (5) cannot have a global center.
Note that d cannot be 1 because then b = 0, a contradiction because
we are in subcase 1.1.1. If d ∈ (1/2, 1) then (0, 1) is a hyperbolic
saddle, and going back through the changes of variables we obtain that
the origin of U2 is formed by two hyperbolic sectors separated by two
parabolic ones, hence system (5) cannot have a global center.

Subcase 1.1.2: b = 0. Doing the blow up (u, v) = (u1, u1v1) system (36),
after eliminating the common factor u21 between u̇1 and v̇1, becomes

u̇1 = −d− u21v
4
1 − u41v

4
1, v̇1 = u1v

5
1.
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Going back through the changes of variables we obtain that the origin
of the local chart U2 is formed by two hyperbolic sectors separated by
two parabolic ones (see Figure 2(b)), so system (5) cannot have a global
center.

Subcase 1.2: d = 0. Note that b ̸= 0 since we are in Case 1 in which
d ̸= b. In this case the origin of system (35) is a semi-hyperbolic node
if b > 0 and a semi-hyperbolic saddle if b < 0. Hence if b > 0 system
(5) cannot have a global center, and if b < 0 going back through the
changes of variables we obtain that the origin of the local chart U1 is
formed by two hyperbolic sectors, see Figure 3.

Now we must study the local phase portrait at the origin of the local
chart U2. Since b < 0 from (27) we have that (0, 1) is the unique
singular point of system (26) on u5 = 0, which is a hyperbolic saddle,
going back through the changes of variables it follows that the origin
of U2 is formed by two hyperbolic sectors, so system (5) has a global
center.

Case 2: d = b. If b = 0 the differential system (5) becomes the linear
differential center ẋ = −y, ẏ = x which clearly has a global center
because their periodic orbits are the circles x2 + y2 = constant> 0. If
b ̸= 0 system (31) becomes

(37) u̇ = v4 + u2v4, v̇1 = −uv(bu2 − v4).

The line v = 0 is filled of singular points, the eigenvalues of the linear
part of system (37) at the singular point (0, u) are 0 and −bu3. Since
d = b > 0 by Theorem 4 there is an orbit ending at the infinite singular
point (0, u) of the local chart U1 if u ̸= 0, so in this case system (5)
cannot have a global center.

In summary statement (i) is proved. □

In all the remainder statements we study systems (5) with c ̸= 0
having a global center. In view of subsection 3.2 we only need to study
the cases for which (c − a)(b − d) ≤ 0 (see (12)), −c(c − a) < 0 (see
(15)) and −c(a+ c) ≤ 0 (see (20)). We separate the study in different
subcases which will correspond to the statements in the theorem.

In particular in statement (ii) we classify all systems (5) with c ̸= 0,
(c− a)(b− d) ≤ 0, −c(c− a) < 0, −c(a+ c) < 0, a+ c > 0 and b = 0.

Proof of statement (ii) of Theorem 3. Here we study systems (5) with
c ̸= 0, (c− a)(b− d) ≤ 0, −c(c− a) < 0, −c(a+ c) < 0, a+ c > 0 and
b = 0. So c > 0, c− a > 0 and d ≥ 0.
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Since b = 0 system (5) reduces to

(38) ẋ = y(−1 + ax4), ẏ = x(1 + cx2y2 + dy4).

Therefore a ≤ 0, otherwise there are invariant vertical lines and the
origin of system (38) cannot be a global center. Note that from Propo-
sition 2 the unique finite singular point is the origin of coordinates.

From subsection 3.2 we know that the origin of the local chart U1 is
the unique singular point formed by two hyperbolic sectors. Hence we
must study the local phase portrait at the origin of the local chart U2.

From (21) system (38) in the local chart U2 becomes

(39) u̇ = −du2 + (a− c)u4 − v4 − u2v4, v̇ = −uv(d+ cu2 + v4).

Note that (0, 0) is the unique infinite singular point in U2 and its linear
part is identically zero. So we do the blow up (u, v) = (u1, u1v1), and
after eliminating the common factor u21 between u̇1 and v̇1 doing a
rescaling of the time we get the system

(40) u̇1 = −d+ (a− c)u21 − u21v
4
1 − u41v

4
1, v̇ = u1v1(v

4
1 − a).

If d > 0 going back through the blow up we get that the origin of U2

is formed by two hyperbolic sectors separated by two parabolic ones
and so system (5) cannot have a global center. If d = 0 doing another
rescaling of the time we remove the common factor u1 between the two
components of system (40) and we get the system

(41) u̇1 = (a− c)u1 − u1v
4
1 − u31v

4
1, v̇ = v1(v

4
1 − a).

The unique singular point of system (41) on u1 = 0 is the origin. If
a < 0 the origin is a hyperbolic saddle, and if a = 0 the origin is a
semi-hyperbolic saddle. In both cases going back through the changes
of variables we obtain that the origin of the local chart U2 is formed by
two hyperbolic sectors, and by Proposition 5 system (5) has a global
center. □

In statement (iii) we classify all systems (5) with c ̸= 0, (c− a)(b−
d) ≤ 0, −c(c− a) < 0, −c(a+ c) < 0, a+ c > 0 and b ̸= 0.

Proof of statement (iii) of Theorem 3. We study system (5) with c ̸=
0, (c−a)(b−d) ≤ 0, −c(c−a) < 0, −c(a+ c) < 0, a+ c > 0 and b ̸= 0.
Then c > 0, c− a > 0 and b− d ≤ 0.

Again from subsection 3.2 we know that the origin of the local chart
U1 is the unique singular point formed by two hyperbolic sectors. Hence
we must study the local phase portrait at the origin of the local chart
U2.
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From condition (24) we get that −b(b− d) ≤ 0, so b < 0 if b− d < 0.
From (28) −b(b+ d) ≤ 0, then we distinguish the following cases.

Case 1: b−d < 0 and −b(b+d) < 0. Then b+d < 0 and from subsection
3.3, the origin of U2 is formed by two hyperbolic sectors. By Proposition
2 the unique finite singular point is the origin of coordinates. Hence
by Proposition 5 system (5) has a global center.

Case 2: b− d < 0 and b + d = 0. Then d = −b and 2b < 0. So b < 0.
From (27) (0, 1) is the unique singular point of system (26) on u5 = 0,
which is a semi-hiperbolic saddle. So going back through the changes
of variables we get that the origin of the local chart U2 is formed by two
hyperbolic sectors. By Propositions 2 and 5 system (5) has a global
center.

Case 3: d = b. Then b+d = 0 and from subsection 3.3, the origin of U2

is formed by two hyperbolic sectors. By Propositions 2 and 5 system
(5) has a global center.

In short we get that the conditions to have a global center are c > 0,
c − a > 0, c + a > 0, b − d < 0 and b + d ≤ 0 which can be written
as c > 0, b < 0, |c| > |a| and |b| ≥ |d| as in statement (iii) of the
theorem. □

Proposition 6. Systems (5) with c ̸= 0, (c−a)(b−d) ≤ 0, −c(c−a) <
0, −c(a+ c) < 0 and a+ c < 0, have no global centers.

Proof. Under the assumptions of the proposition we have that c > 0
and a+ c < 0. We consider two cases.

Case 1: a+ c = −1. In this case the singular points of system (18) on
u5 = 0 are (0, 1) and (0, 1/2), see the last part of subsection 3.2. The
singular point (0, 1) has eigenvalues −1 and −c. So it is a node, and
system (5) cannot have a global center.

Case 2: a+ c ̸= −1. In this case −c(c+ a) > 0 and the singular point
(0, 1) of system (18) is a node, implying that again system (5) cannot
have a global center. □

In statement (iv) we classify all systems (5) with c ̸= 0, (c− a)(b−
d) ≤ 0, −c(c− a) < 0 and a+ c = 0.

Proof of statement (iv) of Theorem 3. We study the systems (5) with
c ̸= 0, (c − a)(b − d) ≤ 0, −c(c − a) < 0 and a + c = 0. So a = −c.
Then from the last part of subsection 3.2 we have that c > 0 and the
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origin of U1 is formed by two hyperbolic sectors. We must study the
local phase portrait at the origin of U2. We consider two cases.

Case 1: b ̸= 0. Then from (24) we have that −b(b− d) ≤ 0, and from
(28) we obtain that −b(b+d) ≤ 0. Now we consider different subcases.

Subcase 1.1: b+d < 0. Then b < 0 and from the last part of subsection
3.3 we get that the origin of the local chart U2 is formed by two hyper-
bolic sectors, and from Propositions 2 and 5 system (5) has a global
center.

Subcase 1.2: b+ d = 0. Then the unique singular point of system (26)
on u5 = 0 is (0, 1). Since (b − d)(c − a) = (2b)(2c) ≤ 0 and c > 0
we obtain that b < 0. Therefore the singular point (0, 1) is a semi-
hyperbolic saddle, and going back through the changes of variables we
obtain that the origin of the local chart U2 is formed by two hyperbolic
sectors, and from Propositions 2 and 5 system (5) has a global center.

Subcase 1.3: b + d > 0. Then, from −b(b + d) < 0 we get that b > 0.
Since (b − d)(c − a) = (b − d)2c ≤ 0, we have b − d ≤ 0. Since
−b(b− d) ≤ 0 and b > 0, then b− d ≥ 0. Therefore d = b.

If 2b ̸= 1 then the three singular points of system (26) given in
equation (27) on u5 = 0 are hyperbolic saddles (see (29)). Going back
through the changes of variables the origin of the local chart U2 is
formed by two hyperbolic sectors separated by two parabolic ones, so
system (5) cannot have a global center.

If 2b = 1, from (30) we have that (0, 1) and (0, 1/2) are the unique
singular points of system (26) on u5 = 0 and both are hyperbolic
saddles. Again going back through the changes of variables the origin
of the local chart U2 is formed by two hyperbolic sectors separated by
two parabolic ones, so system (5) cannot have a global center.

Case 2: b = 0. Now system (5) in the local chart U2 becomes

u̇ = −du2 − 2cu4 − v4 − u2v4, v̇ = −uv(d+ cu2 + v4).

Doing the blow up (u, v) = (u1, u1v1) and eliminating the common
factor u21 between u̇1 and v̇1 and rescaling the time we obtain the system

u̇1 = −d− 2cu21 − u21v
4
1 − u41v

4
1, v̇1 = u1v1(c+ v41).

Going back through the changes of variables we get that the origin of
the local chart U2 is formed by two hyperbolic sectors separated by two
parabolic ones, so system (5) cannot have a global center.
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In short we get that the conditions to have a global center are c > 0,
b < 0, c+a = 0, b−d < 0 and b+d ≤ 0 which can be written as c > 0,
b < 0, c+ a = 0 and |b| ≥ |d| as in statement (iv) of the theorem. □

Finally in statement (v) we classify all systems (5) with c ̸= 0, (c−
a)(b− d) ≤ 0 and c = a.

Proof of statement (v) of Theorem 3. We consider the differential sys-
tem (5) with with c ̸= 0, (c − a)(b − d) ≤ 0 and c = a. Then from
subsection 3.2 the unique infinite singular point in the local chart U1

is (0, 0).

From Case 2 of subsection 3.2 we have that a(b − d) < 0 and the
singular point (0, 0) of system (14) is a semi-hyperbolic saddle, and
we must study the local phase portrait of the singular point (0, 1) of
system (14). Now we consider three cases.

Case 1: a < 0 and a ̸= −1/2. Then, system (18) has on u5 = 0 the
three singular points given in (19), that is,

(0, 1), q− =

(
0,

1−
√
−2a

2a+ 1

)
, q+ =

(
0,

1 +
√
−2a

2a+ 1

)
.

These three singular points are hyperbolic saddles. Going back through
the changes of variables we obtain that the local phase portrait at the
origin of U1 is formed by six hyperbolic sectors, so system (5) cannot
have a global center.

Case 2: a = −1/2. From the end of subsection 3.2 system (18) has
on u5 = 0 the two singular points (0, 1) and (0, 1/2), and both are
hyperbolic saddles. Again going back through the changes of variables
we obtain that the local phase portrait at the origin of U1 is formed by
six hyperbolic sectors, so system (5) cannot have a global center.

Case 3: a > 0. Then b < d, and system (18) has on u5 = 0 a unique
singular point given in (19) which is (0, 1) and it is a hyperbolic saddle.
Going back through the changes of variables the origin of U1 is formed
by two hyperbolic sectors. So we need to study the origin of U2.

Since a > 0 then b < d. We consider two subcases.

Subcase 3.1: b ̸= 0. From (24) we have that −b(b − d) < 0, and
consequently b < 0. From subsection 3.3 we consider the following two
subcases.

Subcase 3.1.1: b + d ̸= 1. Then from (28) we get that −b(b + d) ≤ 0.
So b+ d ≤ 0.
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If b + d < 0 from (27) system (26) has a unique singular points on
u5 = 0 given in (27), which is (0, 1) and it is a hyperbolic saddle. Going
back through the changes of variables we get that the origin of U2 is
formed by two hyperbolic sectors. Then system (5) has a global center.

If b+d = 0 again from (27) system (26) has a unique singular points
on u5 = 0 given in (27), which is (0, 1), but now it is a semi-hyperbolic
saddle. Proceeding as in case b+ d < 0 we obtain that system (5) has
a global center.

Subcase 3.1.2: b + d = 1. From (27) system (26) has two singular
points on u5 = 0 given in (27), which are (0, 1) and (0, 1/2). The
eigenvalues of (0, 1) are 1 and d− 1 > 0 and so it is a hyperbolic node
and consequently system (5) cannot have a global center.

Subcase 3.2 : b = 0. Then d > 0. In this case doing one vertical
blow up we obtain that the origin of U2 is formed by two hyperbolic
sectors separated by two parabolic ones (see Figure 2(b)). So system
(5) cannot have a global center.

This completes the proof of statement (v) of Theorem 3. □
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