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THE ZERO-HOPF BIFURCATIONS OF A FOUR-DIMENSIONAL

HYPERCHAOTIC SYSTEM

JAUME LLIBRE1 AND YUZHOU TIAN2,∗

Abstract. We consider the four-dimensional hyperchaotic system ẋ = a(y −
x), ẏ = bx + u − y − xz, ż = xy − cz, u̇ = −du − jx + exz, where a, b, c,

d, j, e are real parameters. This system extend the famous Lorenz system
to dimension four and was introduced in the paper of the Internat. J. Bifur.

Chaos Appl. Sci. Engrg., 27 (2017), 1750021. We characterize the values of

the parameters for which its equilibrium points are zero-Hopf points. Using the
averaging theory we obtain sufficient conditions for the existence of periodic

orbits bifurcating from these zero-Hopf equilibria, and give some examples to

illustrate the conclusions. Moreover the stability conditions of these periodic
orbits are given using the Routh-Hurwitz criterion.

1. Introduction

Chaos phenomenon is a complex dynamic behavior in nonlinear dynamical sys-
tem, which appears in nature widely. In 1963, the meteorologist Edward Lorenz
[24] was the first to introduce the mathematical and physical chaotic model in R3,
which is known as the Lorenz system. The Lorenz system planted the seed in the
chaos science. This system plays an important effect in other areas as in the mod-
eling of lasers [11] and dynamos [12]. As one of the simplest models presenting
chaos, the Lorenz system exhibits a rich range of dynamical properties, and it has
been researched from different points of view, such as positively invariant [17], in-
tegrability [22, 16, 14], global dynamics [34, 4, 26] and bifurcation [3, 32]. After
that Lorenz system, mathematicians and physicists from physical or purely abstract
mathematical point of view proposed various polynomial differential systems in R3,
whose trajectories exhibit chaotic dynamics of the Lorenz system type. As exam-
ples, one can refer to Rikitake system [20], Sprott A system [1], Shimizu-Morioka
system [13], etc.

Nowadays three-dimensional nonlinear systems cannot provide adequate descrip-
tion of many phenomena in neural networks, social sciences and engineering, etc. To
better describe the real world, we often necessitate to introduce high-dimensional
(dimension at least four) nonlinear systems. Recently the hyperchaotic system has
become a focus research subject, see [6, 9, 30, 31, 5, 35, 27, 7] and the references
therein. The concept of hyperchaos was given by Rössler in [29]. The precise defini-
tion of hyperchaotic system is: (i) at least four-dimensional autonomous differential
system, (ii) a dissipative structure, and (iii) at least two unstable directions, of
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which at least one direction is nonlinear [7]. The hyperchaotic systems are very
useful in secure communication due to the fact that the dynamic information of
such systems are difficult to characterize and predict, see [37].

In this work we use the classical averaging theory to investigate the zero-Hopf
bifurcation of a hyperchaotic system. A zero-Hopf equilibrium is an equilibrium
point of a four-dimensional autonomous differential system which has a double zero
eigenvalue and a pair of purely imaginary eigenvalues. There are rich works on
three-dimensional zero-Hopf bifurcation, see for example [8, 23, 21, 19, 15], etc.
The zero-Hopf bifurcation of hyperchaotic Lorenz system (i.e. four-dimensional)
can be found in [7, 6, 18]. Actually there are few results on the n-dimensional
zero-Hopf bifurcation with n > 3.

In [38] Zhou et al. present the following four-dimensional hyperchaotic system

ẋ = a(y − x),

ẏ = bx+ u− y − xz,
ż = xy − cz,
u̇ = −du− jx+ exz,

(1)

where a, b, c, d, j, e are real parameters. The hyperchaotic system (1) extend the
Lorenz system to dimension four, and is invariant under the symmetry with respect
to the z-axis, i.e. under the symmetry τ (x, y, z, u) = (−x,−y, z,−u). For the zero-
Hopf bifurcation of system (1) at the origin, partial results are given by Yang et
al. in [36]. The objective of this paper is to study all the zero-Hopf bifurcations of
system (1).

The equilibria and zero-Hopf equilibria of system (1) are described in the next
two results.

Proposition 1. Let ∆ = c (bd− d− j) / (d− e) with d 6= e. The hyperchaotic
system (1) has the following equilibria.

(i) If c = 0, system (1) has a straight line of equilibria (0, 0, z, 0).
(ii) If ∆ ≤ 0 and c 6= 0, system (1) has an unique equilibrium point E0 =

(0, 0, 0, 0).
(iii) If ∆ > 0 and c 6= 0, system (1) has three equilibria E0 = (0, 0, 0, 0),

E1 =

(
√

∆,
√

∆,
bd− d− j
d− e

,− (e+ j − be)
√

∆

d− e

)
and

E2 =

(
−
√

∆,−
√

∆,
bd− d− j
d− e

,
(e+ j − be)

√
∆

d− e

)
.

Proposition 1 follows easily by direct computations.

Theorem 2. For the hyperchaotic system (1) the following statements hold.

(i) There is a two-parameter family of systems (1) for which the origin of
coordinates is a zero-Hopf equilibrium point. Namely, c = 0, d = −a −
1, b = −(1 + a+ a2 + ω2)/a, j = ((1 + a)3 + (1 + a)ω2)/a.
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(ii) There is a three-parameter family of systems (1) for which the equilibria
E1,2 are zero-Hopf equilibrium points. Namely, a = 0, j = bd, c = −d− 1
and

(
d2e+ de+ e− d3

)
(d− e) > 0.

(iii) When c = 0 there is a three-parameter family of system (1) for which
the equilibria (0, 0, z0, 0) is a zero-Hopf equilibrium points. Namely a =
−1− d, j = (b− 1)d+ z0(e− d) and (b− d− z0) (d+ 1) > 1.

Theorem 2 is proved in section 3.

In the following theorem we characterize the periodic orbits bifurcating from the
zero-Hopf equilibrium E0 of system (1).

Theorem 3. Let

b = −a
2 + a+ 1 + ω2

a
+ εb1,

c = εc1,

d = −a− 1 + εd1,

j =
(a+ 1)3 + (a+ 1)ω2

a
+ εj1,

with ω > 0 and ε > 0 a sufficiently small parameter. If η = (a + 1)2d1 + a(a +
1)b1 + aj1, d1 6= 0, c1ηa (a+ e+ 1) > 0 and c1

(
ω2d1 + η

)
a (a+ e+ 1) > 0, then

for ε > 0 sufficiently small the hyperchaotic system (1) has a zero-Hopf bifurcation
at the equilibrium point located at E0 and at most four periodic orbits can bifurcate
from this equilibrium when ε = 0, and two of them are stable if either c1 < 0, d1 <

0, η < 0, or η > 0, c1 < 0, − η

ω2
< d1 < 0. Moreover there are systems (1) for

which this zero-Hopf bifurcation exhibits the four periodic orbits, see example 1.

The proofs of Theorem 3 and of the Example 1 are given in section 4, and use
the averaging theory of first order, see subsection 2.1.

Example 1. The hyperchaotic system

ẋ = x− y, ẏ = 2x+ u− y − xz, ż = xy, u̇ = −xz,(2)

has four small periodic orbits bifurcating from the equilibrium point (0, 0, 0, 0), and
two of them are stable.

In order to study the zero-Hopf bifurcation at the equilibria E1 and E2 it is
sufficient to study it for the equilibrium point E1 due to the symmetry exhibited
by system (1). After translating the equilibrium E1 at the origin of coordinates and
do the convenient changes of variables, similar to the ones of the proof of Theorem
3 we see that we cannot write system (1) in the normal form (3) and consequently
we cannot apply to it the averaging theory described in Theorem 4. On the other
hand, doing the changes of variables similar to the ones of the proof of Theorem 3,
we can write system (1) in the normal form (6) for applying the averaging theory
stated in Theorem 5, but unfortunately this system does not satisfy the assumption
(ii) of Theorem 5. Therefore the averaging theory does not give any information
on the possible periodic orbits of the zero-Hopf bifurcation at the equilibrium E1.

We can apply the averaging theory for studying the zero-Hopf bifurcation at
the equilibria (0, 0, z0, 0) for all z0 ∈ R, after writing it in the normal form (3)
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doing similar changes of variables to the ones of the proof of Theorem 3. But the
determinant (5) evaluated at the zeros of the averaged function becomes zero, so
the averaging theory of Theorem 4 does not provide any information on the periodic
orbits which could exist in the zero-Hopf bifurcation at the equilibria (0, 0, z0, 0).

In section 2 we present some basic results that we shall need for proving our
theorems.

2. Preliminaries

2.1. Averaging theory. In this subsection we present the results on averaging
theory that we need for proving our results. Consider the following differential
equation

ẋ = εF (t,x) + ε2G (t,x, ε) , (t,x, ε) ∈ [0,∞)× Ω× (0, ε0],(3)

where Ω is an open subset of Rn, F (t,x) and G (t,x, ε) are T -periodic in t. We
introduce the averaged function

F (x) =
1

T

∫ T

0

F (t,x) dt.(4)

Theorem 4. Assume that F, its Jacobian ∂F/∂x and its Hessian ∂2F/∂x2; G, its
Jacobian ∂G/∂x are defined, continuous and bounded by a constant independent of
ε in [0,∞)×Ω× (0, ε0], and that the period T is a constant independent of ε. Then
the following statements hold.

(i) If p is the zero of the averaged function F (x) such that the Jacobian

det

(
∂F
∂x

) ∣∣∣
x=p
6= 0,(5)

then there exists a T -periodic solution x (t, ε) of equation (3) such that
x (0, ε)→ p as ε→ 0.

(ii) The stability of the periodic solution x (t, ε) is determined by the eigenvalues
of the Jacobian matrix (∂F/∂x) |x=p.

For more details about a proof of Theorem 4 see [33].

We consider the problem of the bifurcation of T–periodic solutions from differ-
ential systems of the form

(6) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R×Ω→ Rn and
F2 : R×Ω× (−ε0, ε0)→ Rn are C2 functions, T–periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

(7) ẋ = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of the system (7) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along a periodic solution x(t, z, 0) as

(8) ẏ = DxF0(t,x(t, z, 0))y.
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In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (8), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k
coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

We assume that there exists a k–dimensional submanifold Z of Ω filled with
T–periodic solutions of (7). Then an answer to the problem of bifurcation of T–
periodic solutions from the periodic solutions contained in Z for system (6) is given
in the following result.

Theorem 5. Let W be an open and bounded subset of Rk, and let β : Cl(W ) →
Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β(α)) , α ∈ Cl(W )} ⊂ Ω and that for each zα ∈ Z the
solution x(t, zα) of (7) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (8) such that the
matrix M−1

zα (0)−M−1
zα (T ) has in the upper right corner the k× (n−k) zero

matrix, and in the lower right corner a (n − k) × (n − k) matrix ∆α with
det(∆α) 6= 0.

We consider the function F : Cl(W )→ Rk

(9) F(α) = ξ

(
1

T

∫ T

0

M−1
zα (t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ W with F(a) = 0 and det ((dF/dα) (a)) 6= 0, then there is a
T–periodic solution ϕ(t, ε) of system (6) such that ϕ(0, ε)→ za as ε→ 0.

Theorem 5 goes back to Malkin [25] and Roseau [28], for a shorter proof see [2].

2.2. Roots of cubic equation. The Routh-Hurwitz Criterion gives necessary and
sufficient conditions in order that all the roots of a polynomial p (x) ∈ R[x] have
negative real parts, for more details see page 231 of [10].

Theorem 6 (Routh-Hurwitz Criterion). All roots of the real polynomial p (x) =
b0x

n + b1x
n−1 + · · ·+ bn−1x+ bn (b0 > 0) have negative real parts if and only if

∆1 > 0,∆2 > 0, . . . ,∆n > 0,

where

∆i = det



b1 b3 b5 · · ·
b0 b2 b4 · · ·
0 b1 b3 · · ·
0 b0 b2 b4
...

...
...

...
. . .

bi


(bk = 0 if k > n)

is the Hurwitz determinant of order i (i = 1, 2, · · · , n).

Corollary 7. All roots of the real polynomial b0x
3 + b1x

2 + b2x+ b3 (b0 > 0) have
negative real parts if and only if

∆1 = b1 > 0,∆2 = b1b2 − b3b0 > 0, b3 > 0.
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3. Proof of Theorem 2

(i) The characteristic polynomial p (λ) of the linearization of system (1) at the
origin is

p (λ) =λ4 + (a+ c+ d+ 1)λ3 + (a(1− b+ c+ d) + cd+ c+ d)λ2

+ (a (c(1− b+ d)− bd+ d+ j) + cd)λ+ ac(j − bd+ d).

Since the origin of the hyperchaotic system (1) is a zero-Hopf equilibrium, p (λ)
must be of the form p (λ) = λ2

(
λ2 + ω2

)
with ω ∈ R+. Then we obtain

c = 0, d = −a− 1, b = −a
2 + a+ 1 + ω2

a
, j =

(a+ 1)3 + (a+ 1)ω2

a
.

(ii) Let ∆ = c (bd− d− j) / (d− e). Then c = ∆ (d− e) / (bd− d− j). The char-
acteristic polynomial of the linear part of the system (1) at E1 is given by

p (λ) =λ4 +

(
a− ∆(d− e)

j − bd+ d
+ d+ 1

)
λ3 +

∆(d(a+ b+ d)− e(a+ d)− e− j)
bd− d− j

λ2

+
a(b− 1)e+ (a+ 1)d2 − (a+ 1)de− aj

d− e
λ2

+
∆
(
a
(
d(2b− e− 2) + (b− 1)e+ d2 − 3j

)
+ (d− e)(bd− j)

)
bd− d− j

λ+ 2a∆(d− e).

If the equilibrium E1 is a zero-Hopf equilibrium, then p (λ) must be of the form
p (λ) = λ2

(
λ2 + ω2

)
with ω ∈ R+. So we get that the parameters must satisfy

a = 0, j = bd, ∆ = d2 + d+ ω2 + 1, e =
d
(
d2 + ω2

)
d2 + d+ ω2 + 1

.

Clearly ∆ > 0, otherwise the equilibrium E1 does not exist.

(iii) The characteristic polynomial at equilibrium point (0, 0, z0, 0) is

p (λ) = λ4 + (a+ d+ 1)λ3 + (a(d+ 1− b) + az0 + d)λ2 + a (z0(d− e) + d+ j − bd)λ.

Since (0, 0, z0, 0) is a zero-Hopf equilibrium, the parameters must be satisfied

a = −1− d, b =
d2 + d+ ω2 + 1

d+ 1
+ z0, j =

d
(
d2 + ω2

)
d+ 1

+ ez0,

where ω ∈ R+. This completes the proof of Theorem 2.

4. Proof of Theorem 3

Let

(b, c, d, j) =

(
−a

2 + a+ 1 + ω2

a
+ εb1, εc1,−a− 1 + εd1,

(a+ 1)3 + (a+ 1)ω2

a
+ εj1

)
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where ω > 0 and ε > 0 is a sufficiently small parameter. Then the hyperchaotic
system (1) becomes

ẋ = a(y − x),

ẏ = u− xz − y +

(
−a

2 + a+ 1 + ω2

a
+ b1ε

)
x,

ż = xy − εc1z,

u̇ = exz − u (−a− 1 + εd1)−
(

(a+ 1)ω2 + (a+ 1)3

a
+ εj1

)
x.

(10)

Doing the rescaling of variables (x, y, z, u) 7→ (εx, εy, εz, εu) system (10) writes

ẋ = a(y − x),

ẏ = u− y − a2 + a+ 1 + ω2

a
x+ εx (b1 − z) ,

ż = ε (xy − c1z) ,

u̇ = u+ au− (a+ 1)3 + (a+ 1)ω2

a
x+ ε (exz − d1u− j1x) .

(11)

After the linear change of variables (x, y, z, u) 7→ (X,Y, Z, U)

(12)

x =
aωY + Z

ω2
, y =

aωY − ω2X + Z

ω2
,

z = U, u =
ωa(a+ 1)(aY − ωX + Y ) +

(
(a+ 1)2 + ω2

)
Z

aω2
,

the linear part at the origin of system (11) for ε = 0 can be transformed into its
real Jordan normal form 

0 ω 0 0
−ω 0 0 0
0 0 0 0
0 0 0 0

 .

Under the change of variable (12), system (11) can be written as

ẋ = ωy +
ε (u− b1) (aωy + z)

ω2
,

ẏ = −ωx+
ε (aωy + z)A

aω2
,

ż = d1ε (a(a+ 1)x− z)− ε (aωy + z)A

ω
,

u̇ = ε

(
(aωy + z) (ω(ay − ωx) + z)

ω4
− c1u

)
,

(13)

where we have written (x, y, z, u) instead of (X,Y, Z, U) and

A =
ab1(a+ 1) + d1(a+ 1)2 + (j1 − (a+ e+ 1)u) a

ω
.(14)
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Performing the cylindrical change of variables (x, y, z, u) 7→ (r cos θ, r sin θ, z, u),
system (13) becomes

(15)

dr

dθ
= ε

(
sin θ

(
a2 (b1 − u) r cos θ + d1(a(a+ 1)r cos θ − z)

)
aω2

+
(b1 − u) z cos θ

ω3
− A (aωr sin θ + z) sin θ

aω3

)
+O

(
ε2
)

= εF1 (θ, r, z, u) +O
(
ε2
)
,

dz

dθ
= ε

(
d1 (z − a(a+ 1)r cos θ)

ω
+
A (aωr sin θ + z)

ω2

)
+O

(
ε2
)

= εF2 (θ, r, z, u) +O
(
ε2
)
,

du

dθ
=

ε
(
c1ω

4u− (aωr sin θ + z) (ω(a sin θ − ω cos θ)r + z)
)

ω5
+O

(
ε2
)

= εF3 (θ, r, z, u) +O
(
ε2
)
.

System (15) is written in the normal form (3) for applying the averaging theory,
and satisfies all the assumptions of Theorem 4. Then using the notations of the
averaging theory described in Theorem 4, we have t = θ, T = 2π, x = (r, z, u),

F (θ, r, z, u) =

 F1 (θ, r, z, u)
F2 (θ, r, z, u)
F3 (θ, r, z, u)

 and F (r, z, u) =

 F1 (r, z, u)
F2 (r, z, u)
F3 (r, z, u)

 ,

where

F1 (r, z, u) =
1

2π

∫ 2π

0

F1 (θ, r, z, u) dθ = − rA

2ω2
,

F2 (r, z, u) =
1

2π

∫ 2π

0

F2 (θ, r, z, u) dθ =
(ωd1 +A) z

ω2
,

F3 (r, z, u) =
1

2π

∫ 2π

0

F3 (θ, r, z, u) dθ = −a
2ω2r2 − 2c1ω

4u+ 2z2

2ω5
.

The system F1 (r, z, u) = F2 (r, z, u) = F3 (r, z, u) = 0 has the following five
solutions

s0 = (0, 0, 0) ,

s1,2 =

(
∓ω
a

√
2c1η

a(a+ e+ 1)
, 0,

η

a(a+ e+ 1)

)
,

s3,4 =

(
0,∓ω2

√
c1 (ω2d1 + η)

a(a+ e+ 1)
,
ω2d1 + η

a(a+ e+ 1)

)
,

where η = (a + 1)2d1 + a(a + 1)b1 + aj1. The first solution s0 corresponds to the
equilibrium at the origin, so it is not a good solution. For other four solutions, we
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get

det

(
∂F
∂x

(s1)

)
= det

(
∂F
∂x

(s2)

)
=
c1d1η

ω5
,

det

(
∂F
∂x

(s3)

)
= det

(
∂F
∂x

(s4)

)
= −

c1d1
(
ω2d1 + η

)
ω5

.

Since by assumptions d1 6= 0, c1ηa (a+ e+ 1) > 0 and c1
(
ω2d1 + η

)
a (a+ e+ 1) >

0, the solutions si exist and det (∂F (si) /∂x) 6= 0 for i = 1, 2, 3, 4. From Theorem
4 it follows that system (15) for ε > 0 sufficiently small has four 2π-periodic or-
bits γi = (ri (θ, ε) , zi (θ, ε) , ui (θ, ε)) such that (ri (0, ε) , zi (0, ε) , ui (0, ε)) → si as
ε→ 0 with i = 1, 2, 3, 4.

The Jacobian matrices ∂F (s1) /∂x and ∂F (s2) /∂x have the same characteristic
equation

λ3 − c1 + d1
ω

λ2 +
c1
(
η + ω2d1

)
ω4

λ− c1d1η

ω5
= 0.(16)

By Corollary 7 all the roots of equation (16) have negative real parts if

−c1 + d1
ω

> 0, −
c1
(
c1η + d1(c1 + d1)ω2

)
ω5

> 0, −c1d1η
ω5

> 0,

or equivalently if c1 < 0, d1 < 0, η < 0. Thus, the periodic orbits γ1 and γ2 are
stable if c1 < 0, d1 < 0, η < 0.

The Jacobian matrices ∂F (s3) /∂x and ∂F (s4) /∂x have the same characteristic
equation

λ3 − 2c1 + d1
2ω

λ2 −
c1
(
4η + 3ω2d1

)
2ω4

λ+
c1d1

(
η + ω2d1

)
ω5

= 0.(17)

Using Corollary 7 all the roots of equation (17) have negative real parts if

−2c1 + d1
2ω

> 0,
c1
(
8c1(η + d1ω

2)− (2c1 + d1)d1ω
2
)

4ω5
> 0,

c1d1
(
η + ω2d1

)
ω5

> 0,

or equivalently η > 0, c1 < 0, − η

ω2
< d1 < 0. This implies that the periodic orbits

γ3 and γ4 are stable if one of the three previous conditions hold. This completes
the proof of Theorem 3.

Proof of Example 1. Taking a = e = −1, b = 2 and c = d = j = 0, system (1)
becomes system (2). Since the origin of system (2) has a double zero eigenvalue
and a pair of purely imaginary eigenvalues ±i, the origin is a zero-Hopf equilibrium
point. Let c1 = d1 = j1 = −1 and ω = 1. Consider the perturbation of Theorem 3,
that is, b = 2 + εb1, j = ε, c = d = −ε in system (2) with ε > 0 a sufficiently small
parameter.

By the steps of averaging theory, we have the following functions

F1 (r, z, u) =
r(u+ 1)

2
,F2 (r, z, u) = −(u+ 2)z,F3 (r, z, u) = −r

2

2
− u− z2.(18)
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The system (18) has five solutions s0 = (0, 0, 0), s1,2 =
(
0,±
√

2,−2
)

and s3,4 =(
±
√

2, 0,−1
)
. Since the determinant

det

∂ (F1,F2,F3)

∂ (r, z, u)

∣∣∣∣∣
s1,2

 = 2 and det

∂ (F1,F2,F3)

∂ (r, z, u)

∣∣∣∣∣
s3,4

 = −1,

four periodic orbits can bifurcate from the zero-Hopf equilibrium at the origin. The
eigenvalues of s3,4 are −1 and

(
−1± i

√
3
)
/2. For the solutions s1,2 the associated

eigenvalues are −1/2 and
(
−1±

√
17
)
/2. Therefore two of four periodic orbits are

stable. �
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