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Abstract. Using the averaging theory of first order we study analytically the
existence of two families of periodic orbits of a generalized Hénon-Heiles Hamil-
tonian system. Moreover we characterize when this generalized Hénon-Heiles
Hamiltonian system has or has not a second C1 first integral independent with
the Hamiltonian.

1. Introduction and statement of results

The classical Hénon-Heiles Hamiltonian

H =
1

2
(p2
x + p2

y + x2 + y2) + x2y − y3

3
.

was introduced in 1964 as a model for studying the existence of a third integral of
motion of a star in an rotating meridian plane of a galaxy in the neighborhood of a
circular orbit [14] and it becomes a paradigm for nonlinear dynamics of Hamiltonian
systems.

In this paper we study the generalized Hénon-Heiles Hamiltonian system with an
additional singular gravitational term of the form

(1) Hε =
1

2
(p2
x + p2

y) +
1

2
(x2 + y2) + x2y − y3

3
− ε5 1

x2 + y2
,

where ε ≥ 0 is a small parameter (note that when ε = 0 the Hamiltonian H0 is the
classical Hénon-Heiles Hamiltonian).

We study the periodic dynamics of the Hénon-Heiles Hamiltonian system with
the additional singular gravitational term 1/(x2 + y2). The Hénon-Heiles modelizes
how stars move around a galactic center. The addition of this singular gravitational
term allows to modelize the motion of the stars in a pseudo or post-Newtonian
dynamics. Thus this model allows to predict phenomena which cannot be detected
by the classical Newtonian mechanics.

Other generalizations of the Hénon-Heiles Hamiltonian system (1) with different
additional singular gravitational terms was introduced in [20] where the authors
classify numerically sets of starting conditions for the trajectories. The additional
singular gravitational term in our system provides more accurate and realistic dy-
namics of a test particle moving in the central region of a galaxy and creates a
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singularity that cannot be modeled by the classical Hénon-Heiles Hamiltonian. This
problem has attracted the activity of an extensive number of works (see for instance
the works of [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19].

The Hamiltonian system associated to the Hamiltonian (1) is

(2)

ẋ = px,

ẏ = py,

ṗx = −x− 2xy − ε5 2x

(x2 + y2)2
,

ṗy = −y − x2 + y2 − ε5 2x

(x2 + y2)2
.

Here the dot denotes derivative with respect to the time t. After the equilibrium
points the periodic orbits are the most simple interesting orbits of a differential
system as they provide information on the motion in their neighborhoods (after
studying their type of stability) and, if there are isolated periodic orbits having
some multiplier distinct from 1 in the energy levels of the Hamiltonian system,
this orbit prevents the existence of a second C1 first integral independent with the
Hamiltonian, see details in section 2.

In section 2 we present a brief introduction to the averaging theory of first order,
the notion of Liouville-Arnol’d integrability and a result on the existence of a second
C1 first integral independent with the Hamiltonian for a Hamiltonian system.

Using the averaging theory we shall compute two families of periodic orbits of
the generalized Hénon–Heiles Hamiltonian system (2), and we obtain the following
result.

Theorem 1. The generalized Hamiltonian system (2) for ε sufficiently small in
each Hamiltonian level H = ε2h > 0 has two periodic solutions of the form

(x(t, ε), y(t, ε), px(t, ε), py(t, ε)) =

(ε
√
h cos t+O(ε2),±ε

√
h sin t+O(ε2),−ε

√
h sin t+O(ε2),±ε

√
h cos t+O(ε2)).

Theorem 1 is proved in section 3.

Using the existence of the two periodic orbits provided by Theorem 1, we can
state and prove the second main result of the paper.

Theorem 2. The generalized Hamiltonian system (2) for ε sufficiently small in
each Hamiltonian level H = ε2h > 0 satisfies

(a) either it is Liouville-Arnol’d integrable and the gradients of the two constants
of motion are linearly dependent on some points of the two periodic orbits
found in Theorem 1,

(b) or it is not Liouville–Arnol’d integrable with any second C1 first integral.

Theorem 2 is proved in section 4.
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2. Preliminaries

2.1. The averaging theory of first order. Here we summarize the averaging
theory of first order for finding periodic orbits. See [17, Theorem 11.5] for the proof
of the result presented in this section.

Theorem 3. We assume that the non-autonomous differential system

(3) ẋ(t) = εF1(t, x) + ε2R(t, x, ε),

being F1 : R × D → Rn andR : R × D × (−εf , εf ) → Rn functions T-periodic
in the t variable, and D is an open subset of Rn, satisfies that: the functions
F1, R, ∂F1/∂x, ∂

2F1/∂x
2 and ∂R/∂x are defined, continuous and bounded by a con-

stant M (independent of ε) in R×D × (−εf , εf ). We define f1 : D → Rn as

f1(z) =

∫ T

0
F1(s, z)ds.

If a satisfies f1(a) = 0 and |∂f1/∂y||y=a 6= 0, then for |ε| > 0 small enough, there
exists a T−periodic solution x(·, ε) of system (3) verifying that x(0, ε) → a when
ε→ 0.

2.2. Periodic orbits and the Liouville–Arnol’d integrability. First we present
some results on the Liouville–Arnol’d integrability of Hamiltonian systems with two
degrees of freedom, and also on the periodic orbits of the differential equations, see
more details in [1, 6] and [6, Subsection 7.1.2], respectively. We emphasize that
these results work in Hamiltonian systems with an arbitrary number of degrees of
freedom.

It is well known that a Hamiltonian system with Hamiltonian H of two degrees of
freedom is integrable in the sense of Liouville–Arnol’d if it has a second first integral
C independent with H (i.e. the gradient vectors of H and C are independent in all
the points of the phase space except perhaps in a set of zero Lebesgue measure). A
flow defined on a subspace of the phase space is complete if its solutions are defined
for all time t ∈ R.

Theorem 4. Consider a Hamiltonian system with two degrees of freedom defined
on the phase space M with Hamiltonian H and having a second first integral C
independent with H. Let Ihc = {p ∈ M : H(p) = h and C(p) = c} 6= ∅ be. If (h, c)
is a regular value of the map (H,C), then the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the flow of the
Hamiltonian system.

(b) If the flow on a connected component I∗hc of Ihc is complete, then I∗hc is
diffeomorphic either to the torus S1 × S1, or to the cylinder S1 × R, or to
the plane R2. If I∗hc is compact, then the flow on it is always complete and
I∗hc ≈ S1 × S1.

(c) Under the assumptions of statement (b) the flow on I∗hc is conjugated to a
linear flow on either S1 × S1, or on S1 × R, or on R2.

Consider the autonomous differential system

ẋ = f(x),
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where f : U → Rn is C2, and U is an open subset of Rn. We write its general
solution as φ(t, x0) with φ(0, x0) = x0 ∈ U and t belonging to its maximal interval
of definition.

We say that φ(t, x0) is T -periodic with T > 0 if and only if φ(T, x0) = x0 and
φ(t, x0) 6= x0 for t ∈ (0, T ). The periodic orbit associated to the periodic solution
φ(t, x0) is γ = {φ(t, x0), t ∈ [0, T ]}. The variational equation associated to the
T -periodic solution φ(t, x0) is

(4) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n× n matrix. The monodromy matrix associated to the T -periodic
solution φ(t, x0) is the solutionM(T, x0) of (4) satisfying thatM(0, x0) is the identity
matrix. The eigenvalues λ of the monodromy matrix associated to the periodic
solution φ(t, x0) are called the multipliers of the periodic orbit.

For an autonomous differential system, one of the multipliers is always 1, and its
corresponding eigenvector is tangent to the periodic orbit.

A periodic solution of an autonomous Hamiltonian system always has two mul-
tipliers equal to one. One multiplier is 1 because the Hamiltonian system is au-
tonomous, and the other 1 is due to the existence of the first integral given by the
Hamiltonian.

Theorem 5. If a Hamiltonian system with two degrees of freedom and Hamiltonian
H is Liouville–Arnol’d integrable, and C is a second first integral such that the
gradients of H and C are linearly independent at each point of a periodic orbit of
the system, then all the multipliers of this periodic orbit are equal to 1.

Theorem 5 is due to Poincaré [16] (see section 36), and see also [15]. It provides a
tool for studying the non Liouville–Arnol’d integrability, independently of the class
of differentiability of the second first integral. The main problem for applying this
theorem is to find periodic orbits having multipliers different from 1.

3. Proof of Theorem 1

It is well known that for Hamiltonian system with more than one degree of freedom
their periodic orbits generically live on cylinders filled out of periodic orbits, see [1].
Therefore it is not possible to apply directly Theorem 3 to a Hamiltonian system,
because then the determinant of the Jacobian matrix of the function f1 at some of its
zeros will be always zero. So Theorem 3 must be applied to every fixed Hamiltonian
level where generically the periodic orbits appear isolated.

From the statement of Theorem 3 we see that the differential system associated
to the Hamiltonian system where we want to apply such a theorem needs to have
a small parameter, so we will do the rescaling (x, y, px, py) = ε(X,Y, PX , PY ) using
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the parameter ε. In these new variables system (2) becomes

(5)

Ẋ = pX ,

Ẏ = pY ,

ṖX = −X − ε2X
( 1

(X2 + Y 2)2
+ Y

)
,

ṖY −Y − ε
( 2Y

(X2 + Y 2)2
+X2 − Y 2

)
,

and the Hamiltonian in these new variables becomes

H =
1

2
(P 2

X + P 2
Y +X2 + Y 2)− ε3− 3X4Y − 2X2Y 3 + Y 5

3(X2 + Y 2)
.

From the statement of Theorem 3 we see that the differential system where we want
to apply such a theorem needs to be periodic in the independent variable. Therefore
in the Hamiltonian system (5) we change the variables (X,Y, PX , PY ) to (r, θ, ρ, α)
given by (X,Y, PX , PY ) = (r cos θ, ρ cos(θ+ α), r sin θ, ρ sin(θ+ α)), and later on we
will take as the new independent variable the θ. In these new variables system (5)
becomes
(6)

ṙ = εr sin θ cos θ

(
−2ρ cos(α+ θ)− 2

(ρ2 cos2(α+ θ) + r2 cos2 θ)2

)
,

θ̇ = −1 + ε cos2 θ

(
−2ρ cos(α+ θ)− 2

(ρ2 cos2(α+ θ) + r2 cos2 θ)2

)
,

ρ̇ = ε sin(α+ θ)

(
−r2 cos2 θ + ρ2 cos2(α+ θ)− 2ρ cos(α+ θ)

(ρ2 cos2(α+ θ) + r2 cos2 θ)2

)
,

α̇ = ε

(
cos2 θ

(
2

(ρ2 cos2(α+ θ) + r2 cos2 θ)2 +

(
2ρ− r2

ρ

)
cos(α+ θ)

)
+ cos2(α+ θ)

(
ρ cos(α+ θ)− 2

(ρ2 cos2(α+ θ) + r2 cos2 θ)2

))
.

This system is not Hamiltonian but it has the first integral (that we also name as
H)

H =
1

2
(ρ2 + r2) +

ε

3 (ρ2 cos2(α+ θ) + r2 cos2 θ)

(
−ρ5 cos5(α+ θ)

+2ρ3r2 cos2 θ cos3(α+ θ) + 3ρr4 cos4 θ cos(α+ θ)− 3
)
.
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In order to apply Theorem 3 we take θ as the new independent variable. Hence
the differential system (6) becomes
(7)

r′ = ε

(
2r sin θ cos θ

(ρ2 cos2(α+ θ) + r2 cos2 θ)2 + 2ρr sin θ cos θ cos(α+ θ)

)
+O(ε2),

ρ′ = ε

(
−ρ2 sin(α+ θ) cos2(α+ θ) +

2ρ sin(α+ θ) cos(α+ θ)

(ρ2 cos2(α+ θ) + r2 cos2 θ)2

+r2 cos2 θ sin(α+ θ)
)

+O(ε2),

α′ = ε

(
−ρ cos3(α+ θ)− 2ρ cos2 θ cos(α+ θ) +

2 cos2(α+ θ)

(ρ2 cos2(α+ θ) + r2 cos2 θ)2

− 2 cos2 θ

(ρ2 cos2(α+ θ) + r2 cos2 θ)2 +
r2 cos2 θ cos(α+ θ)

ρ

)
+O(ε2),

here the prime denotes derivative with respect to the variable θ. Note that system
(7) is 2π-periodic in the variable θ.

System (7) in the variables (r, ρ, α) (with ρ = ρ0 + ερ1 + O(ε2)) has the first
integral
(8)

H = −h+ 1
2

(
ρ2

0 + r2
)

+ ερ0ρ1 + ε
1

3
(
ρ2

0 cos2(α+ θ) + r2 cos2 θ
)(−3

+3ρ0r
4 cos4 θ cos(α+ θ) + 2ρ3

0r
2 cos2 θ cos3(α+ θ)− ρ5

0 cos5(α+ θ)) +O(ε2).

We fix the value of the first integral H at ε2h > 0 in order that the averaging theory
can provide information about the periodic orbits of system (7). Computing ρ from
equation (8) we obtain

ρ =
√

2h− r2 +
ε
(
3 +
√

2h− r2 cos(α+ θ)
)

3
√

2h− r2(2h cos2(α+ θ) + r2 sinα sin(α+ 2θ))

·
(
− 3r4 cos4 θ + 2r2(r2 − 2h) cos2 θ cos2(α+ θ)

+(r2 − 2h)2 cos4(α+ θ)
)

+O(ε2).

Now substituting ρ in system (7), this differential system reduces to
(9)

r′ = ε

(
2r sin θ cos θ

((2h− r2) cos2(α+ θ) + r2 cos2 θ)2 + 2r
√

2h− r2 sin θ cos θ cos(α+ θ)

)
+O(ε2) = F11(θ, r, α) +O(ε2),

α′ = ε

(
−
√

2h− r2 cos3(α+ θ) +
2 cos2(α+ θ)

((2h− r2) cos2(α+ θ) + r2 cos2 θ)2

−2
√

2h− r2 cos2 θ cos(α+ θ) +
r2 cos2 θ cos(α+ θ)√

2h− r2

− 2 cos2 θ

(2h− r2) cos2(α+ θ) + r2 cos2 θ)2

)
+O(ε2) = F12(θ, r, α) +O(ε2).
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Now system (9) satisfies all the assumptions for applying Theorem 3, i.e. it has the
form (3) with x = (r, α), t = θ, T = 2π and F1 = (F11, F12). The averaged functions
of F11 and F12 in the period 2π are

f11(r, α) =
2π cotα

r2
√

sin2 α(2h− r2)
,

f12(r, α) =
4π csc2 α(r2 − h)

√
sin2 α(2h− r2)

r(r3 − 2hr)2
.

We must compute the zeros (r∗, α∗) of f1(r, α) = (f11(r, α), f12(r, α)), and to verify
that the Jacobian determinant

(10) |Dr,αf1(r∗, α∗)| 6= 0.

Solving the system f1(r, α) = 0 of two equations and two unknowns r and α we get
two solutions (r∗, α∗) with r∗ ≥ 0, namely

(11) (
√
h, π/2), (

√
h,−π/2).

For these two solutions the Jacobian (11) is 196h2π2/9 6= 0. So, by Theorem 3
these two solutions provide two periodic solutions (r±(θ, ε), α±(θ, ε)) of the differen-

tial system (9) with ε sufficiently small such that (r±(0, ε), α±(0, ε))→ (
√
h,±π/2)

when ε→ 0.

Going back to the differential system (7) we get for this system with ε sufficiently
small two periodic solutions (r±(θ, ε), ρ±(θ, ε), α±(θ, ε)) such that (r±(0, ε), ρ±(0, ε),

α±(0, ε))→ (
√
h,
√
h, ±π/2) when ε→ 0.

Again going back to the differential system (6) we obtain for this system with ε
sufficiently small two periodic solutions (r±(t, ε), θ(t, ε), ρ±(t, ε), α±(t, ε)) such that

(r±(0, ε), θ(0, ε), ρ±(0, ε), α±(0, ε))→ (
√
h,−t,

√
h, ±π/2) when ε→ 0.

Finally going back to the initial Hamiltonian system (2) we have for this system
with ε sufficiently small two periodic solutions

(x(t, ε), y(t, ε), px(t, ε), py(t, ε)) =

(ε
√
h cos t+O(ε2),±ε

√
h sin t+O(ε2),−ε

√
h sin t+O(ε2),±ε

√
h cos t+O(ε2)),

in each positive Hamiltonian level H = ε2h. This completes the proof of Theorem 1.

4. Proof of Theorem 2

Consider the two periodic solutions stated in Theorem 1. Their corresponding
Jacobian 196h2π2/9 6= 1 playing with the energy level h. Since this Jacobian is
the product of the four multipliers of these periodic solutions with two of them
always equal to 1, the remainder two multipliers cannot be equal to 1. Hence, by
Theorem 5, either the generalized Hénon–Heiles systems cannot be Liouville–Arnol’d
integrable with any second first integral C, or it is Liouville-Arnol’d integrable and
the differentials of H and C are linearly dependent on some points of these periodic
orbits. Therefore the theorem is proved.
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5. Conclusions

We study the periodic dynamics of the Hénon-Heiles Hamiltonian system with the
additional singular gravitational term 1/(x2 + y2). The Hénon-Heiles Hamiltonian
modelizes how stars move around a galactic center. The addition of this singular
gravitational term allows to modelize the motion of the stars in a pseudo or post-
Newtonian dynamics. Thus this model allows to predict phenomena which cannot
be detected by the classical Newtonian mechanics.

Using the averaging theory of first order we study analytically the existence of
two families of periodic orbits of this generalized Hénon-Heiles Hamiltonian sys-
tem, see Theorem 1. Moreover we characterize when this generalized Hénon-Heiles
Hamiltonian system has or has not a second C1 first integral independent with the
Hamiltonian using the obtained periodic orbits, see Theorem 2.
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