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Abstract. We classify the phase portraits in the Poincaré disc of the
differential equations of the form x′ = −y + xf(x, y), ẏ = x + yf(x, y)
where f(x, y) is a homogeneous polynomial of degree n − 1, and f has
only simple zeroes when n = 2, 3, 4, 5. We also provide some general
results on these uniform isochronous centers for all n ≥ 2.

1. Introduction and statement of the main results

The first investigation in isochronicity goes back to Huygens in [6] with the
study of the cycloidal pendulum in the XVII century. Nowadays isochronic-
ity appears in many physical problems and it is closely related with the
existence and uniqueness of solutions for certain bifurcation problems or
boundary value problems (see for instance [8] and the references therein).
In the last decade the study of the isochronicity has been grown specially in
the case of polynomial differential systems due to the appearance of power-
ful methods of computational analysis, see for instance [1, 3, 4, 14] to cite
just few of them.

A polynomial differential system of degree n is a differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

with P and Q polynomials such that the maximum of their degrees is n. We
denote by χ = (P,Q) the polynomial vector field associated to system (1).

Let p ∈ R2 be a center of χ. We say that p is an isochronous center of
χ if it is a center with a neighborhood surrounded by periodic orbits with
the same period. We say that p is a uniform isochronous center of χ if the
system associated to χ can be written in polar coordinates in the form

ṙ = G(θ, r), θ̇ = κ, κ ∈ R \ {0}.
We say that p is a global center if its period annulus is R2. We recall that a
period annulus of a center p is the maximum neighborhood U ⊂ {p} of the
center p filled up with periodic orbits.
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The polynomial differential systems can be extended analytically to in-
finity in the so called Poincaré compactification. Roughly speaking, the
Poincaré compactification identify R2 with the interior of the unit disc cen-
tered at the origin and its boundary, the circle S1, with the infinity of R2,
in the plane we can go to infinity in as many directions as points have S1.
Then the polynomial differential system can be extended to an analytic dif-
ferential system in the closed unit disc, i.e. in particular to the infinity its
infinity S1. This closed disc is called the Poincaré disc. The equilibrium
points of the extended differential system in S1 are called the infinite equi-
libria of the initial polynomial differential system. For more details on this
Poincaré compactification see Chapter 5 of [5].

Two polynomial vector fields are topologically equivalent if there exists
a homeomorphism which preserves the infinity carrying orbits of the flow
induced by the first compactified vector field to orbits of the flow induced
by the second compactified vector field.

To obtain the phase portrait of a polynomial vector field with finitely
many separatrices, we need to determine the separatrices of the compactified
vector field and one orbit inside each canonical region, for more details see
Chapter 1 of [5].

A limit cycle is a periodic orbit of system (1) isolated in the set of all
periodic orbits of system (1).

A non locally constant C1 function H : U → R2 (where U is an open and
dense subset of R2) is a first integral of system (1) in U if H is constant on
the solution curves of system (1), or equivalently

P (x, y)Hx +Q(x, y)Hy = 0,

in U . Of course, Hx denotes the partial derivative of H with respect to
x. System (1) has a Liouvillian first integral if it has an integrating factor
given by a Darboux function (see section 2 for the definition for integrating
factor and Darboux function).

In the present paper we will classify the phase portraits in the Poincaré
disc of uniform isochronous centers of the polynomial differential system

(2) ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

with homogeneous polynomial nonlinearities xf(x, y) and yf(x, y), being
f(x, y) a homogenous polynomial of degree n− 1.

The line at infinity of the polynomial differential systems (1) is filled up
with singularities. When we remove this line of singularities, it can remain
some additional singularities, that we call special singularities.

The following is our first main result.

Theorem 1. Consider the polynomial differential system (2) of degree n ≥ 2
such that f is a homogeneous polynomial of degree n− 1 that we shall write



PHASE PORTRAITS OF UNIFORM ISOCHRONOUS CENTERS 3

U

A

U

B

V V

Figure 1. The cups at infinity.

as

f(x, y) =
n−1∑
j=0

fjx
n−1−jyj .

The following holds.

(a) The unique finite singular point is the origin.
(b) It has a Liouvillian first integral.
(c) If n is even, the origin is a uniform isochronous center, and if n is

odd and

(3)

n−1∑
j=0

fj

∫ 2π

0
cosn−1−j θ sinj θ = 0,

then it is a uniform isochronous center, otherwise it is a focus.
(d) In case that the origin is a focus, the system cannot have limit cycles.
(e) If n > 1 and the origin is a center it cannot be a global center.
(f) The line at infinity is filled up with singularities.
(g) If the origin is a center, then there is at least one special singularity

except if f(x, y) = xn−1.
(h) Assume that all k ≤ n − 1 real zeros of the polynomial f(1, y) are

simple. Then the following statements hold.
(h.1) If n is even all the special singular points at infinity are cusps

and their local phase portrait might be one of the two shown in
Figure 1. Moreover between two cusps with local phase portrait
as in Figure 1.A there must be a cusp with local phase portrait
as in Figure 1.B.

(h.2) If n is odd then k ≥ 2 is even and there are k/2 special singulari-
ties at infinity which are saddles and k/2 special singularities at
infinity which are centers or foci. Moreover between two saddles
there must be a center or a focus.

The proof of statement (e) is Theorem 3.1 of [4] but the proof there is
more complicated than the one done in this paper and so we decided to
include it here. Theorem 1 is proved in section 3.

Theorem 2. Consider the polynomial differential system (2) of degree n ≥ 2
such that f is a homogeneous polynomial of degree n−1 satisfying (3) when
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Figure 2. Phase portraits of the polynomial differential system
(2) with n = 2.

Figure 3. Phase portraits of the polynomial differential system
(2) with n = 3.
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Figure 4. Phase portraits of the polynomial differential system
(2) with n = 4.

n is odd. The phase portraits in the Poincaré disc for n = 2, 3, 4 are given
in Figures 2, 3 and 4, respectively. Moreover, Figure 2 is achieved with the
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polynomial differential system

ẋ = −y + x2, ẏ = x(1 + y).

Figure 3 is achieved with the polynomial differential system

ẋ = −y + x2y, ẏ = x+ xy2,

and the local phase portraits (a), (b), (c), (d) and (e) of Figure 4 are achieved
with the polynomial differential systems

ẋ = −y − x2(x+ ay)(x+ 2y), ẏ = x− xy(x+ ay)(x+ 2y),

with a = 1,

ẋ = −y − x2(x+ ay)(x+ 2y), ẏ = x− xy(x+ ay)(x+ 2y),

with a ∈ (9/16, 5/8),

ẋ = −y − xy(y2 − 3x2), ẏ = x− y2(y2 − 3x2),

ẋ = −y + x2(5y2 − x2), ẏ = x− xy(5y2 − x2),
and

ẋ = −y − x2(x2 + y2), ẏ = x− xy(x2 + y2),

respectively.

The proof of Theorem 2 for the case n = 2 is given in [13]. We recall that
there is no infinite special singularity in this case.

The proof of Theorem 2 for the case n = 3 is given in [2]. We recall that
there are two special singularities that are a saddle and a center or focus.

The proof of Theorem 2 for the case n = 4 is given in [12]. We recall
that in the phase portraits A, B, C and D of Figure 4 there are three special
singularities that are cusps and in Figure 4.E there is only one special sin-
gularity (again a cusp). Figure 4.E can also be realized without any special
singularity for example in system

ẋ = −y + x4, ẏ = x+ yx3.

Figures 4.C and 4.D are missing in [12]. Here we provide the complete
characterization for systems (2) with homogeneous nonlinearities of degree
n = 4.

The following is the second main theorem of the paper.

Theorem 3. Consider the polynomial differential system (2) of degree n = 5
such that f is a homogenous polynomial of degree 4 satisfying (3) and with
all its real zeros being simple. The phase portraits in the Poincaré disc are
given in Figure 3 and in Figure 5.A and 5.B. Figure 3 is achieved with the
polynomial differential system

ẋ = −y − x2y(x2 + y2), ẏ = x+ xy2(x2 + y2).
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A B

Figure 5. Phase portraits of the polynomial differential system
(2) with n = 5.

Figures 5.A and 5.B are achieved with the polynomial differential systems

ẋ = −y − x2(y − x)(y − 2x)(y + 3x/7),

ẏ = x− xy(y − x)(y − 2x)(y + 3x/7),

and

ẋ = −y − x2y(y2 − x2), ẏ = x− xy2(y2 − x2),
respectively.

The proof of Theorem 3 is given in section 4.

2. Preliminary results

In this section we introduce some preliminary results. The proof of the
first result can be obtained in [4].

Proposition 4. Assume that the planar polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y)

of degree n has a center at the origin. Them this center is a isochronous
center if and only if by a linear change of variables and a rescaling of time
it can be written as in (2), with f(x, y) a polynomial of degree n − 1 and
f(0, 0) = 0.

In the case of isochronous centers with homogeneous nonlinearities the
following result was proved in [4] (see Theorem 2.1).

Theorem 5. Let f be a homogeneous polynomial of degree n− 1 as in the
statement of Theorem 1. Then system (2) has a uniform isochronous center
at the origin if either n is even or n is odd and condition (3) holds.

The following proposition deals with the existence of limit cycles. Its
proof can be found in [7]. We recall that V is an inverse integrating factor
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of a vector field χ = (P,Q) with P,Q ∈ R[x, y] if it satisfies the partial
differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V.

Theorem 6. Let χ = (P,Q) be a C1 vector field defined in a subset U ⊂ R2.
Let V be an inverse integrating factor of the vector field. If γ is a limit cycle
of χ then γ is contained Σ = {(x, y) ∈ U : V (x, y) = 0}.

Let R[x, y] be the ring of all real polynomials in the variables x and y.

An invariant algebraic curve of system (1) is a curve g(x, y) = 0 where
g ∈ R[x, y] satisfies

P (x, y)
∂g

∂x
+Q(x, y)

∂g

∂y
= K(x, y)g

where K ∈ R[x, y] is called the cofactor of g. Note that the curve is invariant
by the dynamics of system (1) in the sense that if a trajectory starts on the
curve it does not leave it.

An exponential factor of system (1) is a function F = exp(g/h) with
coprime g, h ∈ R[x, y] such that

P (x, y)
∂F

∂x
+Q(x, y)

∂F

∂y
= L(x, y)F,

where the polynomial L ∈ R[x, y] whose degree is the degree of the system
minus one, is called the cofactor of F .

We recall that in view of Theorem 8.7 (iv)) of [5] we have that

Proposition 7. Assume that a polynomial differential system χ admits p
invariant algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p and q
exponential factors Fi with cofactors Lj for j = 1, . . . , q. Then there exits
λj , µj ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = −div(χ)

if and only if the function

(4) fλ11 · · · f
λp
p Fµ11 · · ·F

µq
q

is an integrating factor of χ. Here div stands for the divergence of the system.

A function of the form in (4) is called a Darboux function.

The following theorem was proved in [15].

Theorem 8. The polynomial differential system (1) has a Liouvillian first
integral if and only if it has an integrating factor which is a Darboux func-
tion.
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The next result is proved in Theorem 3.5 of [5].

Theorem 9. Let (0, 0) be an isolated singular point of system

ẋ = y +A(x, y), ẏ = B(x, y),

where A and B are analytic in a neighborhood of the point (0, 0) and also
the first derivatives of A(x, y) and B(x, y) in the variables x, y evaluated at
(0, 0) are zero. Let y = f(x) be the solution of the equation y +A(x, y) = 0
in a neighborhood of the point (0, 0) and consider F (x) = B(x, f(x)) and
G(x) = (∂A/∂x+∂B/∂y)(x, f(x)). If A(x) 6≡ 0 and B(x) 6≡ 0 write F (x) =
axm + h.o.t and G(x) = bxn + h.o.t with m ∈ N and m ≥ 2, n ∈ N, n ≥ 1,
ab 6= 0. The following holds.

(a) if m is even and m < 2n+ 1, then the origin of X is a cusp.
(b) if m is odd and a > 0 then the origin of X is a saddle.
(c) if m is odd, a < 0 and m < 2n+ 1, then the origin of X is a center

or a focus.

3. Proof of Theorem 1

To obtain the finite singular points note that if x = 0 then y = 0, and if
y = 0 then x = 0. Otherwise, if x 6= 0 and y 6= 0 we have

y = xf(x, y) and x+ xf2(x, y) = x(1 + f2(x, y)) = 0,

which is never zero. In short, statement (a) is proved.

To prove statement (b) note that

g(x, y) = x2 + y2 = 0

is an invariant algebraic curve whose cofactor is 2f(x, y). By Proposition

7 we have that (x2 + y2)−(n+1)/2 is an integrating factor of system (2).
Consequently, in view of the Theorem 8 we conclude that system (2) has a
Liouvillian first integral. This completes the proof of statement (b).

Statement (c) is an immediate consequence of Theorem 5.

Statement (d) is an immediate consequence of Theorem 6. Indeed, if
system (2) has a limit cycle, since we have shown that it has an inverse

integrating factor (x2 + y2)(n+1)/2, in view of Theorem 6 the limit cycle
must be contained in x2 + y2 = 0, which is not possible. Hence, statement
(d) is proved.

For statement (e) we compute the infinite singular points in the local
chart U1. Then, in the local chart U1 system (2) becomes

u̇ = −(1 + u2)vn−1, v̇ = −v(f(1, u) + uvn−1).
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Therefore all points (u, 0) for all u ∈ R are infinite singular points in U1.
Note that the Jacobian matrix at (u, 0) is of the form(

0 0
0 −f(1, u)

)
.

Hence the linear part of the singular points that are not special, that is, the
points that after reparameterizating by the time ds = v dt are not singular
singular points of the system

(5) u′ = −(1 + u2)vn−2, v′ = −f(1, u)− uvn−1,

is normally hyperbolic and so in view of the results in [10], on these singular
points it starts or ends a unique orbit, implying that there are no global
centers in system (2). This concludes the proof of statements (e) and (f).

From (5) it follows that in the local chart U1 there are at most n−1 special
singular points (u, 0). The special singular points are given by the real zeroes
of f(1, u) except if f(x, y) = xn−1. If f(x, y) 6= xn−1 and n is even then
f(1, u) has odd degree and so it has at least one real zero, implying that there
is at least one special singularity. Assume now that f(x, y) 6= xn−1, n is odd,
the origin is a center and f(1, u) has no real zeros. Then the polynomial

f(x, y) is written in the form f(x, y) =
∏(n−1)/2
j=1 (αjx

2 + βjxy + γjy
2) with

β2j − 4αjγj < 0 for j = 1, . . . , (n− 1)/2. Then clearly∫ 2π

0
f(x, y)|x=cos θ,y=sin θ dθ > 0

contradicting condition (3). In short, statement (g) is proved.

Now we start the proof of statement (h). Under our assumption all the
singular points u of system (5) are simple zeros of f(1, u), that is f ′(1, u) 6= 0.
Since the linear part of system (5) at the singular points is(

0 0
−f ′(1, u) 0

)
,

the singular point (u, 0) is nilpotent. Since at most one more additional
infinite singular point can appear, which is the origin of the local chart U2,
without loss of generality we can assume that all special infinite singular
points of system (5) are on the local chart U1, otherwise doing a rotation in
the coordinates (x, y) this would be the case. So in what follows we do not
need to study whether the origin of the local chart U2 is a special infinite
singular point.

To study the special infinite singular points of system (5) (and so of system
(2)) we write

f(1, u) =

`0∏
j=1

(u− rj)
`1∏
k=0

(u2 + βkx+ γk),
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where `0 is a positive integer, `1 is a non-negative integer and r1 < r2 < · · · <
r`0 . Now we study the singular point (rp, 0) with 1 ≤ p ≤ `0. We perform a
translation to the origin of the point (rp, 0) taking the new variables

U = u− rp, V = v.

In these new variables system (5) becomes

U ′ = −(1 + r2p + 2rpU + U2)V n−2,

V ′ = −U
`0∏

j=1,j 6=p
(U − (rj − rp))

`1∏
k=0

(U2 + (βk + 2rp)U + r2p + 2rpβk + γk)

− (U + rp)V
n−1.

(6)

Note that in order to write this system under the normal form for applying
Theorem 9 we make a scaling. Note that

U ′ = −(1 + r2p)V
n−2 − 2rpUV

n−2 − U2V n−2,

V ′ = A0U +A1U
2 + . . .+A`0U

`0 − rpV n−1 − UV n−1,
(7)

where

A0 = (−1)`0
`0∏

j=1,j 6=p
(rj − rp)

`1∏
k=0

(r2p + 2rpβk + γk) 6= 0,

and A1, A2, . . . , A`0 belong to the higher order terms in U for V ′. Now we
introduce the scaling dτ = A0 ds and system (7) becomes

U̇ = −
1 + r2p
A0

V n−2 +
2rp
A0

UV n−2 +
1

A0
U2V n−2 = B(V,U),

V̇ = U + Ã1U
2 + . . .+ Ã`0U

`0 − rp
A0
V n−1 − 1

A0
UV n−1 = U +A(V,U),

(8)

where Ãi = Ai/A0 for i = 2, . . . , `0 and the dot means derivative with respect
to the new time τ . Note that system (8) is in the normal form for applying
Theorem 9 with (x, y) = (V,U). Solving U = f(V ) we get that

U =
1 + r2p
A0

V n−2 + h.o.t.

Moreover

F (V ) = B(f(V ), V ) = −
1 + r2p
A0

V n−2 + h.o.t.
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and

G(V ) =

(
∂A

∂V
+
∂B

∂U

)
(f(V ), V ))

=
rp(n− 1)

A0
V n−2 + h.o.t+

2rp
A0

V n−2 + h.o.t

=
rp(n+ 1)

A0
V n−2 + h.o.t.

If n is even applying Theorem 9 we conclude that (rp, 0) is a cusp. There-
fore modulo a translation to the origin and undoing the rescaling of time
the local phase portrait for each singular point (rp, 0) might be one of the
two shown in Figure 1. Moreover, recall that if A0 is positive for rp then it
is negative for rp+1 and rp−1 because rp−1 < rp < rp+1 and these zeroes are
simple. Therefore between two cusps with local phase portrait as in Figure
1.A there must be a cusp with local phase portrait as in Figure 1.B. This
concludes the proof of statement (h.1).

If n is odd applying Theorem 9 we conclude that (rp, 0) is a saddle if
(1 + r2p)/A0 < 0, and it is a focus or a center if (1 + r2p)/A0 > 0. Moreover,
recall that if A0 is positive for rp then it is negative for rp+1 and rp−1 because
rp−1 < rp < rp+1. So, if (rp, 0) is a saddle, (rp+1, 0) and (rp−1, 0) must be
foci or centers, or vice versa. Moreover, if n is odd, n−1 is even and then `0
is even. So there are `0/2 special singular points which are saddles and `0/2
special singular points which are foci or centers at the infinity in the local
chart U1. Moreover we have shown that they between two saddles there
must be a center or a focus. This concludes the proof of statement (h.2)
and concludes the proof of the theorem.

4. proof of Theorem 3

Note that system (2) is invariant under the change (x, y) 7→ (−x,−y).
Therefore, this system is symmetric with respect to the origin and thus it is
enough to study the phase portrait in the positive quadrant. Note that in
this system there are either two special infinite singular points or four special
singular points. If there are two special singular points then they are a saddle
and a center or a focus. In this case the phase portrait is the same as the
one in Figure 3. When there are four special singular points, then the local
phase portrait is obtained in this case taking into account: the symmetry,
the existence and uniqueness of the finite and infinite singular points; the
existence and uniqueness theorem for the solutions of a differential system;
the boundary of the Poincaré disc that consists entirely of singular points and
the graphic at the boundary of the period annulus of the uniform isochronous
center at the origin is formed by separatrices of the infinite singular points.
Hence the global phase portraits in this case are topologically equivalent to
the ones of Figures 5.A and 5.B. Moreover we have provided systems that
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realize these phase portraits in Figures 5.A and 5.B concluding the proof of
the theorem.
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