
1

GENERALIZED ANALYTIC INTEGRABILITY OF A CLASS OF

POLYNOMIAL DIFFERENTIAL SYSTEMS IN C2

JAUME LLIBRE1 AND YUZHOU TIAN1,2

Abstract. This paper study the type of integrability of the differential sys-
tems with separable variables ẋ = h (x) f (y), ẏ = g (y), where h, f and g

are polynomials. We provide a criterion for the existence of generalized ana-

lytic first integrals of such differential systems. Moreover we characterize the
polynomial integrability of all such systems.

In the particular case h (x) = (ax + b)m we provide necessary and sufficient

conditions in order that this subclass of systems has a generalized analytic
first integral. These results extend known results from [5] and [13]. Such

differential systems of separable variables are important due to the fact that

after a blow-up change of variables any planar quasi-homogeneous polynomial
differential system can be transformed into a special differential system of

separable variables ẋ = xf (y), ẏ = g (y), with f and g polynomials.

1. Introduction and the main results

Planar polynomial differential systems play an important role in the qualitative
theory of dynamical systems due to their many applications in physics, chemist,
biology, economics, .... Nowadays the qualitative theory has a gained wide devel-
opment for polynomial systems. For a planar differential system, the existence of
a first integral determines completely its global dynamical behavior. So a natural
problem arises: Given a polynomial differential system in R2 or C2, how to de-
cide if this system has a first integral? For general polynomial differential systems
this problem is very difficult to solve. During the past three decades many mathe-
maticians investigated the integrability of different classes of polynomial differential
systems, such as Liénard systems [5,13,15,16], Lotka-Volterra systems [7,8,10–12],
and quasi-homogeneous polynomial systems [1–4,6, 17], etc.

Let C be the set of complex numbers and C[x] be the ring of all complex polyno-
mials in the variable x. We consider the following complex polynomial differential
systems

ẋ = h (x) f (y) , ẏ = g (y) ,(1)

where h ∈ C [x] and f, g ∈ C [y] are coprime. The associated vector field of this
system is

X = h (x) f (y)
∂

∂x
+ g (y)

∂

∂y
.(2)
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The integer d = max {deg hf,deg g} is the degree of the vector field X .

Let U be an open set of C2. A non-locally constant function H : U → C is called
a first integral of system (1) if it is constant along any solution curve of system (1)
contained in U . If H (x, y) is differentiable, then H is a first integral of system (1)
if and only if

XH = h (x) f (y)
∂H

∂x
+ g (y)

∂H

∂y
= 0(3)

in U .

System (1) has an analytic first integral if there exists a first integral H (x, y)
which is an analytic function in the variables x and y. A function of the form

ϕ(y) = a
∏k
i=1 (y − αi)γi is called a product function with αj , γj ∈ C and a ∈

C \ {0}. The polynomial function ϕ (y) is square-free if it can be written as ϕ (y) =

a
∏k
i=1 (y − αi) with a ∈ C \ {0}, αi 6= αj for i, j = 1, . . . , k and i 6= j. We

say that system (1) has a generalized analytic first integral if there exists a first
integral H (x, y) which is an analytic function in the variable x whose coefficients
are product functions in the variable y.

Let

F (z) =

∞∑
n=−∞

an (z − z0)
n

be a Laurent expansion at a point z0. The coefficient a−1 = Res [F (z) , z0] is the
residue of F (z) at z0.

Differential system (1) of separable variables has a lot of applications. For ex-
ample Giné et al. in Lemma 2.2 of [7] proved that any planar quasi-homogeneous
polynomial differential system can be transformed into a polynomial differential
system (1) of the form

ẋ = xf (y) , ẏ = g (y) ,(4)

with f (y) , g (y) ∈ C [y]. Hence the study of the type of integrability of the quasi-
homogeneous polynomial systems can be reduced to study the type of integrability
of their corresponding polynomial systems (4). Note that the polynomial differential
systems (4) is a subclass of polynomial differential systems (1). In this paper we
generalize some known facts for the systems (4) to systems (1), and provide other
new results.

First we present a necessary condition for the existence of generalized analytic
first integrals of system (1).

Theorem 1. Assume that α1, · · · , αk are the different roots of the polynomial g (y).
If system (1) has a generalized analytic first integral, then it must satisfy one of the
following two conditions.

(a) The polynomials h (x) and g (y) are square-free, and deg f < deg g.
(b) The roots of the polynomial h (x) are not simple and the Res [f (y) /g (y) , αi] =

0 for all i = 1, . . . , k.

The following result is due to Llibre and Valls, see Theorem 1.1 of [14].
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Theorem 2. Let h (x) = x. Then the polynomial differential system (1) has a
generalized analytic first integral if and only if g (y) is square-free, and deg f <
deg g.

In the next theorem we generalize Theorem 2 when h (x) = (ax+ b)
m

, where
a ∈ C \ {0} and m ∈ N. As usual N denotes the set of positive integers.

Theorem 3. Let h (x) = (ax+ b)
m

with a ∈ C \ {0} and m ∈ N. Assume that
α1, · · · , αk are the different roots of the polynomial g (y). The following statements
hold.

(a) If m = 1, then system (1) has a generalized analytic first integral if and
only if g (y) is square-free, and deg f < deg g.

(b) If m ≥ 2, then system (1) has a generalized analytic first integral if and
only if Res [f (y) /g (y) , αi] = 0 for all i = 1, . . . , k.

System (4) has a polynomial first integral if and only if g (y) is square-free,
deg f < deg g and Res [f (y) /g (y) , αj ] ∈ Q− for j = 1, . . . , k, see statement (viii)
of Lemma 2.4 of [6]. For the more general polynomial differential system (1) we
provide necessary and sufficient conditions for its polynomial integrability in the
following theorem.

Theorem 4. Let α1, · · · , αk be different roots of the polynomial g (y). System (1)
has a polynomial first integral if and only if the two following conditions hold.

(a) The polynomials h (x) = ax+ b and g (y) is square-free, and deg f < deg g.
(b) aRes [f (y) /g (y) , αj ] ∈ Q− for j = 1, . . . , k.

This paper is organized as follows. We present some preliminary results in section
2. The proofs of Theorems 1, 3 and 4 are given in section 3. In section 4 we illustrate
our results with some examples.

2. Preliminaries

In this section we introduce some necessary lemmas for the proof of Theorems
1, 3 and 4. The following lemma can be found in many textbooks, as for instance
in [9].

Lemma 5. Assume that F,G ∈ C [y] are coprime with deg F < deg G = w. Let p
be the coefficient of the monomial yw of the polynomial G (y) and q the one of the
monomial yw−1 of the polynomial F (y).

(a) If y1, y2, . . . , ys are the distinct roots of G (y) with multiplicity n1, n2, . . . , ns,
respectively, then

F (y)

G (y)
=

s∑
i=1

ni∑
j=1

ti,j

(y − yi)j
,(5)

where ti,1 = Res [F (y) /G (y) , yi] and ti,ni
6= 0 for i = 1, . . . , s.
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(b) If G (y) is square-free that is G (y) =
∏w
i=1 (y − yi), then

F (y)

G (y)
=

w∑
i=1

ti
y − yi

,(6)

where

ti = Res [F (y) /G (y) , yi] for i = 1, . . . , w and

w∑
i=1

ti = q/p.(7)

The rational function F (y) /G (y) is a square-free rational function if it satisfies
statement (b) of Lemma 5.

Lemma 6. The function ϕ (y) is a product function if and only if ϕ′ (y) /ϕ (y) is
a square-free rational function.

Proof. Necessity. Assume that ϕ (y) is the product function ϕ (y) = a
∏k
i=1 (y − αi)γi .

Then

lnϕ (y) = ln a+

k∑
i=1

γi ln (y − αi) .(8)

Derivating equation (8) with respect to y, we get that

ϕ′ (y)

ϕ (y)
=

k∑
i=1

γi
y − αi

(9)

is a square-free rational function. Hence necessity is proved.

Sufficiency. Since ϕ′ (y) /ϕ (y) is a square-free rational function we have equation
(9). Integrating equation (9) we get

ϕ (y) = a

k∏
i=1

(y − αi)γi ,

where a is an integration constant. The proof of Lemma 6 is completed. �

Consider h (x) =
∑m−n
i=0 hn+ix

n+i with m ≥ n ≥ 1,hn+i ∈ C and hmhn 6= 0. If
system (1) has a generalized analytic first integral H (x, y), then H (x, y) can be
written as a power series in x of the form

H (x, y) =
∑
j≥0

aj (y)xj ,(10)

where the coefficients aj (y) are product functions in the variable y. From equation
(3) we obtain

XH =
∑
j≥0

jf (y) aj (y)

(
m−n∑
i=0

hn+ix
n+i

)
xj−1 +

∑
j≥0

g (y) a′j (y)xj

= f (y)

m−n∑
i=0

∑
j≥0

jhn+iaj (y)xn+i+j−1 + g (y)
∑
j≥0

a′j (y)xj = 0.

(11)
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The equation

m−n∑
i=0

∑
j≥0

jhn+iaj (y)xn+i+j−1

can be decomposed into sum of the following equations:

for i = m− n,
∑
j≥0

jhmaj (y)xm+j−1;

for i = m− n− 1,
∑
j≥0

jhm−1aj (y)xm+j−2 =
∑
j≥0

(j + 1)hm−1aj+1 (y)xm+j−1;

for i = m− n− 2,∑
j≥0

jhm−2aj (y)xm+j−3 =
∑
j≥0

(j + 2)hm−2aj+2 (y)xm+j−1 +

1∑
j=0

jhm−2aj (y)xm+j−3;

for i = m− n− 3,∑
j≥0

jhm−3aj (y)xm+j−4 =
∑
j≥0

(j + 3)hm−3aj+3 (y)xm+j−1 +

2∑
j=0

jhm−3aj (y)xm+j−4;

for i = m− n− 4,∑
j≥0

jhm−4aj (y)xm+j−5 =
∑
j≥0

(j + 4)hm−4aj+4 (y)xm+j−1 +

3∑
j=0

jhm−4aj (y)xm+j−5;

...

for i = 2,∑
j≥0

jhn+2aj (y)xn+j+1 =
∑
j≥0

(m− n+ j − 2)hn+2am−n+j−2 (y)xm+j−1+

m−n−3∑
j=0

jhn+2aj (y)xn+j+1;

for i = 1,∑
j≥0

jhn+1aj (y)xn+j =
∑
j≥0

(m− n+ j − 1)hn+1am−n+j−1 (y)xm+j−1+

m−n−2∑
j=0

jhn+1aj (y)xn+j ;

for i = 0,∑
j≥0

jhnaj (y)xn+j−1 =
∑
j≥0

(m− n+ j)hnam−n+j (y)xm+j−1 +

m−n−1∑
j=0

jhnaj (y)xn+j−1;

and
∑
j≥0

g (y) a′j (y)xj =
∑
j≥0

g (y) a′m+j−1 (y)xm+j−1 +

m−2∑
j=0

g (y) a′j (y)xj .
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Then equating the coefficients of xj in (11) we get the equations that aj (y) must
satisfy:

a′j (y) = 0 for j = 0, . . . , n− 1;

a′j (y) = −f (y)

g (y)

j−n+1∑
i=1

ihj−i+1ai (y) for j = n, . . . ,m− 2;

a′j (y) = −f (y)

g (y)

m−n∑
i=0

(j + i−m+ 1)hm−if (y) aj+i−m+1 (y) for j ≥ m− 1.

(12)

Remark 7. Note that a0 (y) is a constant. In the following we can assume a0 (y) =
0, because a first integral does not depend on the sum of an additional constant.

The solutions of equations (12) are characterized by the following two lemmas.

Lemma 8. Let h (x) =
∑m−n
i=0 hn+ix

n+i with hn+i ∈ C and hmhn 6= 0. Assume
that n = 1 and that the differential polynomial system (1) has a generalized analytic
first integral (10). Then the following statements hold.

(a) There exist polynomials Fj (u) with deg Fj = j and Fj (0) = 0 such that

aj (y) = Fj

(
exp

(
−h1

∫
f (y)

g (y)
dy

))
for all j ∈ N.

(b) The polynomial g (y) is square-free and deg f < deg g.

Proof. (a) When n = 1 equations (12) can be rewritten as

a′j (y) = −jh1
f (y)

g (y)
aj (y)− f (y)

g (y)

j−1∑
i=1

ihj−i+1ai (y) for j = 1, . . . ,m− 2,(13)

and

a′j (y) = −jh1
f (y)

g (y)
aj (y)− f (y)

g (y)

m−2∑
i=0

(j + i−m+ 1)hm−if (y) aj+i−m+1 (y) ,

(14)

for j ≥ m− 1.

For m = 2 we only need to study equation (14) that is

a′j (y) = −jh1
f (y)

g (y)
aj (y)− (j − 1)h2

f (y)

g (y)
aj−1 (y) ,(15)

with j ≥ 1.

When j = 1 the solution of equation (15) is

a1 (y) = C1 exp

(
−h1

∫
f (y)

g (y)
dy

)
,(16)

where C1 is an integration constant. Obviously F1 (u) = C1u. Hence for j = 1
statement (a) holds.
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Assume that there exists polynomial Fj (u) with deg Fj = j and Fj (0) = 0 such
that

aj (y) = Fj

(
exp

(
−h1

∫
f (y)

g (y)
dy

))
.

By the induction hypothesis and equation (15) we have

a′j+1 (y) = − (j + 1)h1
f (y)

g (y)
aj+1 (y)− jh2

f (y)

g (y)
Fj

(
exp

(
−h1

∫
f (y)

g (y)
dy

))
.

(17)

The solution of the linear differential equation (17) is

aj+1 (y) = exp

(
− (j + 1)h1

∫
f (y)

g (y)
dy

)(
Cj+1

− jh2
∫
f (y)

g (y)
exp

(
(j + 1)h1

∫
f (y)

g (y)
dy

)
Fj

(
exp

(
−h1

∫
f (y)

g (y)
dy

))
dy
)
.

(18)

Let u = exp
(
−h1

∫ f(y)
g(y)dy

)
. Then

du

u
= −h1

f (y)

g (y)
dy.(19)

So equation (18) can be written as

aj+1 (y) = Fj+1 (u) = uj+1

(
Cj+1 +

jh2
h1

∫
1

uj+2
Fj (u) du

)
.(20)

Using the induction hypothesis deg Fj = j and Fj (0) = 0, we get deg Fj+1 = j + 1
and Fj+1 (0) = 0. The induction is proved and statement (a) follows for m = 2.

For m ≥ 3 we need to consider equations (13) and (14), that is

a′j (y) = −jh1
f (y)

g (y)
aj (y)− f (y)

g (y)

j−1∑
i=1

ihj+1−iai (y) for j = 1, . . . ,m− 2,(21)

and

a′j (y) = −jh1
f (y)

g (y)
aj (y)− f (y)

g (y)

m−2∑
i=0

(j + i−m+ 1)hm−iaj+i−m+1 (y) ,(22)

for j ≥ m− 1.

For j = 1 equation (21) becomes

a′1 (y)

a1 (y)
= −h1

f (y)

g (y)
.(23)

It is easy to get that

a1 (y) = C1 exp

(
−h1

∫
f (y)

g (y)
dy

)
,

where C1 is an integration constant. Let F1 (u) = C1u. So statement (a) holds for
j = 1.
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Assume that for j = 1, . . . , l there exist polynomials Fj (u) with deg Fj = j such
that

aj (y) = Fj

(
exp

(
−h1

∫
f (y)

g (y)
dy

))
.

Next we consider j = l + 1. If l + 1 ≤ m− 2, then

a′l+1 (y) = −(l + 1)h1
f (y)

g (y)
al+1 (y)− f (y)

g (y)

l∑
i=1

ihl+2−iFi (u) ,(24)

with u = exp
(
−h1

∫ f(y)
g(y)dy

)
. The solution of the linear differential equation (24)

is

al+1 (y) = ul+1

(
Cl+1 −

l∑
i=1

ihl+2−i

∫
f (y)

g (y)

Fi (u)

ul+1
dy

)
,(25)

with u = exp
(
−h1

∫ f(y)
g(y)dy

)
. From equation (19) it follows that

al+1 (y) = Fl+1 (u) = ul+1

(
Cl+1 +

l∑
i=1

ihl+2−i

h1

∫
Fi (u)

ul+2
du

)
.

By the induction hypothesis deg Fj = j and Fj (0) = 0 for j = 1, . . . , l, we obtain
deg Fl+1 = l + 1 and Fl+1 (0) = 0.

If l + 1 ≥ m− 1, then

a′l+1 (y) = −(l + 1)h1
f (y)

g (y)
al+1 (y)− f (y)

g (y)

m−2∑
i=0

(l + i−m+ 2)hm−iFl+i−m+2 (u) ,

(26)

with u = exp
(
−h1

∫ f(y)
g(y)dy

)
. By the same arguments as above one can get that

al+1 (y) = Fl+1 (u) = ul+1

(
Cl+1 +

m−2∑
i=0

(l + i−m+ 2)hm−i
h1

∫
Fl+i−m+2 (u)

ul+1
du

)
.

(27)

Applying the induction hypothesis deg Fj = j and Fj (0) = 0 for j = 1, . . . , l, we
have deg Fl+1 = l + 1 and Fl+1 (0) = 0. The proof of statement (a) is done.

(b) Let aj (y) = constant = Cj for j ∈ N. From statement (a) we know that
there exists a polynomial Fj (u) such that

aj (y) = Fj (u) = Cj with u = exp

(
−h1

∫
f (y)

g (y)
dy

)
and Fj (0) = 0.

Thus Cj = 0. Since the first integral H (x, y) is a non-locally constant function,
there exists a positive integer j0 such that aj0 (y) is not a constant and ai (y) = 0
for i = 1, . . . , j0 − 1. Using equations (13) and (14) we have

a′j0 (y) = −j0h1
f (y)

g (y)
aj0 (y) .
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Consequently

aj0 (y) = Cj0 exp

(
−j0h1

∫
f (y)

g (y)

)
,(28)

with constant Cj0 6= 0. From Lemma 6 we get that aj0 (y) if and only if f (y) /g (y)
is a square-free rational function. So g (y) is square-free and deg f < deg g. This
completes the proof of this lemma. �

Lemma 9. Let h (x) =
∑m−n
i=0 hn+ix

n+i with hn+i ∈ C and hmhn 6= 0. Assume
that n ≥ 2 and that the polynomial differential system (1) has a generalized analytic
first integral (10), and α1, · · · , αk are the different roots of the polynomial g (y). The
following statements hold.

(a) There exist polynomials Fj (u) such that

aj (y) = Fj

(∫
f (y)

g (y)
dy

)
,

for j ≥ n, and aj (y) are constants for j = 1, . . . , n− 1.
(b) Then Res [f (y) /g (y) , αi] = 0 for all i = 1, . . . , k.

Proof. (a) From equations (12) we have that

a′j (y) = 0 for j = 1, . . . , n− 1;(29)

a′j (y) = −f (y)

g (y)

j−n+1∑
i=1

ihj−i+1ai (y) for j = n, n+ 1, . . . ,m− 2;(30)

and

a′j (y) = −f (y)

g (y)

m−n∑
i=0

(j + i−m+ 1)hm−iaj+i−m+1 (y) for j ≥ m− 1.(31)

Then aj (y) = constant = Cj for j = 1, . . . , n− 1.

For j = n equation (30) can be written as

a′n (y) = −hn
f (y)

g (y)
a1 (y) = −hnC1

f (y)

g (y)
.

We get

an (y) = −hnC1

∫
f (y)

g (y)
dy + Cn,

where Cn is an integration constant. Let Fn (u) = −hnC1u+ Cn. Thus statement
(a) holds for j = n.

The constants aj (y) = Cj for j = 1, . . . , n − 1 can be regarded as polynomials
of degree 0. Assume that for j = 1, . . . , l there exist polynomials Fj (u) such that

aj (y) = Fj

(∫
f (y)

g (y)
dy

)
.

If n ≤ l + 1 ≤ m− 2, then function al+1 (y) satisfy

a′l+1 (y) = −f (y)

g (y)

l−n+2∑
i=1

ihl−i+2Fi

(∫
f (y)

g (y)
dy

)
.(32)
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Let u =
∫

(f (y) /g (y)) dy. Note that du = (f (y) /g (y)) dy. Therefore

al+1 (y) = Fl+1 (u)

= −
l−n+2∑
i=1

ihl−i+2

∫
f (y)

g (y)
Fi

(∫
f (y)

g (y)
dy

)
dy

= −
l−n+2∑
i=1

ihl−i+2

∫
Fi (u) du.

If l + 1 ≥ m− 1, then

a′l+1 (y) = −f (y)

g (y)

m−n∑
i=0

(l + i−m+ 2)hm−iFl+i−m+2 (u) .

Using similar arguments we obtain

al+1 (y) = Fl+1 (u) = −
m−n∑
i=0

(l + i−m+ 2)hm−i

∫
Fl+i−m+2 (u) du.

Therefore statement (a) is proved.

(b) Suppose that aj (y) = constant = Cj for all j ≥ n. Then the first integral
H (x, y) is independent of the variable y. This implies that ẋ = 0, which is a
contradiction. Therefore there exists a positive integer j0 ≥ n such that aj0 (y) is
not a constant and ai (y) = constant = Ci for i = 1, . . . , j0 − 1. From equations
(30) and (31) we obtain that

a′j0 (y) = C
f (y)

g (y)
,(33)

where C = −
∑j−n+1
i=1 ihj−i+1Ci or

∑m−n
i=0 (j + i−m+ 1)hm−iCj+i−m+1. Hence

aj0 (y) = C

∫
f (y)

g (y)
dy + Cj0 ,(34)

with constant C 6= 0. Since aj0 (y) is a product function, by Lemma 6, we get that

C

C
∫ f(y)
g(y)dy + Cj0

f (y)

g (y)

is a square-free rational function. This implies that∫
f(y)

g(y)
dy(35)

is a rational function.

We know that there exist two polynomials p (y) , r (y) ∈ C [y] such that

f (y) = p (y) g (y) + r (y) and deg r < deg g.

The polynomial r (y) cannot be zero due to the fact that f (y) and g (y) are coprime.
Consequently ∫

f (y)

g (y)
dy = Q (y) +

∫
r (y)

g (y)
dy,(36)
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with Q′ (y) = p (y). Assume that α1, . . . , αk are the distinct roots of g (y) with mul-
tiplicity n1, n2, . . . , nk, respectively. Using Lemma 5 r (y) /g (y) can be expressed
as

r (y)

g (y)
=

k∑
i=1

ni∑
j=1

ci,j

(y − αi)j
,(37)

where ci,ni 6= 0 for i = 1, . . . , k. Thus∫
r (y)

g (y)
dy = ln

(
k∏
i=1

(y − αi)ci,1
)

+

k∑
i=1

ni∑
j=2

∫
ci,j

(y − αi)j
dy.(38)

Since equation (35) is a rational function and Q (y) (see equation (36)) is polyno-
mial, equation (38) is also a rational function. Note that j ≥ 2 in equation (38).
This implies that ∫

ci,j

(y − αi)j
dy

is a rational function. Then ci,1 must be 0, that is Res [f (y) /g (y) , αi] = 0 for all
i = 1, . . . , k. The proof is done. �

3. Proofs of Theorems 1, 3 and 4

The main purpose of this section is to prove Theorems 1, 3 and 4.

Proof of Theorem 1. We claim that if h (x) simultaneously has simple roots and
multiple roots, then system (1) has no generalized analytic first integral.

Let β1 and β2 be a simple root and a root of multiplicity n of h (x) with n ≥ 2,
respectively. Assume that system (1) has a generalized analytic first integral. Doing
the change of variables (x, y, t) 7→ (x+ β1, y, t), system (1) becomes

ẋ = h̃ (x) f (y) , ẏ = g (y) ,(39)

where h̃ (x) =
∑m
i=1 h̃ix

i with h̃i ∈ C and h̃mh̃1 6= 0. Since system (1) has a
generalized analytic first integral, system (39) also has a generalized analytic first
integral. By Lemma 8 we get that g (y) is square-free and deg f < deg g. This
means that Res [f (y) /g (y) , αi] 6= 0 for all i = 1, . . . , k.

Under the transformation (x, y, t) 7→ (x+ β2, y, t) system (1) changes to

ẋ = h̄ (x) f (y) , ẏ = g (y) ,(40)

where h̄ (x) =
∑m
i=n h̄ix

i with h̄i ∈ C and h̄mh̄n 6= 0. From Lemma 9 it follows
that

Res [f (y) /g (y) , αi] = 0

for all i = 1, . . . , k. This is in contradiction with Res [f (y) /g (y) , αi] 6= 0 for all
i = 1, . . . , k. So the claim is proved.

In summary, the polynomial h (x) is square-free or it has no simple roots. If h (x)
is square-free, using Lemma 8, we obtain statement (a). If h (x) has no simple roots,
by Lemma 9, statement (b) holds. This completes the proof of the theorem. �
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Proof of Theorem 3. Doing the change of variables (x, y, t) 7→ ((x− b) /a, y, t/a),
system (1) becomes

ẋ = xmf (y) , ẏ =
1

a
g (y) .(41)

(a) From Theorem 2 it follows that statement (a) holds.

(b) Necessity. Using statement (a) of Theorem 1 the necessity is obvious.

Sufficiency. It is sufficient to show that system (41) has a generalized analytic
first integral. Assume that α1, . . . , αk are the distinct roots of g (y) with multiplicity
n1, n2, . . . , nk, respectively. There exist two polynomials p (y) , r (y) ∈ C [y] such
that

f (y) = p (y) g (y) + r (y) and deg r < deg g.

The polynomial r (y) cannot be zero due to the fact that f (y) and g (y) are coprime.

By Lemma 5 we have

f (y)

g (y)
= p (y) +

r (y)

g (y)
= p (y) +

k∑
i=1

ni∑
j=1

ci,j

(y − αi)j
,(42)

where ci,ni
6= 0 for i = 1, . . . , k. Since Res [f (y) /g (y) , αi] = 0 that is ci,1 = 0 for

all i = 1, . . . , k, we obtain

P (y) :=

∫
f (y)

g (y)
dy =

∫
p (y) dy +

k∑
i=1

ni∑
j=2

∫
ci,j

(y − αi)j
dy.(43)

Note that j ≥ 2 in equation (43). Thus P (y) is a rational function, that is, a
product function. Now we show that

H (x, y) =
(m− 1)xm−1

1 + a (m− 1)xm−1P (y)
(44)

is a generalized analytic first integral of system (41). Doing simple computations
we have

∂H

∂x
=

(m− 1)
2
xm−2

(1 + a (m− 1)xm−1P (y))
2 and

∂H

∂y
= − a (m− 1)

2
x2m−2

(1 + a (m− 1)xm−1P (y))
2

f (y)

g (y)
.

Therefore

XH = xmf (y)
∂H

∂x
+

1

a
g (y)

∂H

∂y
= 0.

Moreover H (x, y) can be written as a power series in x

H (x, y) =
(m− 1)xm−1

1− a (1−m)xm−1P (y)
= (m− 1)xm−1

∑
j≥0

aj (1−m)
j
P j (y)x(m−1)j .

This completes the proof of the theorem. �

Proof of Theorem 4. Necessity. We claim that h (x) is square-free.
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Let β1, . . . , βl be different roots of the polynomial h (x). Suppose that β is an
arbitrary root of the polynomial h (x) with multiplicity n. By changing the variables
(x, y, t) 7→ (x+ β, y, t), system (1) is equivalent to

ẋ = h̃ (x) f (y) , ẏ = g (y) ,(45)

where h̃ (x) =
∑m
i=n h̃ix

i with h̃i ∈ C and h̃mh̃n 6= 0. Note that h̃n = h(n)(β)/n!.
Since system (1) has a polynomial first integral, system (45) also has a polynomial
first integral, that is

H (x, y) =
∑
j≥0

aj (y)xj ,(46)

where aj (y) are polynomials. Obviously H (x, y) is a generalized analytic first
integral. From the proof of Lemmas 8 and 9 we know that there exists a positive
integer j0 such that aj0 (y) is not a constant, and ai (y) = constant = Ci for
i = 1, . . . , j0 − 1.

Assume that n ≥ 2. From the proof of statement (b) of Lemma 9, we get

aj0 (y) = C

∫
f (y)

g (y)
dy + Cj0 ,(47)

with constant C 6= 0 (see equation (34)). By equation (38) aj0 (y) is not a polyno-
mial. Thus β is a simple root of h (x), that is n = 1. Using Theorem 1 we obtain
that the polynomials h (x) and g (y) are square-free, and deg f < deg g. Hence the
claim is proved.

From the proof of statement (b) of Lemma 8 we have

aj0 (y) = Cj0 exp

(
−j0h̃1

∫
f (y)

g (y)

)
,(48)

with h̃1 = h′ (β) and the constant Cj0 6= 0 (see equation (28)).

Applying Lemma 5 f (y) /g (y) can be expressed as

f (y)

g (y)
=

k∑
j=1

µj
y − αj

,(49)

where µj = Res [f (y) /g (y) , αj ] for j = 1, . . . , k. Therefore

aj0 (y) = Cj0

k∏
j=1

(y − αi)−j0h̃1µj .(50)

Since aj0 (y) is a polynomial we have h̃1µj ∈ Q− for all j = 1, . . . , k. Note that β
is an arbitrary root of the polynomial h (x). Thus

h′ (βi) · Res [f (y) /g (y) , αj ] ∈ Q− for i = 1, . . . , l and j = 1, . . . , k.(51)

This means that h′ (β1) /h′ (βi) ∈ Q+ for i = 1, . . . , l.

Assume that l ≥ 2. Using statement (b) of Lemma 5 1/h (x) can be written as

1

h (x)
=

l∑
i=1

ti
x− βi

,
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with ti = Res [1/h (x) , βi] = 1/h′ (βi) 6= 0. From equation (7) we obtain

l∑
i=1

ti =

l∑
i=1

1

h′ (βi)
= 0.(52)

One can get
l∑
i=1

h′ (β1)

h′ (βi)
= 0,

which is in contradiction with h′ (β1) /h′ (βi) ∈ Q+ for i = 1, . . . , l. So l = 1, that
is h (x) = ax+ b with a ∈ C \ {0}. Then equation (51) becomes

aRes [f (y) /g (y) , αj ] ∈ Q− for j = 1, . . . , k.

This proves the necessity.

Sufficiency. Let µj = Res [f (y) /g (y) , αj ] and consider

H̃ (x, y) =

(
x+

b

a

) 1
a

 k∏
j=1

(y − αj)−µj

 .(53)

Since aµj ∈ Q− there exists a positive integer N such that

H (x, y) =
(
H̃ (x, y)

)aN
=

(
x+

b

a

)N  k∏
j=1

(y − αj)−µjaN

(54)

is a polynomial. Next we show that polynomial (54) is a first integral of system

(1). In fact it is sufficient to prove that H̃ (x, y) is a first integral of system (1).

Straightforward computations show that

∂H̃

∂x
=
H̃ (x, y)

ax+ b
,(55)

and

∂H̃

∂y
= −H̃ (x, y)

 k∑
j=1

µj
y − αj

 .(56)

The polynomial g (y) is square-free with deg f < deg g. Using Lemma 5 we have

f (y)

g (y)
=

k∑
j=1

µj
y − αj

.(57)

Equation (56) can be written as

∂H̃

∂y
= −H̃ (x, y)

f (y)

g (y)
.

Thus

X H̃ = (ax+ b) f (y)
∂H̃

∂x
+ g (y)

∂H̃

∂y
= 0.

That is H̃ (x, y) is a first integral of system (1). This completes the proof of the
theorem. �
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4. Examples

In this section we present some applications of our results.

Example 10. Consider the differential system

ẋ = (x− 1) (x− 2)
2
y, ẏ = y + 1.(58)

It has a first integral

H (x, y) =
x− 2

(x− 1) (y + 1)
exp

(
y +

1

x− 2

)
.

By Theorem 1 system (58) has no generalized analytic first integral, because h (x) =

(x− 1) (x− 2)
2

simultaneously has simple roots and multiple roots.

Example 11. Consider the differential system

ẋ = (2x− 1)
m (

y3 − 8y2 + 29y − 26
)
, ẏ = (y − 3)3(y + 1)2,(59)

with m ∈ N and m ≥ 2. For this system we have f (y) = y3 − 8y2 + 29y −
26, g (y) = (y − 3)3(y + 1)2, α1 = −1 and α2 = 3. So Res [f (y) /g (y) , α1] =
Res [f (y) /g (y) , α2] = 0. Applying Theorem 3 system (59) has the generalized
analytic first integral (see equation (44))

H (x, y) =
2(m− 1)(y − 1) (y − 3)

2
(2x− 1)

m−1

(y + 1) (y − 3)
2 − (m− 1) (2y2 − 11y + 19) (2x− 1)

m−1 .

Example 12. Consider the differential system

ẋ = (5x− 1)
(

3
3
√

3 + 2
√

2− 5y
)
, ẏ = 6

(
y −
√

2
)(

y − 3
√

3
)
.(60)

Using the notations of Theorem 4 we get that g (y) = 6
(
y −
√

2
) (
y − 3
√

3
)

is square-

free, α1 =
√

2, α2 = 3
√

3, h (x) = 5x − 1 and f (y) = 3 3
√

3 + 2
√

2 − 5y. For this
system we have

5Res [f (y) /g (y) , α1] = −5

2
and 5Res [f (y) /g (y) , α2] = −5

3
.

By Theorem 4 system (60) has the polynomial first integral

H (x, y) =

(
x− 1

5

)6 (
y −
√

2
)15 (

y − 3
√

3
)10

.
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