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Abstract. The Szekeres model is a four-dimensional system which are the

exact solutions of the Einstein field equations when there exists irrotational

dust. It is completely integrable with two rational and one analytic first inte-
gral. We describe the dynamics of the Szekeres system for any of the values of

these two rational first integrals.

1. Introduction and statement of the results

The exact solutions of the Einstein field equations with irrational dust are mod-
elized by the Szekeres model (a four-dimensional system introduced in [15]). We
note that the Lemâıtre-Tolman models (see [2] for details) can be obtained by the
limiting cases of the Szekeres models.

The equations of motion of the Szekeres system are

ρ̇ = −θρ,

θ̇ = −1

3
θ2 − 6σ2 − 1

2
ρ,

σ̇ = σ2 − 2

3
θσ − E,

Ė = −3Eσ − θE − 1

2
ρσ,

(1)

where ρ is the energy density, θ is the expansion scalar, σ is the shear and E is the
Weyl tensor and the dot means derivative with respect to t.

As it is shown in [3], the Silent Universe system with σ1 = σ2 = σ and E1 =
E2 = E yields the Szekeres system (here σ1 and σ2 are the independent eigenvalues
of the traceless shear tensor and E1 and E2 are the traceless components of the
Weyl tensor).

In order to describe the propagation of the light in nonhomogeneous universe
models, or to analyze the evolution and formation of the structure of the Universe
some authors used the Szekeres system, see for instance [1, 8, 9, 14, 16] and the
references therein. This clearly justifies the necessity of knowing the dynamics of
such system near infinity.

As it was shown in [5] the Szekeres system is completely integrable because it
has three functional independent first integrals (two of them being rational and the
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third one being analytic). The two rational first integrals are

F =
(−18E − 3ρ+ (θ + 3σ)2)3

(6E + ρ)2
,

H =
(3θσ(2E + ρ)− E(18E + 2θ2 + 3ρ) + 9σ2(4E + ρ))3

ρ3(ρ+ 6E)2
.

Setting F = f and H = h we will describe the dynamics of the Szekeres system (1)
restricted to the invariant set defined by F = f and H = h.

The next equality follows from system (1)

θ = − ρ̇
ρ
, σ =

2(−ρĖ + Eρ̇)

ρ(ρ+ 6E)
.

Introducing θ and σ in the equations of θ̇ and σ̇ in (1), solving them with respect

to ρ̈ and Ë we get a differential system that has the form ρ̈ = f(ρ,E), Ë = g(ρ,E).
Applying to that system the change of variables

ρ =
6

(1− x)y3
, E = − x

(1− x)y3
,

we obtain the differential system (1) rewritten as

(2) ẍ+
2ẋẏ

y
− 3x

y3
= 0, ÿ +

1

y2
= 0.

Such a reduction (going from system (1) to system (2)) was done in [11].

We rewrite system (2) as

ẋ = z,

ẏ = w,

ż = −2zw

y
+

3x

y3
,

ẇ = − 1

y2
.

(3)

In these new variables the first integrals F and H of system (3) become

F = w2 − 2

y
and H = xw2 +

x

y
+ wyz.

Setting F = f and H = h we obtain

y =
2

w2 − f
and x = −2(fh+ 2wz − hw2)

(f − w2)(f − 3w2)
.

Note that here the expressions for y and x are not well defined when (f −w2)(f −
3w2) = 0. So, if f = 0 they are not well defined for w = 0, and if f > 0 they are not

well-defined for w = ±
√
f and w = ±

√
f/3. So in these cases the variables x and

y are not defined and so they correspond to singularities of the Skezeres system.
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The differential system (3) restricted to F = f and H = h can be written as

z′ =
(f − w2)

4(f − 3w2)
(3f2h+ 10fzw − 6fhw2 − 18zw3 + 3hw4),

w′ = −1

4
(f − w2)2.

(4)

We do a reparametrization of time in the form dt = (f − 3w2)ds/(f −w2), and we
rewrite system (4) as

ż = 3f2h+ 10fzw − 6fhw2 − 18zw3 + 3hw4,

ẇ = −1

4
(f − w2)(f − 3w2),

(5)

where for this new system the dot means derivative with respect to s.

The objective now is to know the dynamics of this differential system for all the
values of f and h. To do so and taking into account that system (5) is a polynomial
differential system, we shall use the Poincaré compactification (see [4, Chapter 5]
for details and section 3).

Roughly speaking the α-limit of an orbit is the place where it borns and the
ω-limit of an orbit is the place where it dies. A more precise definition will be
given at the end of section 3. We will investigate the α-limit and ω-limit of all the
solutions of system (1).

The dynamics of the Szekeres system (1) when f < 0 was completely determined
in [6], there it is proved the following result.

Theorem 1. All solutions of the Szekeres system (1) with f < 0 have α-limit and
ω-limit at infinity, more precisely at the endpoints of the z-axis and w-axis.

The main objective of this paper is to study the dynamics of Szekeres system
(1) in the remaining cases, that is when either f = 0, or f > 0.

Our main results are the following two results.

Theorem 2. The following holds for the Szekeres system (1) with f > 0.

(a) In the half-space w >
√
f all solutions have α-limit the infinity at the

endpoints of the z-axis, and ω-limit the point (0,
√
f) without reaching it

(because on that point the dynamics is not defined), except the ones which
have α-limit an infinite singular point between the endpoints of the z-axis
and ω-limit the point (0,

√
f).

(b) The orbits between the hyperplanes w =
√
f and w =

√
f/3 have α-limit

the point (0,
√
f) and ω-limit the point

(
−
√

f
3 h,

√
f
3

)
without reaching

them (on these points the dynamics is not defined).

(c) The orbits between the hyperplanes w =
√
f/3 and w = −

√
f/3 have α-

limit the point
(
−
√

f
3 h,

√
f
3

)
and ω-limit the point

(√
f
3 h,−

√
f
3

)
without

reaching them (on these points the dynamics is not defined).
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(d) The orbits between the hyperplanes w = −
√
f/3 and w = −

√
f have α-limit

the point
(√

f
3 h,−

√
f
3

)
and ω-limit the point

(
0,−
√
f
)

without reaching

them (on these points the dynamics is not defined).

(e) In the half-space w < −
√
f all solutions have ω-limit the infinity at the

endpoints of the z-axis and α-limit the point (0,−
√
f) without reaching it

(because on that point the dynamics is not defined), except the ones which
have ω-limit an infinite singular point between the endpoints of the z-axis
and α-limit the point (0,−

√
f).

Theorem 3. All solutions of the Szekeres system (1) with f = 0 have α-limit the
infinity at the endpoints of the z-axis, and ω-limit the origin, without crossing the
hyperplane w = 0 where the dynamics is not defined, except the ones which are
in w > 0 and have α-limit an infinite singular point between the endpoints of the
z-axis and ω-limit the origin, and the ones which are in w < 0 and have ω-limit an
infinite singular point between the endpoints of the z-axis and α-limit the origin.

Theorems 3 and 2 are proved in section 3.

2. Preliminaries

2.1. Poincaré compactification. In this section we summarize some basic results
about the Poincaré compactification, which was done by Poincaré in [13]. He pro-
vided a tool for studying the behaviour of a planar polynomial differential system
near the infinity. For more details on the Poincaré compactification, see [4, Chapter
5].

Let X = P
∂

∂x1
+Q

∂

∂x2
be a polynomial vector field of degree d. We consider the

Poincaré sphere S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1}, its tangent plane
to the point (0, 0, 1) is identified with R2. Now we consider the central projection
f : R2 → S2 of the vector field X , which sends every point x ∈ R2 to the two
intersection points of the straight line passing through the point x and the origin
of coordinates with the sphere S2. We note that the equator S1 = {y ∈ S2 : y3 = 0}
of the sphere is in bijection with the infinity of R2. The differential Df sends the
vector field X on R2 into a vector field X ′ defined on S2 \ S1, which is formed by
two symmetric copies of X with respect to the origin of coordinates.

We can extend the vector field X ′ analytically to a vector field on S2 multiplying
X ′ by yd3 . This new vector field is denoted by p(X ) and it is called the Poincaré
compactification of the polynomial vector field X on R2. The dynamics of p(X )
near S1 corresponds with the dynamics of X in the neighborhood of the infinity.
Since S2 is a curved surface, for working with the vector field p(X ) on S2, we need
the expressions of this vector field in the local charts (Ui, φi) and (Vi, ψi), where
Ui = {y ∈ S2 : yi > 0}, Vi = {y ∈ S2 : yi < 0}, φi : Ui −→ R2 and ψi : Vi −→ R2

for i = 1, 2, 3, with φi(y) = −ψi(y) = (ym/yi, yn/yi) for m < n and m,n 6= i. In
the local chart (U1, φ1) the expression of p(X ) is

u̇ = vd
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
.
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In (U2, φ2) the expression of p(X ) is

u̇ = vd
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
, v̇ = −vd+1Q

(
u

v
,

1

v

)
,

and for (U3, φ3) is

u̇ = P (u, v), v̇ = Q(u, v).

The expressions for p(X ) in the local chart (Vi, ψi) is the same as in the local chart
(Ui, φi) multiplied by (−1)d−1 for i = 1, 2, 3. The points of S1 in any local chart
have its v coordinate equal to zero.

We note that the equator S1 is invariant by the vector field p(X ). The infinite
singular points of X are the singular points of p(X ) which lie in S1. Note that if
y ∈ S1 is an infinite singular point, then −y is also an infinite singular point and
these two points have the same stability if the degree of vector field is odd. Such
stability change to the opposite if the degree of the vector field is even.

The image of the northern hemisphere of S2 onto the plane y3 = 0 under the
projection π(y1, y2, y3) = (y1, y2) is called the Poincaré disc which is denoted by
D. The integral curves of S2 are symmetric with respect to the origin, therefore it
is sufficient to investigate the flow of p(X ) only in the closed northern hemisphere.
In order to draw the phase portrait on the Poincaré disc it is needed to project by
π the phase portrait of p(X ) on the northern hemisphere of S2.

We note that the points (u, 0) are the points at infinity in the local charts Ui and
Vi with i = 1, 2. Moreover, we remark that for studying the infinite singularities it
is sufficient to study them on the local chart U1, and to check if the origin of the
local chart U2 is or not a singularity.

2.2. Topological equivalence of two polynomial vector fields. Let X1 and X2

be two polynomial vector fields on R2. We say that they are topologically equivalent
if there exists a homeomorphism on the Poincaré disc D which preserves the infinity
S1 and sends the orbits of π(p(X1)) to orbits of π(p(X2)), preserving or reversing
the orientation of all the orbits.

A separatrix of the Poincaré compactification π(p(X )) is one of following orbits:
all the orbits at the infinity S1, the finite singular points, the limit cycles, and the
two orbits at the boundary of a hyperbolic sector at a finite or an infinite singular
point, see for more details on the separatrices [7, 10].

The set of all separatrices of π(p(X )), which we denote by ΣX , is a closed set
(see [10]).

A canonical region of π(p(X )) is an open connected component of D \ ΣX . The
union of the set ΣX with an orbit of each canonical region form the separatrix con-
figuration of π(p(X )) and is denoted by Σ′X . We denote the number of separatrices
of a phase portrait in the Poincaré disc by S, and its number of canonical regions
by R.

Two separatrix configurations Σ′X1
and Σ′X2

are topologically equivalent if there
is a homeomorphism h : D −→ D such that h(Σ′X1

) = Σ′X2
.
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According to the following theorem which was proved by Markus [7], Neumann
[10] and Peixoto [12], it is sufficient to investigate the separatrix configuration of a
polynomial differential system, for determining its global phase portrait.

Theorem 4. Two Poincaré compactified polynomial vector fields π(p(X1)) and
π(p(X2)) with finitely many separatrices are topologically equivalent if and only if
their separatrix configurations Σ′X1

and Σ′X2
are topologically equivalent.

3. Proofs

Figure 1. The phase portrait of system (5) in the Poincaré disc
when f > 0. On the four parallel straight lines w equal to ±

√
f

and ±
√
f/3 of this phase portrait of the Szekeres system restricted

to F = f > 0 and H = h is not defined.

Figure 2. The phase portrait of system (5) in the Poincaré disc
when f = 0. On the straight line w = 0 this phase portrait of the
Szekeres system restricted to F = 0 and H = h is not defined.

Theorem 5. The global phase portraits of system (5) with f > 0 are topologically
equivalent to the one described in Figure 1, and the global phase portraits of system
(5) with f = 0 are topologically equivalent to the one described in Figure 2.

Proof. There are four finite singular points of system (5) when f > 0 which are

p1 = (0,
√
f), p2 =

(
−
√
f/3h,

√
f/3

)
, p3 =

(√
f/3h,−

√
f/3

)
, p4 = (0,−

√
f).
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Computing the eigenvalues of the Jacobian matrix evaluated at these points we get
that p1 is a stable node (the eigenvalues are −8f3/2,−f3/2), p2 is an unstable node

(the eigenvalues are 4f3/2/
√

3, f3/2/
√

3), p3 is a stable node (the eigenvalues are

−4f3/2/
√

3,−f3/2/
√

3) and p4 is an unstable node (the eigenvalues are 8f3/2, f3/2).

On the other hand if f = 0 system (5) can be written as

ż = w3(−18z + 3hw),

ẇ =
3

4
w4,

(6)

and introducing the reparameterization of time ds = w3 dr we rewrite system (6)
as

ż = −18z + 3hw,

ẇ = −3

4
w,

(7)

where now the dot means derivative with respect the new independent variable r.
Note that the unique finite singular point of system (7) is the origin is a stable node
because the eigenvalues of the Jacobian matrix at the origin are −18 and −3/4.

Now we study the infinite singular points when f > 0. We can work in both
cases with system (5).

On the local chart U1 system (5) writes

u̇ =
1

4
(69u4 − 36fu2v2 − f2v4 − 12hu5 + 24fhu3v2 − 12f2huv4),

v̇ = −v(−18u3 + 10fuv2 + 3hu4 − 6fhu2v2 + 3f2hv4).
(8)

The singular points at infinity in the local chart U1 are (u, v) = (0, 0) and (u, v) =
(23/(4h), 0). So, if h 6= 0 we have two singular points on U1, and if h = 0 we have
only the origin as a singular point on U1.

If h 6= 0, computing the eigenvalues of the Jacobian matrix at (23/(4h), 0) we
get that they are −839523/(256h3) and 36501/(256h3). So this point is a saddle.

On the other hand computing the Jacobian matrix at the origin (0, 0) we get
that it is identically zero. We need to do blow ups. We introduce the new variable
w = v/u. In the new variables (u,w) we can rewrite system (10) as

u̇ = −u
4

4
(−69 + 12hu+ 36fw2 − 24fhuw2 + f2w4 + 12f2huw4),

ẇ =
u3w

4
(fw2 − 3)(fw2 − 1).

(9)

Now doing a rescaling of the independent variable we eliminate the term u3 in
system (9) and we obtain

u̇ = −u
4

(−69 + 12hu+ 36fw2 − 24fhuw2 + f2w4 + 12f2huw4),

ẇ =
w

4
(fw2 − 3)(fw2 − 1).

The solutions on u = 0 of ẇ = 0 are precisely w = 0, w = −1/
√
f , w = 1/

√
f ,

w = −
√

3/f and w =
√

3/f . Computing the eigenvalues of the Jacobian matrix at
these points we se that (0, 0) is an unstable node (the eigenvalues are 69/4, 3/4),
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(0,±1/
√
f) are saddles (the eigenvalues are 8, −1 for both of them), (0,±

√
3/f)

are saddles (the eigenvalues are −12, 3 for both of them).

Now going back through the changes of variables to system (10) we get that the
origin of U1 is formed by six hyperbolic sectors and two parabolic sectors. Three
hyperbolic sectors are separated from the other three by the line at infinity and
adjacent to the line at infinity in both sides there is a parabolic sector.

On the local chart U2 system (5) becomes

u̇ =
1

4
(12h− 69u− 24fhv2 + 36fuv2 + 12f2hv4 + f2uv4),

v̇ =
1

4
v(fv2 − 3)(fv2 − 1).

The origin of U2 is a singular point if and only if h = 0. In this last case computing
the eigenvalues of the linear part of the differential system at the origin we get that
they are −69/4 and 3/4. So the origin of U2 is a saddle.

Gluing all these information together we get that the global phase portrait of
system (5) when f > 0 in the Poincaré disc D is topologically equivalent to the one
of Figure 1.

Now we study the infinite singular points when f = 0. On the local chart U1

system (5) writes

(10) u̇ =
3

4
u4(23− 24hu), v̇ = 3u3v(6− hu).

Doing a rescaling of the independent variable we eliminate the term u3 in (10) and
we obtain

u̇ =
3

4
u(23− 24hu), v̇ = 3v(6− hu).

The singular points at infinity in the local chart U1 are ((0, 0) and ((23/(4h), 0). So
if h 6= 0 we have two infinite singular points on U1, and if h = 0 we have only the
origin as an infinite singular point on U1.

If h 6= 0, computing the eigenvalues of the Jacobian matrix at (23/(4h), 0) we
get that they are −69/4 and 3/4. So this point is a saddle. On the other hand,
computing the eigenvalues of the Jacobian matrix at (0, 0) we get that they are
69/4 and 18. So this point is an unstable node.

On the local chart U2 system (5) becomes

u̇ =
3

4
(4h− 23u), v̇ =

3

4
v.

The origin of U2 is a singular point if and only if h = 0. In this last case computing
the eigenvalues of the linear part of the differential system at the origin we get that
they are −69/4 and 3/4. So the origin of U2 is a saddle.

Gluing all these information together we get that the global phase portrait of
system (5) when f = 0 in the Poincaré disc D is topologically equivalent to the one
of Figure 2. �

Let q ∈ D and denote by φt(q) the solution of the extended flow in D of system
(5) that at time t = 0 pass through the point q. We recall that a point p ∈ D is an
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ω-limit (resp. α-limit) of a point q ∈ D if there are points φt1(q), φt2(q), . . . in the
orbit of q such that tk →∞ (resp. tk → −∞) and φtk(q)→ p as k →∞.

Proof of Theorems 2 and 3. The proof of Theorem 2 comes interpreting the results
provided in Theorem 5 on the gravitational Szekeres system (1) when f > 0, and
the proof of Theorem 3 comes interpreting the results provided in Theorem 5 on
the gravitational Szekeres system (1) when f = 0.

More precisely, we prove statement (a) of Theorem 2, the other statements as
well as the proof of Theorem 3 are proved in a similar way. Consider the orbits
over the hyperplane w =

√
f for fixed values of f > 0 and h ∈ R. From Figure

1 for the two fixed values of f and h there is a unique orbit γ with α-limit the
infinite singular point (23/(4h), 0) ∈ U1 if h 6= 0, or (0, 0) ∈ U2 if h = 0, and
ω-limit the finite stable node (0,

√
f). This orbit γ for the two fixed values of f and

h separates two kind of orbits. The ones with α-limit the infinite singular point
(0, 0) ∈ V1 and ω-limit the finite stable node (0,

√
f), and the others with α-limit

the infinite singular point (0, 0) ∈ U1 and ω-limit the finite stable singular point.
This completes the proof of statement (a) of Theorem 2. �

4. Conclusion

The gravitational Szekeres differential system (1) is completely integrable with
two rational first integrals and an additional analytical first integral. One of these
two rational first integrals is F = (−18E − 3ρ+ (θ + 3σ)2)3/(6E + ρ)2.

The dynamics of the Szekeres system when the first integral F takes negative
values was described in [6], showing that all the orbits come from the infinity of
R4 in the variables (ρ, θ, σ, E) and go to infinity. In other words all orbits of the
gravitational Szekeres differential system born at infinity and end at infinity when
the first integral F < 0.

In this paper we have described the dynamics when the first integral F takes
positive and zero values. Thus for F > 0 there are essentially three different types
of orbits, ones that born at infinity and tend to a finite point of the phase space,
others that born at a finite point of the phase space and end at infinity, and finally
orbits that born and end in two distinct finite points of the phase space. For more
precise information about these kind of orbits see Theorem 2.

If F = 0 then there are two types of orbits, the ones that born at infinity and
tend to a finite point of the phase space, and the others that born at a finite point
of the phase space and end at infinity. For more details on these orbits see Teorem
3.
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de Mathématiques 37 (1881), 375–422; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars,
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