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Abstract. The Euler-Jacobi formula provides an algebraic relation be-
tween the singular points of a polynomial vector field and their topo-
logical indices. Using this formula we obtain the configuration of the
singular points together with their topological indices for the planar
quadratic–quartic polynomial differential systems when these systems
have eight finite singular points.

1. Introduction and statement of the main results

Consider the planar polynomial differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

in R2 where P (x, y) and Q(x, y) are real polynomials of degree n and m
respectively. Assuming that system (1) has nm finite sigular points using
the Euler-Jacobi formula we obtain an algebraic relation between the finite
singular points of the polynomial differential system (1) and the topological
indices of these finite singular points. A proof of the Euler-Jacobi formula
can be found in [1].

It also follows from Bezout’s Theorem that in the complex projective
plane, and taking into account all the multiplicities of the singular points,
if the number of singular points is finite, then it is at most nm. The Euler-
Jacobi formula deals with the case in which all the singular points have
multiplicity one and are located in the finite part of the projective space. In
the two-dimensional case this formula can be enunciated as follows. Consider
a system of two real polynomials of degrees n and m respectively in the
variables x and y. If the set of zeroes of that system (that we denote by A)
contains exactly nm elements, then the Jacobian determinant

J = det

(
∂P/∂x ∂P/∂y
∂Q/∂x ∂Q/∂y

)
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evaluated at each zero does not vanish and for any polynomial R of degree
less than or equal to n + m− 3 we have

(2)
∑
a∈A

R(a)

J(a)
= 0.

Using the Euler-Jacobi formula we want to characterize the number and
distribution of the singular points of the quadratic–quartic polynomial dif-
ferential systems, i.e. of system (1) with n = 2 and m = 4.

Consider the polynomial vector field X = (P,Q) associated with the
differential system (1) where the degree of P is 2 and the degree of Q is 4.
We will call it a quadratic–quartic polynomial differential system. We denote
by AX = A the set of {p ∈ R2 : X(p) = 0} of finite singular points. Given a

finite subset B of R2, we denote by B̂ its convex hull, by ∂B its boundary,
and by #B its cardinal.

Set A0 = A and for i ≥ 1 Ai = Ai−1 \ (Ai−1 ∩ ∂Âi−1). There is an integer
q such that Aq+1 = ∅.

We say that A has the configuration (K0;K1;K2; . . . ;Kq) where Ki is the
natural positive number defined by

Ki = #(Ai ∩ ∂Âi)

We say that A has configuration (K0;K1;K2; . . . ;Kr; ∗) if we do not specify
for the values of Ki for i between r + 1 and q.

We are also interested in the study of the (topological) indices of the
singular points of X. We say that the singular points of X which belong to
Ai ∩ ∂Âi are on the i-th level.

We recall that if we assume that #AX = 8 then the determinant of the
Jacobian matrix J is non-zero at any singular point of the vector field X,
consequently topological indices of the singular points are ±1, and in this
case we substitute the number Ki corresponding to the i-th level by the vec-

tor (n1
i +, n2

i−, . . . , n
mi−1
i +, nmi

i −) where nj
i are positive integers such that∑

j n
j
i = Ki. More precisely, when Ai ∩ ∂Âi is a polygon, these numbers

take into account the number of consecutive points with positive and nega-
tive indices, viewing the ith level oriented counterclockwise: n1

i corresponds
to the string with largest number of consecutive points with positive and
negative indices. If there are several strings with the same number of points
we choose one such that the next string (that has points with negative in-
dices) is as large as possible. We continue the process for n2

i and so on.

Furthermore, when Ai ∩ ∂Âi is a segment, the numbers take into account
the number of consecutive points with positive indices, beginning at one of
its endpoints.
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With this notation we can state the main result of the paper. We denote
by iX(a) the index of a singular point a ∈ A of a planar quadratic–quartic
polynomial vector field X.

Theorem 1. For planar quadratic–quartic polynomial differential systems
such that #AX = 8, the following statements hold.

(a) either
∣∣∣∑a∈A iX(a)

∣∣∣ = 2 or
∑

a∈A iX(a) = 0.

(b) If
∣∣∣∑a∈A iX(a)

∣∣∣ = 2, then only the following configurations are pos-

sible
(i) (4; 3; 1) = (4+; 3−; +) or (4−; 3+;−),

(ii) (3; 5) = (3+; +, 2−,+,−) or (3−; +,−,+,−,+),
and there exist examples of such configurations.

(c) If
∑

a∈A iX(a) = 0, then only the following configurations are possi-
ble

(i) (8) = (+,−,+,−,+,−,+,−),
(ii) (4; 4) = (+,−,+,−; +,−,+,−),

and there exist examples of such configurations.

The proof of Theorem 1 is given in section 2. We recall that for the
planar quadratic-quadratic polynomial differential systems this theorem is
the well-known Berinskii’s Theorem proved in [2] and reproved in [4] using
the Euler-Jacobi formula. The case quadratic–cubic was also proved in [4],
but the case cubic-cubic is much more difficult and is still open with only
some partial results.

2. Proof of Theorem 1

In the proof of Theorem 1 we will use the following auxiliary result proved
in [3].

Lemma 2. Let X = (P,Q) be a polynomial vector field with max(degP, deg Q) =
n. If X has n singular points on a straight line L(x, y) = 0, this line is an
isocline. If X has n + 1 singular points on L(x, y) = 0 then this line is full
of singular points.

2.1. Proof of statement (a) of Theorem 1. First of all we observe that
if a configuration exists for quadratic-quartic polynomial vector field X with
#AX = 8 then it is possible to construct the same configuration but inter-
changing points with index +1 with points with index −1. For doing that
it is enough to take Y = (−P,Q) instead of X = (P,Q). So we can restrict
ourselves to the cases in which

∑
a∈A iX(a) ≥ 0.

During the proof we will denote by {p1, . . . , p8} the set of points of A if
there is no information about their indices, by {p+1 , . . . , p

+
k } the set of points

of A with positive index, and by {p−1 , . . . , p
−
l } the set of points of A with
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negative index. Also we will denote by Lu,v
i,j the straight line Lu,v

i,j (x, y) = 0

through the points pui and pvj where u, v ∈ {+,−, ∅}, i ∈ {1, . . . , k}, j ∈
{1, . . . , l}, and by Lu

i a straight line through a point pui ∈ ∂Â such that for
all q ∈ A we have Lu

i (A) ≥ 0 and it is zero only at q.

It was proved in [6, 5] that in the case of quadratic-quartic polynomial

vector fields either
∣∣∣∑a∈A iX(a)

∣∣∣ = 2, or
∑

a∈A iX(a) = 0, and by the

above explanation we can only consider that either
∑

a∈A iX(a) = 2, or∑
a∈A iX(a) = 0. This proves statement (a).

2.2. Proof of statement (b) of Theorem 1. We prove Theorem 1 in
the case in which

∑
a∈A iX(a) = 2. In this case we have that 5 points have

positive index and three points have negative index. First we will show that
there are no singular points with index −1 in ∂Â and so that #(A∩∂Â) ≤ 5,
or equivalently, that the unique possible configurations are (K+, ∗) with

K ≤ 5. Indeed, assume first that p−1 ∈ ∂Â and denote by p−1 , p
−
2 , p−3 the

points with negative index and by p+i for i = 1, . . . , 5 the points with positive

index. Consider the cubic C(x, y) = L−1 (x, y)(L−−2,3 (x, y))2. Since, by the

definitions of L−1 and L−−2,3 we have C(P+
i ) ≥ 0 for i = 1, . . . , 5 applying the

Euler-Jacobi formula we get ∑
i=1,...,5

C(P+
i )

J(p+i )
= 0

which is a contradiction because C(p+i ) ≥ 0, J(p+i ) = 1 for i = 1, . . . , 5,
and all of them cannot be zero because it is known that since the maximum
degree of P and Q is four, if the five singular points are on the straight line
L−−23 (x, y) = 0 by Lemma 2 this straight line is full of singular points, which

is not the case. This contradiction implies that #(A ∩ ∂Â) ≤ 5 and the
configuration of A must be (K+; ∗) with K ≤ 5.

We now consider different cases.

K = 5: Assume first that K = 5, i.e, #(A ∩ ∂Â) = 5. Now, applying the
Euler-Jacobi formula to C(x, y) = L++

1,2 (x, y)L++
34 (x, y)L+

5 (x, y) we get to a
contradiction. So this configuration is not possible.

K = 4: Then #(A ∩ ∂Â) = 4. Write {p+1 , p
+
2 , p

+
3 , p

+
4 } = A ∩ ∂Â and take a

conic C0(x, y) through them. Since all these points are in the boundary of
a convex set, the remaining four singular points are in the same connected
component of R2\{C0(x, y) = 0}. Assume now that there is a point p+5 ∈ A1,

i.e. in the 1st-level of A. Taking L+−
5,k where p−k is a point in A1∩∂Â1 contigu-

ous with p+5 , if the four singular points in A1 are not on a straight line then
applying the Euler-Jacobi formula with C(x, y) = C0(x, y)L+−

5,K , we get a
contradiction. On the other hand, if the four singular points are on a straight
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line, say L0(x, y) = 0 then assuming without loss of generality that p+1 ∈ ∂Â,
applying the Euler-Jacobi formula to C(x, y) = L0(x, y)L++

34 (x, y)L+
1 (x, y)

we get a contradiction. So the configuration of A is (4+; 3−; +).

Note that the quadratic–quartic system (1) with

P (x, y) = y2 − x2 + 1,

Q(x, y) = −x4 +

(
15
√

2 + 4
√

15
)
x3y

45
√

2 + 16
√

15
+

(
1−

√
30

45
√

2 + 16
√

15

)
x2y2

−x2y −
4
(
15
√

2 + 4
√

15
)
xy3

3
(
45
√

2 + 16
√

15
) +

4
√

10y4

45
√

6 + 48
√

5
+

4y3

3
+ y2 + 1,

has the singular points

(−2,
√

3), (−2,−
√

3), (−1, 0), (1, 0), (2,
√

3), (2,−
√

3), (3,−2
√

2), (4,
√

15),

in the configuration (4+; 3−; +).

K = 3: Now assume that #(A ∩ ∂Â) = 3. Then we have the following
possibilities: (3+; 5), (3+; 4; 1) or (3+; 3; 2). Since the polynomial P has
degree 2, P (x, y) = 0 is a conic and the eight finite singular points of system
(1) are on this conic. Therefore any real conic (ellipse, parabola, hyperbola,
two parallel straight lines, two straight lines intersecting in a point, one
double straight line or one point) do not allow the configurations (3+; 4; 1)
or (3+; 3; 2). Moreover, the configuration (3+; 5) only can be supported by
a hyperbola.

Now we study the configuration (3+; 5). Since all the singular points
lie in a hyperbola and in the 1st-level of A we must have five points, it is
clear that one point is in one branch of the hyperbola and the other seven
points in the other branch of the hyperbola. Denote by p+1 the point in one
branch of the hyperbola and by p2, p3, p4, p5, p6, p7, p8 the remaining points
which are in the other branch of the hyperbola and ordered. Note that with
this notation p2 = p+2 and p8 = p+8 . Applying the Euler-Jacobi formula to
C(x, y) = L++

28 L37L46 we get that p+1 and p5 have different signs so p5 = p−5 .
Now applying the Euler-Jacobi formula to C(x, y) = L+−

15 L++
28 L37 we get

that p4 and p6 must have the same sign and applying the Euler-Jacobi
formula to C(x, y) = L+−

15 L++
28 L46 we get that p3 and p7 must have the

same sign, and applying the Euler-Jacobi formula to L+
1 L
−
5 L46 taking into

account that p2 = p+2 and p8 = p+8 we get that p3 = p−3 and p7 = p−7 . Then
p4 = p−4 and p5 = p−5 and we get the configuration is (3+; +, 2−,+,−).

The quadratic–quartic system (1) with

P (x, y) = x2 − y2 − 1,

Q(x, y) = −x4 +
9x3y

11
+ x2y2 − x2y − 26xy3

33
+

8y3

11
+ y2 + 1,
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has the singular points

(−1, 0), (−1, 0), (2,
√

3), (2,−
√

3), (3, 2
√

2), (3,−2
√

2), (4,
√

15), (4,−
√

15),

in the configuration (3+; 5).

Clearly configurations of the form (2+; ∗) cannot occur because the eight
singular points would be on a straight line, and by Lemma 2 this straight
line will be full of singular points, a contradiction. Moreover, configurations
of the form (1+; ∗) have no meaning. This concludes the proof of statement
(b) of Theorem 1.

2.3. Proof of statement (c) of Theorem 1. We consider now the case
in which

∑
a∈A iX(a) = 0. In this case we have 4 points with positive index

and 4 points with negative one. We separate this study into different cases.
Note that configurations (7; 1), (6; 2) and (5; 3) are not possible because any
convex hull of seven, six or five points on a conic has at most four points in
the boundary of the convex hull except for the ellipse, but in the case of the
ellipse cannot be points in the 1–level. Furthermore, by the explanation in
the proof of statement (b) we get that the configurations (3; 4; 1), (3; 3; 2),
(2; ∗) and (1; ∗) are not possible. In short, the unique possible configurations
are (8), (4; 4), (4; 3; 1) and (3; 5). We will study them separately.

Configuration (8): Assume that the subscripts of the points in A are in such a

way that p1, p2, p3, p4, p5, p6, p7 and p8 are ordered in ∂Â in counterclockwise
sense. Also we consider the subscripts in Z/8Z. Take the cubic

Ci(x, y) = Li,i+1(x, y)Li+2,i+3(x, y)Li+4,i+5.

Then the Euler Jacobi formula applied to Ci yields

Ci(pi+6)

J(pi+6)
+

Ci(pi+7)

J(pi+7)
= 0,

so J(pi+6)J(pi+7) < 0 for all i. Hence the indices of Pj and pj+1 are different
and the configuration of A must be (8) = (+,−,+,−,+,−,+,−).

The quadratic–quartic system (1) with

P (x, y) = x2 + y2 − 1,
Q(x, y) = −2x4 + x3y + x2y2 − 3xy3 + 3y4 − x3 − x2y − xy2 − y3 + x2

+xy − 4y2 + x + y + 1,

has the singular points

(0,±1), (±1, 0),
(
± 1√

2
,± 1√

2

)
in the configuration (+,−,+,−,+,−,+,−).

Configuration (4; 4): Denote by p1, . . . , p4 the points in A ∩ ∂Â ordered in

counterclockwise sense, and by p5, . . . , p8 the points in A∩∂Â1 also ordered
in counterclockwise sense. Applying the Euler-Jacobi formula to C(x, y) =
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L12L34L5,6, C(x, y) = L12L34L67, and C(x, y) = L12L34L78 we get that
the configuration is (4; +,−,+,−). Moreover we have that in ∂A there are
two points with positive index and two points with negative one. We note
that the configuration (4; 4) only can be realized in a hyperbola or in a
conic formed by two straight lines intersecting in a point. Then applying
three times the Euler-Jacobi formula to a cubic formed by the product of
three straight lines, two of them defined by two non-contiguous sides of the
quadrilateral defined by the boundary of ∂Â1 and the third straight line
defined by one side of the quadrilateral defined by the boundary of ∂Â,
we obtain that the configuration (2+, 2−; +,−,+,−) is not possible. In
summary the unique possible configuration is (+,−,+,−; +,−,+,−).

The quadratic–quartic system (1) with

P (x, y) = x2 − y2 − 1,

Q(x, y) = −x4 +
23x2y2

12
− x2y − y4 + y3 + y2 + y − 1,

has the eight singular points (±2,±
√

3), (±3,±2
√

2), in the configuration
(+,−,+,−; +,−,+,−).

Configuration (4; 3; 1): The arguments used in the proof of case K = 3
of statement (b) of Theorem 1 applied to the configuration (4; 3; 1) show
that such a configuration only can be realized if the conic P (x, y) = 0 is
a hyperbola. So in the following arguments we take into account that the
eight singular points of system (1) are in a hyperbola. Denote by p1, . . . , p4
the points in A∩ ∂Â ordered in counterclockwise sense and by p5, p6, p7 the
points in the 1st-level of A and p8 in the 2nd-level of A. Applying the Euler-
Jacobi formula, iteratively, to C(x, y) = L12L34L56, C(x, y) = L12L34L67

and C(x, y) = L12L34L57 we get that, without loss of generality, p8 = p+8 and
p5 = p−5 , p6 = p−6 and p7 = p−7 . So, we have three points with index + and

one point with index − in ∂Â. By the previous consideration we can assume
that ∂Â is a quadrilateral. Take L++

k,k+1 where p+k are two contiguous points

in ∂Â. Applying the Euler-Jacobi formula to C(x, y) = L−+5,8 L
−−
7,6 L

++
k,k+1 we

reach a contradiction because the remaining points in ∂Â are in different
sides of L++

k,k+1 and have different signs. So, the configuration (4; 3; 1) is not

possible.

Configuration (3; 5): As in the proof of the case K = 3 of statement (b)
of Theorem 1 all the singular points lie in a hyperbola with one point in
one branch of the hyperbola and the other seven points in the other branch
of the hyperbola. Denote by p1 the point in one branch of the hyperbola
and by p2, p3, p4, p5, p6, p7, p8 the remaining points which are in the other
branch of the hyperbola and ordered. Applying the Euler-Jacobi formula
to C(x, y) = L28L37L46 we get that p1 and p5 have different signs so we
can assume without loss of generality that p1 = p+1 and p5 = p−5 . Now
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applying again the Euler-Jacobi formula to C(x, y) = L+−
15 L28L37 we get

that p4 and p6 must have the same sign, applying the Euler-Jacobi formula
to C(x, y) = L+−

15 L28L46 we get that p3 and p7 must have the same sign,
and finally applying the Euler-Jacobi formula to C(x, y) = L+−

15 L37L46 we
get that p2 and p8 must have the same sign, but then the number of positive
and negative indices would be odd which is not possible. In short, such a
configuration is not possible. This proves statement (c) of Theorem 1 and
concludes the proof of the theorem.
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