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In this paper we study analytically the existence of two families of periodic orbits using 
the averaging theory of second order, and the finite and infinite equilibria of a generalized 
Hénon-Heiles Hamiltonian system which includes the classical Hénon-Heiles Hamiltonian. 
Moreover we show that this generalized Hénon-Heiles Hamiltonian system is not C1

integrable in the sense of Liouville–Arnol’d, i.e. it has not a second C1 first integral 
independent with the Hamiltonian. The techniques that we use for obtaining analytically 
the periodic orbits and the non C1 Liouville-Arnol’d integrability, can be applied to 
Hamiltonian systems with an arbitrary number of degrees of freedom.
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1. Introduction and statement of results

The classical Hénon-Heiles Hamiltonian consists of a two dimensional harmonic potential plus two cubic terms, i.e.
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This Hamiltonian was introduced in 1964, it is a model for studying the existence of a third integral of motion of a star in 
an rotating meridian plane of a galaxy in the neighborhood of a circular orbit [8].

The generalized Hénon-Heiles Hamiltonian system here studied is

Hε = 1
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where ε ≥ 0 is a small parameter. Of course, when ε = 0 the Hamiltonian H0 is the classical Hénon-Heiles Hamiltonian. The 
Hamiltonian (1) was introduced in [7].
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