PIECEWISE DIFFERENTIAL SYSTEMS WITH ONLY LINEAR
HAMILTONIAN SADDLES CAN CREATE LIMIT CYCLES?

JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. We study the continuous and discontinuous planar piecewise differen-
tial systems formed only by linear Hamiltonian saddles and separated by one or two
parallel straight lines. When these piecewise linear differential systems are either con-
tinuous or discontinuous and are separated by one straight-line, or are continuous and
are separated by two parallel straight lines, we show that they have no limit cycles.
On the other hand, when these piecewise linear differential systems are discontinuous
and are separated by two parallel straight lines, we show that they can have at most
one limit cycle. Moreover we show that this upper bound is reached by providing an
example of such a system with one limit cycle.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The study of limit cycles (i.e., periodic orbits of a differential system in R? isolated in
the set of all periodic orbits of that system) goes back essentially to Poincaré [22] at the
end of the nineteenth century and their existence became important in the applications
because many phenomena are related with their existence, see for instancethe Van
der Pol oscillator [25, 26], or the Belousov-Zhabotinskii chemical reaction [3, 27]. The
study of continuous piecewise linear differential systems separated by one or two parallel
straight lines appears in a natural way in control theory (see for instance the books
(2,9, 11, 12, 17, 21]). The easiest continuous piecewise linear differential systems are
the ones formed by two linear differential systems and separated by a straight line and
for such systems it is known that they can have at most one limit cycle (see for instance
[7, 14, 18, 19] and the references therein).

In the present paper we first show that if both linear differential systems are Hamil-
tonian saddles, then the continuous piecewise linear differential system has not limit
cycles.

Theorem 1. A continuous piecewise linear differential system separated by one straight
line formed by two Hamiltonian linear saddles has no limit cycles.

The proof of Theorem 1 is given in section 3. Theorem 1 can be extended to contin-
uous piecewise linear differential systems separated by two parallel straight lines and
formed by three linear Hamiltonian saddles.
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Theorem 2. A continuous piecewise linear differential system separated by two parallel
straight lines and formed by three Hamiltonian linear saddles has no limit cycles.

Theorem 2 is proved in section 4.

The study of discontinuous piecewise linear differential systems separated by straight
lines goes back to Andronov et al. [1] and nowadays they had attracted the attention
of many authors mainly because these systems appear in mechanics, electrical circuits,
economy, etc, (see for instance the books [6, 23], the surveys [20, 24] and the references
therein).

In planar discontinuous piecewise linear differential systems we can have two kinds
of limit cycles: the slidding limit cycle and the crossing limit cycle. A slidding limit
cycle contains some segment of the lines of discontinuity, and a crossing limit cycle does
not contain any of such segments. In the present paper, we only focus our study on
the crossing limit cycles and in all the paper when we talk about limit cycles, we are
referring to crossing limit cycles.

As for the continuous case, the easiest discontinuous piecewise linear differential
systems are the ones formed by two linear differential systems and separated by a
straight line. It is known that such systems can have three limit cycles but it is not
known if three is the maximum number of limit cycles that such systems can exhibit
(see [4, 5, 8, 10, 13, 15]).

We first show, as in the continuous time, that if both linear differential systems are
linear Hamiltonian saddles, then the discontinuous piecewise linear differential system
has no limit cycles.

Theorem 3. A discontinuous piecewise linear differential system separated by one
straight line and formed by two linear Hamiltonian saddles has no limit cycles.

Theorem 3 is proved in section 5. It can be extended to the case in which the
discontinuous piecewise linear differential system are separated by two parallel straight
lines and in this case the upper bound on the number of limit cycles is one.

Theorem 4. A discontinuous piecewise linear differential system separated by two par-
allel straight lines and formed by three linear Hamiltonian saddles can have at most one

limit cycle. Moreover there are systems in this class having one limit cycle, see Figure
1.

Theorem 4 is proved in section 6. We remark that it is clear from the proof of
Theorem 4 that there are discontinuous piecewise linear differential system separated
by two parallel straight lines and formed by three linear Hamiltonian saddles that do
not have limit cycles.

The unique linear differential systems which are Hamiltonian are the linear centers
and the linear saddles. In [16] the authors studied the limit cycles of the continuous and
discontinuous piecewise linear differential systems formed only by centers and separated
by one or two parallel straight lines. In the present paper we do a similar study for
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FIGURE 1. The limit cycle of the discontinuous piecewise differential system
formed by the three linear Hamiltonian saddles (16), (17) and (18). This limit
cycles is travelled in counterclockwise sense.

the continuous and discontinuous piecewise linear differential systems formed only by
Hamiltonian linear saddles and separated by either one or two parallel straight lines.

The paper is organized such that in section 2 before the proof of the main theorems of
the paper we present a normal form of a linear differential system having a linear weak
saddle and we characterize the continuous and discontinuous piecewise linear differential
system separated by any number x of parallel straight lines for k > 1 and formed by
k + 1 linear Hamiltonian saddles. We prove it for K = 1 and then we state it in the
general case.

2. PRELIMINARIES

The following lemma, provides a normal form for an arbitrary linear differential
system having a linear Hamiltonian saddle.

Proposition 5. A differential system having a linear Hamiltonian saddle can be written

as
4b2— 2
:t:—ba:—4—wy+d, y=ar+by+c, whena#D0,
a

or
t=-br+By+d, y=by+c, withb+#0 whena=020.
Proof. Consider a general linear differential system
t=Ax+By+d, y=axr+by+c,
in R? and assume that it has a Hamiltonian saddle. The eigenvalues of this system are

A+b+\/4aB + (A —b)?
5 :
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Since this system has a Hamiltonian saddle A+b = 0 and 4aB+ (A —b)? = w? for some
w # 0. Hence, A = —b and 4aB + 4b*> = w?. So if a # 0 we have B = —(4b* — w?)/(4a)
and if a = 0 then b # 0. This completes the proof of the proposition. OJ

Corollary 6. A differential system having a linear Hamiltonian saddle can be written
as

(1) T=—-br—90y+d, y=oaxr+by+c,

with o € {0, 1}.

Proof. Note that in view of Proposition 5 any linear differential system having a Hamil-
tonian saddle can be written as

(2) T=—-br—90y+d, y=ax+by+ec,

where § € Rif a = 0, and if a # 0 then § = (4b*> —w?)/(4a) with w # 0. It is possible to
do a rescaling of the independent variable since it does not change the orbits and so it
will not change the number of crossing limit cycles. After a rescaling of the independent
variable of the form 7 = at if a # 0 we can assume that equation (2) can be written

as in (1) where § € R and o = 0 if @ = 0, and if a # 0 then § = (40* — w?)/(4a) with

w#0and a=1. So, a € {0,1}. O
The first integral of system (1) is
)
(3) H(z,y) = —%xZ — bry — §y2 —cx +dy.

3. PrROOF OF THEOREM 1

Assume that we have a continuous piecewise differential system separated by one
straight line and formed by two linear Hamiltonian saddles. Without loss of generality
we can assume that the straight line of continuity is x = 0. It follows from Corollary 6
that we can assume that the systems in z < 0 and « > 0 are written in the form (1).

We have system
(4) x':—blx—ély—l—dl, y:a1x+b1y+cl,
in x < 0 with the first integral

o )
(5) H, = _Ele — bixy — ElyQ —c1x + dyy,
and system
(6) T = —box — doy + da, Y= ¥ + boy + 2,
in z > 0 with the first integral

o 0
(7) Hy = —72372 — bowy — 5292 — T + day.

Since we must have a continuous piecewise differential system, both systems must co-
incide on z = 0 and so 51 = (52, d1 = dQ, bl = bg and C1 = Ca.
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Note that if the continuous piecewise differential system has a periodic orbit candidate
to be a limit cycle, because the two differential systems are linear Hamiltonian saddles
such a periodic orbit must intersect the line x = 0 in exactly two points, namely (0, y; )
and (0,y2) with y; < yo. Since H; and Hj are two first integrals, we have that

(8) H1(07y1) - Hl((),yQ) and H2(07y1) = H2(07y2)’
that is
(2dy — 02(y1 + v2))(y1 — y2) = 0.

So the periodic orbits of these continuous piecewise differential systems are in a con-
tinuum of periodic orbits and consequently this differential system has no limit cycles.
This completes the proof of the theorem.

4. PROOF OF THEOREM 2

Assume that we have a continuous piecewise differential system separated by two
parallel straight lines and formed by three linear Hamiltonian saddles. Without loss of
generality we can assume that the straight lines of discontinuity are x = —1 and x = 1.
It follows from Corollary 6 that we can assume that the systemsinz < —1, -1 <x < 1
and x > 1 are written as in (1).

We have system (4) with first integral (5) in x < —1, system (6) with first integral
(7)in —1 < x < 1, and system

(9) T = —bsx — 03y +ds, Y= asr+bsy+ cs,

with first integral

4
(10) Hy = —%xZ — byxy — 533/2 — c3x + dy,
inx > 1.
Since we must have a continuous piecewise differential system, systems (4) and (6)
must coincide in z = —1, and systems (6) and (9) must coincide in x = 1. Doing so we
obtain

bi=by =03, di=dy=ds, 01 =02=203 ¢ =cstoq—200+as, co=cz3—astas.

Note that if the continuous piecewise differential systems has a periodic orbit candi-
date to be a limit cycle, because its three differential systems are linear Hamiltonian
saddles such a periodic orbit must intersect each line x = +1 in exactly two points,
namely (—1,v1), (—1,92), (1,y3) and (1,y4), with y; > yo and y3 < y4. Since Hy, Ho
and Hjs are three first integrals, we have that

Hl(_layl) - Hl(_lny) = Oa H2(_1>y2) - HQ(LyS) = 07
0,

(11) Hs(1,y3) — H3(17?J4) =0, Hg(l,y4) - HQ(_layl) =
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Doing so we get
(2b3 + 2d3 — 03(y1 + y2))(y1 — y2) =0,
des — dag + dag + 2(bs + ds )y + 2(bs — ds)ys — 65(y3 — y3) = 0,
(203 — 2d3 + 63(y3 + ya))(y3 — ya) = 0,
des — dag + das + 2(bs + ds)yr + 2(bs — ds)ys — 5(y; — v3) = 0.

The solutions (y1,¥2,ys,ys) of these last systems satisfying the necessary condition
Y1 < Y2 and y3 < y4 are

2(by + ds) ds—by VA ds—by VA
Yo = - Y1, Ys = + ) Ys = + ’
53 53 53 53 53

where A = (b3 — d3)? — 4(c3 — ag + a3)d3 — 2(bs + d3)d3y1 + 3y7. Note that we only
have two solutions taking the upper signs of ys, y4 or the lower signs of y3, 4. Hence all
the periodic orbits of the continuous piecewise differential system are in a continuum
of periodic orbits and consequently this differential system has no limit cycles. This
completes the proof of the theorem.

5. PROOF OF THEOREM 3

Assume that we have a discontinuous piecewise differential system separated by one
straight line and formed by two linear Hamiltonian saddles. Without loss of generality
we can assume that the straight line of continuity is = 0. It follows from Corollary 6
that we can assume that the systems in z < 0 and x > 0 are written in the form (1).

We have system (4) with first integral (5) in < 0, and system (6) with first integral
(7)in = > 0.

Note that if the discontinuous piecewise differential system has a periodic orbit can-
didate to be a limit cycle, because its two differential systems are linear Hamiltonian
saddles such a periodic orbit must intersect the line x = 0 in exactly two points, namely
(0,y1) and (0,y2) with y; < yo. Since H; and H, are two first integrals we have that
(8) must be satisfied, that is

(2dy = 01(y1 +2)) (1 —y2) =0, (2d2 — d2(y1 + ¥2))(y1 — ¥2) =0

The solutions (y1, y2) of this last system satisfying the necessary condition y; < ys either
do not exist if dy /81 # da/ds, or there is a continuum of solutions. So the periodic orbits
of the discontinuous piecewise linear differential systems are in a continuum of periodic
orbits, and consequently this differential system has no limit cycles. This completes the
proof of the theorem.

6. PROOF OF THEOREM 4

Assume that we have a discontinuous piecewise differential system separated by two
parallel straight lines and formed by three linear Hamiltonian saddles. Without loss of
generality we can assume that the straight lines of discontinuity are z = —1 and x = 1.
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It follows from Corollary 6 that we can assume that the systemsinz < —1, -1 <z <1
and z > 1 are written as in (1).

We have system (4) with first integral (5) in @ < —1, system (6) with first integral
(7) in —1 < x < 1, and system (9) with Hamiltonian (10) in > 1. Note that if
the discontinuous piecewise differential systems has a periodic orbit candidate to be a
limit cycle, because its three differential systems are linear Hamiltonian saddles such a
periodic orbit must intersect each line x = £1 in exactly two points, namely (—1, 1),
(—=1,99), (1,y3) and (1,y4), with y; > yo and y3 < y4. Since Hy, Hy and Hj are three
first integrals, we have that system (11) must be satisfied. Doing so we get

(2(by +dy) — 01(y1 +12)) (Y1 — y2) = 0,
Ay + 2(by + do)ya + 2(by — da)ys — da(y3 — y3) =0,
(2(bg — d3) + 03(ys + y4))(y3 — ya) = 0,
dey + 2(by + da)yr + 2(by — da)ys — 2(y? — y2) = 0.

(12)

Assume first that §; = d3 = 0 the solutions of equations (12) are dy = ¢; — by,
d3 = b.+ c3 and y3 = fi(y2), ys = fa(y1) being fi, fo functions in the variables ys
and y, respectively. In this case the periodic orbits of the discontinuous piecewise
linear differential systems are in a continuum of periodic orbits and consequently this
differential system has no limit cycles.

Assume now that 6; = 0 and d3 # 0 the solutions of equations (12) are d; = —by,

B 2(ds — b3)
Yz = 5

and yo = f1(ya), 11 = f2(ys4) being f1, fo functions in the variable y4, respectively. In
this case the periodic orbits of the discontinuous piecewise linear differential systems
are in a continuum of periodic orbits and consequently this differential system has no
limit cycles.

(13)

Assume now that d; # 0 and d3 = 0 the solutions of equations (12) are dy = —by,

~ 2(by +dy)
- - ¢ T Y2
01

d3 = b3, and yo = f1(y2), 11 = f2(y2) being fi, fo functions in the variable y,, respec-
tively. In this case the periodic orbits of the discontinuous piecewise linear differential
systems are in a continuum of periodic orbits and consequently this differential system
has no limit cycles.

Finally, assume that 0,3 # 0. The solution of the first and third equations are (14)
and (13). Introducing these solutions into the second and fourth equations in (12) we
get

(14) (1

€1 = 4((b3 — d3)252 — (bQ — dg)(bg — dg)(Sg + Cg(ﬁ) + 2(b2 -+ d2>5§y2

15
(15) + 203(2(bs — d3)ds — (b — d2)d3)ys — 6205 (y3 — yi) = 0
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and
ea = 4(61((by + dy)(by + dg) + c201) + (b1 + d1)252) — 201 ((by + d2)01 — 2(by + d1)02)ye
+ 2(by — da) 83 ya — 6702(y5 — y3) = 0.
Taking
€3 = 5%61 — 5§€2 =0
and solving in y, we get
Ay | As
Ya = A, + A_1y2

where
AO - <b3 - d3)2(5%52 - (bg — dg)(bg — d3)5%53 + (bl "— dl)((bl + dl)ég - (bQ ‘|‘ dg)al)ég,
A1 - 5%(53(((13 - b3)52 + (b2 - dg)ég),
A2 == (51(((?2 + d2)51 - (bl + d1)52)5§,

whenever A; # 0. The case with A; = 0 yields dy = by + (d3 — b3)d2/d3. Introducing it
into e3 = 0 and solving in y, we obtain y, = y; = (by — ¢ +dy)/d; which is not possible.
So, we an assume that A; # 0. Now introducing y4 into the first equation in (15) and
solving in y, we get

(b +dy) VA

+
51 A4

Y2 = Yo+ =
where
Ay = 676503 (b36109 — d30105 + 2d26163 — by0203 — dy6903)(b36169 — d3015,
— 2b90103 + b10903 + d10203)),
A = 4610265 ((bs — d3)6a + (=by + d2)d3)?((bs — d3)102 + 2d26,03
— (b1 + d1)6263) (b3 — d3)8165 — 2b36,65 + (b1 + d1)6265) (b3 — d3)*635,
— 2(by — do) (b3 — d3)8363 + (261 ((by + dy) (by + do) + 2¢901) — (by + d1)?02)63),
whenever A, # 0 and if Ay = 0 then there is at most one solution ys.
When A4 # 0, since

2(dy + by) di+b VA
N=Y1+=—F— — Yt = + —— = Yog,
(51 (51 A4

there is at most one solution with y; > y» and y3 < y4. In summary, we have proved
that at most we can have one limit cycle. Now we shall prove that the discontinuous
piecewise linear differential system having a Hamiltonian saddle in each of these three
pieces has also one limit cycle. This will complete the proof of Theorem 4.

The Hamiltonians of the three linear Hamiltonian systems with a saddle are
Hi(x,y) = 1606 + 5v/20954161 + 322562 + 5(—6130 + v/20954161)y + 76802 — 7680472,
Hy(r,y) = 46152 — /209541617 + (v/20954161 — 7645)y + (—4573 4+ /20954161) 22—
(V20954161 — 4615)zy — 307242,
Hs(x,y) = 519 + /1317937 — (1024 + /1317937)x — 505y + 51222 — 512y,
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where the Hamiltonian system in the half-plane x < —1 is
i = —30650 + 5v/20954161 — 15360y,
Yy = —32256 — 15360x;
the Hamiltonian system in the strip —1 <z < 1 is
i = —7645 + /20954161 + (4615 — /20954161 )z — 6144y,
= —4615 + /20954161 4 (9146 — 21/20954161)x — (4615 + +/20954161)y;

and the Hamiltonian system in the half-plane x > 1 is
* = —505 — 1024y,
y = 1024 + /1317937 — 1024zx.

These three linear differential systems are saddles because the determinant of their lin-
ear part are —235929600, 13940638 — 3058120954161 < 0 and —1048576, respectively.

The discontinuous piecewise differential system formed by the three linear differen-
tial systems (16), (17) and (18) in order to have one limit cycle intersecting the two
discontinuous straight lines x = +1 at the points (—1,y1), (—=1,92), (1,y3) and (1, y4),
these points must satisfy system (11), and this system has a unique solution satisfying
that y; > ¥ and y3 < y4, namely

1 (V20954161 2297 7
<y17y27y37y4): Py - ,_1,—1,53 .

(16)

(17)

(18)

3 012 256

Drawing the corresponding limit cycle associated to this solution we obtain the limit
cycle of Figure 1.

7. CONCLUSIONS

We have studied the continuous and discontinuous planar piecewise differential sys-
tems formed only by linear Hamiltonian saddles separated by one or two parallel straight
lines.

Such continuous piecewise differential systems appear in control theory, while the
discontinuous ones appear in mechanics, electrical circuits, economy, etc. When these
piecewise differential systems are continuous separated by either one or two parallel
straight lines, we prove that they have no limit cycles. But when the piecewise differen-
tial systems are discontinuous separated two parallel straight lines, we show that they
can have at most one limit cycle, and that there exist systems with either zero or one
limit cycle. In the case in which the piecewise differential systems are discontinuous
and separated only by one straight line, they cannot have limit cycles.
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