Minimal set of periods for continuous self-maps of a bouquet of circles

Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra
Barcelona, 08193, Spain
jllibre@mat.uab.cat
Ana Sá
Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa 2829-516 Caparica, Portugal
ams@fct.unl.pt
Received (to be inserted by publisher)

Abstract

Let G_{k} be a bouquet of circles; i.e. the quotient space of the interval $[0, k]$ obtained by identifying all points of integer coordinates to a single point, called the branching point of G_{k}. Thus, G_{1} is the circle, G_{2} is the eight space and G_{3} is the trefoil. Let $f: G_{k} \rightarrow G_{k}$ a continuous map such that for $k>1$ the branching point is fixed. If $\operatorname{Per}(f)$ denotes the set of periods of f, the minimal set of periods of f, denoted by $\operatorname{MPer}(f)$, is defined as $\bigcap_{g \simeq f} \operatorname{Per}(g)$ where $g: G_{k} \rightarrow G_{k}$ is homological to f. The sets $\operatorname{MPer}(f)$ are well-known for circle maps. Here, we classify all the sets $\operatorname{MPer}(f)$ for self-maps of the eight space.

Keywords: periods, periodic orbits, eight space, continuous maps, set of periods.

1. Introduction and statement of the results

In dynamical systems it is often the case that topological information can be used to study qualitative or quantitative properties of the system. This work deals with the problem of determining the set of periods of the periodic orbits of a map given the homology class of the map.

A finite graph (simply a graph) G is a topological space formed by a finite set of points V (points of V are called vertices) and a finite set of open arcs (called edges) in such a way that each open arc is attached by its endpoints to vertices. An open arc is a subset of G homeomorphic to the open interval $(0,1)$. Note that a finite graph is compact, since it is the union of a finite number of compact subsets (the closed edges and the vertices). Notice that a closed edge is homeomorphic either to the closed interval [0,1$]$, or to the circle. It may be either connected or disconnected, and it may have isolated vertices.

The valence of a vertex is the number of edges with the vertex as an endpoint (where the closed edges homeomorphic to a circle are counted twice). The vertices with valence 1 of a connected graph are endpoints of the graph and the vertices with valence larger than 2 are branching points.

Suppose that $f: G \rightarrow G$ is a continuous map, in what follows a graph map. A fixed point of f is a point x in G such that $f(x)=x$. We will call x a periodic point of period n if x is a fixed point of f^{n} but it is not fixed by any f^{k} for $1 \leq k<n$. We denote by $\operatorname{Per}(f)$ the set of natural numbers corresponding to
periods of the periodic points of f.
Let G be a connected graph and let f be a graph map. Then f induces endomorphisms $f_{* n}: H_{n}(G) \rightarrow$ $H_{n}(G)$ (for $n=0,1$) on the integral homology groups of G, where $H_{0}(G) \approx \mathbb{Z}$ (because G is connected) and $H_{1}(G) \approx \mathbb{Z} \oplus \cdot \stackrel{k}{.} \oplus \mathbb{Z}$ where k is the number of independent circuits or loops of G as elements of $H_{1}(G)$. A circuit of G is a subset of G homeomorphic to the circle. The endomorphisms $f_{* 0}$ and $f_{* 1}$ are represented by integer matrices. Furthermore, since G is connected $f_{* 0}$ is the identity.

The endomorphism $f_{* 1}$ will play a main role in our analysis of the minimal sets of periods for graph maps on G. In what follows $f_{* 1}$ will be denoted by f_{*}. For example, if $H_{1}(G) \approx \mathbb{Z} \oplus \mathbb{Z}$ and

$$
f_{*}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

this means that the graph G has two independent oriented circuits. Moreover, if the first circuit covers itself exactly a_{1} times following the same orientation (not necessarily in a consecutive way) and exactly a_{2} times following the converse orientation (not necessarily in a consecutive way), then $a=a_{1}-a_{2}$. Similarly, if the first circuit covers the second one exactly b_{1} times following the same orientation (not necessarily in a consecutive way) and exactly b_{2} times following the converse orientation (not necessarily in a consecutive way), then $b=b_{1}-b_{2}$. An analogous explanation can be given with the second independent circuit and with b and d instead of c and a, respectively.

Let G_{k} be a bouquet of k circles, that is, the quotient space of $[0, k]$ obtained by identifying all points of integer coordinates to a single point. Notice that G_{1} is the circle and that G_{2} is usually called the eight space. For the G_{k} graph we have $H_{0}\left(G_{k}\right) \approx \mathbb{Z}, H_{1}\left(G_{k}\right) \approx \mathbb{Z} \oplus . .{ }^{k} \oplus \mathbb{Z}, f_{* 0} \approx i d$ and $f_{* 1}=f_{*}=A$, where A is a $k \times k$ integral matrix. For more details on graph maps see Llibre [1991] or Llibre \& Sá [1995].

Our main goal is to study the set $\operatorname{Per}(f)$ for graph maps. More explicitly, we want to provide a description of the minimal set of periods (see below) attained within the homology class of a given graph map. When the map $g: G \rightarrow G$ is homological to f (i.e. g induces the same endomorphisms than f on the homology groups of G), we shall write $g \simeq f$. We define the minimal set of periods of f to be the set

$$
\operatorname{MPer}(f)=\bigcap_{g \simeq f} \operatorname{Per}(g)
$$

From its definition $\operatorname{MPer}(f)$ is the maximal subset of periods contained in $\operatorname{Per}(g)$ for all $g \simeq f$.
Our main objective is to characterize the minimal sets of periods $\operatorname{MPer}(f)$ for graph maps $f: G_{i} \rightarrow G_{i}$ with the branching point a fixed point for $i=2,3$. So, always $1 \in \operatorname{MPer}(f)$. Even for circle maps $f: G_{1} \rightarrow$ G_{1} the characterization of all minimal sets of periods $\operatorname{MPer}(f)$ is interesting and nontrivial, see Theorem A. This result was stated by Efremova [Efremova, 1978] and Block, Guckenheimer, Misiurewicz and Young [Block et al., 1980] without giving a complete proof. As far as we know the first complete proof was given in Alsedà et al. [2000].

We denote by \mathbb{N} the set of all natural numbers, and by $k \mathbb{N}$ the set $\{k l: l \in \mathbb{N}\}$.
Theorem A. Let $f: G_{1} \rightarrow G_{1}$ be a circle map such that the endomorphism induced by f on the first homology group is $f_{*}=(d)$ (i.e. d is the degree of f). Then the following statements hold.
(a) If $d \notin\{-2,-1,0,1\}$, then $\operatorname{MPer}(f)=\mathbb{N}$.
(b) If $d=-2$, then $\operatorname{MPer}(f)=\mathbb{N} \backslash\{2\}$.
(c) If $d \in\{-1,0\}$, then $\operatorname{MPer}(f)=\{1\}$.
(d) If $d=1$, then $\operatorname{MPer}(f)=\emptyset$.

In the next theorem we characterize the minimal sets of periods for eight maps, i.e. for continuous maps $f: G_{2} \rightarrow G_{2}$.
Theorem B. Let $f: G_{2} \rightarrow G_{2}$ be an eight map such that

$$
f_{*}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Suppose that the branching point is a fixed point. Then the following statements hold.
(a) If $\{a, d\} \not \subset\{-2,-1,0,1\}$, then $\operatorname{MPer}(f)=\mathbb{N}$.
(b) If $-2 \in\{a, d\}$ and $\{a, d\} \subset\{-2,-1,0,1\}$, then

$$
\operatorname{MPer}(f)=\left\{\begin{array}{lr}
\mathbb{N} \backslash\{2\} & \text { if } b c=0 \\
\mathbb{N} & \text { if } b c \neq 0
\end{array}\right.
$$

(c) Assume that $\{a, d\} \subset\{-1,0,1\}$.
(c1) If $|a|+|d|=2$, then

$$
\operatorname{MPer}(f)= \begin{cases}\{1\} & \text { if } b c=0 \\ \mathbb{N} \backslash\{2\} & \text { if } b c=1 \\ \mathbb{N} & \text { if } b c=-1 \text { or }|b c|>1\end{cases}
$$

(c2) If $|a|+|d|=1$ and
(c21) $a=1, d=0$, then

$$
\operatorname{MPer}(f)= \begin{cases}\{1\} & \text { if } b c=0 \\ \mathbb{N} \backslash\{2\} & \text { if }(b, c) \in R \\ \mathbb{N} & \text { otherwise }\end{cases}
$$

where $R=\{(1,1),(-1,-1),(1,2),(-1,-2)\}$.
(c22) $a=0, d=1$, then it follows (c21) interchanging b and c.
(c23) $a=-1, d=0$, then

$$
\operatorname{MPer}(f)= \begin{cases}\{1\} & \text { if } b c=0 \\ \mathbb{N} \backslash\{2\} & \text { if }(b, c) \in R \\ \mathbb{N} \backslash\{3\} & \text { if } b c=-1, \\ \mathbb{N} & \text { otherwise }\end{cases}
$$

(c24) $a=0, d=-1$, then it follows (c23) interchanging b and c.
(c3) If $|a|+|d|=0$, then

$$
\operatorname{MPer}(f)= \begin{cases}\{1\} & \text { if } b c=0 \text { or } b c=1, \\ \{1,2\} & \text { if } b c=-1, \\ \{1\} \cup(2 \mathbb{N} \backslash\{2\}) & \text { if } b c=2, \\ \{1\} \cup(2 \mathbb{N} \backslash\{4\}) & \text { if } b c=-2, \\ \{1\} \cup 2 \mathbb{N} & \text { if }|b c|>2 .\end{cases}
$$

We remark that Theorem B implies Theorem A if f has a fixed point, by choosing, for instance, $a=b=c=0$.

The study of the minimal set of periods of a homotopy class of maps instead of its homology class is the main objective of the fixed point theory, see for instance the books of Brown [Brown, 1971], Jiang [Jiang, 1983] and Kiang [Kiang, 1989]. Other extensions from circle maps to n-dimensional torus has been done in [Alsedà et al., 1995] and [Jiang \& Llibre, 1998], and from circle maps to transversal n-sphere maps in [Casasayas et al., 1995]. Some different results on the periods of graph maps have been given in [Abdulla et al., 2017; Alsedà et al., 2005; Arai, 2016; Alsedà \& Ruette, 2008; Bernhardt, 2006, 2011; Llibre, 1991; Llibre \& Misiurewicz, 2006].

This work is organized as follows. How to obtain a given period for a graph map by using the notion of f-covering is described in Section 2. The proof of Theorem B is given in Section 3.

2. Periods and \boldsymbol{f}-covering

Let $f: G \rightarrow G$ be a graph map and $x \in G$ a periodic point of period n. The set $\left\{x, f(x), \ldots, f^{n-1}(x)\right\}$ is called the periodic orbit of x.

A set $I \subset G$ will be called an interval if there is a homeomorphism $h: J \rightarrow I$ where J is $[0,1],(0,1]$, $[0,1)$ or $(0,1)$. The set $h((0,1))$ will be called the interior of I. If $J=[0,1]$ the interval I will be called
closed; if $J=(0,1)$ it will be called open. Notice that it may happen that the above terminology does not coincide with the one used when we think about I as a subset of G (the same applies to the edges of G). For example, if $G=I=[0,1]$ and $h=$ identity, then for I regarded as a subset of the topological space G, I is both open and closed and the interior of I is I.

Let C_{1} and C_{2} be two circuits of G_{k}. A closed interval $I=[a, b]$ is basic if $I \subset C_{i}, f(I)=C_{j}$ where $\{i, j\} \subset\{1,2, \ldots, k\}, f(a)=f(b)=p$, where p is the branching point of G_{k}, and there is no other closed interval $K \varsubsetneqq I$ such that $f(K)=C_{j}$. If $f\left(C_{i}\right)=C_{j}$ and $f(K) \neq C_{j}$ for all closed interval $K, K \subset C_{i}$, then we also say that C_{i} is a basic interval. Let I and J be two basic intervals, $K \subset I, L \subset J$ two subintervals. If $L \neq C_{j}$, we say that $K f$-covers L, and we write $K \rightarrow L$, if there exists a closed subinterval M of K such that $f(M)=L$. If $L=J=C_{j}$, we say that $K=I f$-covers L because either $f(K)=L$, or $K=I=C_{i}$ and $f(K)=L$, by the definition of basic intervals.

Lemma 1. Suppose that $I_{1}, I_{2}, \ldots, I_{n}$ are intervals such that $I_{1} \rightarrow I_{2} \rightarrow \ldots \rightarrow I_{n} \rightarrow I_{1}$ with I_{1} different from a circuit. Then there is a fixed point z of f^{n} such that $z \in I_{1}, f(z) \in I_{2}, \ldots, f^{n-1}(z) \in I_{n}$.

Proof. Since $I_{n} \rightarrow I_{1}$, and I_{1} is not a circuit, there is a closed interval $J_{n} \subset I_{n}$ such that $f\left(J_{n}\right)=I_{1}$. Similarly, there are closed intervals or circuits J_{1}, \ldots, J_{n-1} such that for each $k=1, \ldots, n-1, J_{k} \subset I_{k}$ and $f\left(J_{k}\right)=J_{k+1}$. It follows that $f^{n}\left(J_{1}\right)=I_{1}$ and since $J_{1} \subset I_{1}$ and I_{1} is not a circuit, by Bolzano's Theorem f^{n} has a fixed point $z \in J_{1}$. Clearly, $z \in I_{1}, f(z) \in I_{2}, \ldots, f^{n-1}(z) \in I_{n}$.

A sequence of the form $I_{1} \rightarrow I_{2} \rightarrow \ldots \rightarrow I_{n} \rightarrow I_{1}$ is called a loop of length n. Let $I_{1} \rightarrow I_{2} \rightarrow \ldots \rightarrow$ $I_{n} \rightarrow I_{1}$ and $J_{1} \rightarrow J_{2} \rightarrow \ldots \rightarrow J_{m} \rightarrow J_{1}$ be two loops such that $I_{1}=J_{1}$. We define the concatenation of these two loops as the loop $I_{1} \rightarrow I_{2} \rightarrow \ldots \rightarrow I_{n} \rightarrow I_{1} \rightarrow J_{2} \rightarrow \ldots \rightarrow J_{m} \rightarrow I_{1}$. We say that a loop is a m-repetition, $m \geq 2$, of a given loop if it is the concatenation of that loop with itself m times. We say that a loop is non-repetitive if it is not a m-repetition of any of its subloops with $m \geq 2$.

In what follows a G_{k}-map f is a continuous map $f: G_{k} \rightarrow G_{k}$ such that $f(p)=p$.
Proposition 1. Let f be a G_{k}-map. Suppose that f has two intervals I_{1} and I_{2} such that $\operatorname{Int}\left(I_{1}\right) \cap$ $\operatorname{Int}\left(I_{2}\right)=\emptyset$ and $I_{1} \cap I_{2}$ has no fixed points. If f has the subgraph $\subseteq I_{1} \rightleftarrows I_{2} \bigcirc$, then $\operatorname{Per}(f)=\mathbb{N}$.

Proof. Clearly, since $p \notin I_{1} \cap I_{2}$, at least one of the intervals, I_{1} and I_{2}, is not a circuit. Without loss of generality we assume that I_{1} is not a circuit. We consider the non-repetitive loop $I_{1} \rightarrow I_{2} \rightarrow I_{1} \rightarrow \ldots \rightarrow I_{1}$ of length $n \geq 2$. Since $\operatorname{Int}\left(I_{1}\right) \cap \operatorname{Int}\left(I_{2}\right)=\emptyset$ and $I_{1} \cap I_{2}$ has no fixed points, by Lemma 1 there is a periodic point z of f with period $n \geq 2$. That is, $\operatorname{Per}(f)=\mathbb{N}$.

In what follows when we say "we have two intervals A and B " we are really saying that we have two different intervals A and B. We remark that if we have two basic intervals I_{1} and I_{2} such that $p \notin I_{1} \cap I_{2}$, then they satisfy the assumptions of Proposition 1.

Proposition 2. Let f be a G_{k}-map. Suppose that f has three intervals I_{1}, I_{2} and I_{3} such that $\operatorname{Int}\left(I_{i}\right) \cap$ $\operatorname{Int}\left(I_{j}\right)=\emptyset$ for all $i \neq j$ and $I_{i} \cap I_{j}$ has no fixed points for some $i \neq j$. If f has the subgraph $\subset I_{1} \rightarrow I_{2} \rightarrow$ $I_{3} \rightarrow I_{1}$ then $\operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$. Moreover, if $I_{2} \cap I_{3}=\emptyset$ and $I_{3} \rightarrow I_{2}$, then $2 \in \operatorname{Per}(f)$.

Proof. We consider the non-repetitive loop $I_{1} \rightarrow I_{2} \rightarrow I_{3} \rightarrow I_{1} \rightarrow \ldots \rightarrow I_{1}$ of length $n \geq 3$. Since $\operatorname{Int}\left(I_{i}\right)$ $\cap \operatorname{Int}\left(I_{j}\right)=\emptyset$ for all $i \neq j$ and $I_{i} \cap I_{j}$ has no fixed points for some $i \neq j$, by Lemma 1 there is a periodic point z of f with period $n \geq 3$. Therefore, $\operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$.

We suppose now that $I_{2} \cap I_{3}=\emptyset$ and $I_{3} \rightarrow I_{2}$. We consider the non-repetitive loop $I_{2} \rightarrow I_{3} \rightarrow I_{2}$ of length 2. By Lemma 1 there is a periodic point z of f with period 2 .

We remark that if we have three basic intervals I_{1}, I_{2} and I_{3} such that $p \notin I_{i}$ for some $i \in\{1,2,3\}$, then we are in the assumptions of Proposition 2.

3. The eight

In this section we shall prove Theorem B . The two circuits of G_{2} are denoted by C_{1} and C_{2}. If f_{*} is given as in Theorem B , we consider that the circuit C_{1} covers itself $|a|$ times and it covers $C_{2}|c|$ times. Similarly for the circuit C_{2}.

Proof. [Proof of Statement (a) of Theorem B] Suppose that $\{a, d\} \not \subset\{-2,-1,0,1\}$.
Case 1: Assume that $\{\mathbf{a}, \mathbf{d}\} \not \subset\{-\mathbf{2}, \mathbf{- 1}, \mathbf{0}, \mathbf{1}, \mathbf{2}\}$. Without loss of generality, we may assume that $|a| \geq 3$. From the graph of f (see for instance Figure 1), it is clear that there are two basic intervals I_{1} and I_{2}, in C_{1}, such that $p \notin I_{1} \cap I_{2}$ and f has the subgraph of Proposition 1, so $\operatorname{Per}(f)=\mathbb{N}$. That is, $\operatorname{MPer}(f)=\mathbb{N}$.

Fig. 1. Examples of maps with $\{a, d\} \not \subset\{-2,-1,0,1,2\}$.
Case 2: Suppose that $\mathbf{2} \in\{\mathbf{a}, \mathbf{d}\}$ and $\{\mathbf{a}, \mathbf{d}\} \subset\{-\mathbf{2},-\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}\}$. Without loss of generality, we may assume that $a=2$.

Since $a=2$ this means that f has at least two basic intervals I_{1} and I_{2} in C_{1} such that f has the subgraph of Proposition 1. If $p \notin I_{1} \cap I_{2}$, then, by Proposition $1 \operatorname{Per}(f)=\mathbb{N}$. But not always I_{1} and I_{2} satisfy that $p \notin I_{1} \cap I_{2}$. In this case let p and a_{0} be the endpoints of I_{1}, b_{0} and p the endpoints of I_{2} (see for instance Figure 2).

Fig. 2. $I_{1_{1}}=\left[p, a_{1}\right], I_{2_{1}}=\left[b_{0}, b_{1}\right]$ and $I_{1_{3}}=\left[a_{1}, a_{2}\right]$.
We establish an ordering in the intervals I_{1} and I_{2} in such a way that p is the smallest element of I_{1} and the greatest of I_{2}. Set $I_{1}=\left[p, a_{0}\right]$ and $I_{2}=\left[b_{0}, p\right]$. Notice that we may have $a_{0}=b_{0}$. Consider the subset $\left(f \mid I_{1}\right)^{-1}\left(a_{0}\right)$ of C_{1}. Let a_{1} be the infimum of the points in $\left(f \mid I_{1}\right)^{-1}\left(a_{0}\right)$. Consider the subset $\left(f \mid I_{2}\right)^{-1}\left(a_{0}\right)$ of C_{1} and choose b_{1} to be the infimum of the points in $\left(f \mid I_{2}\right)^{-1}\left(a_{0}\right)$. Set $I_{1_{1}}=\left[p, a_{1}\right], I_{1_{2}}=\left[a_{1}, a_{0}\right]$ and $I_{2_{1}}=\left[b_{0}, b_{1}\right]$. Now we take the interval $I_{1_{3}}=\left[a_{1}, a_{2}\right]$ where a_{2} denotes the infimum of the points in the subset $\left(f \mid I_{1_{2}}\right)^{-1}\left(b_{1}\right)$ of C_{1}. Then f has the subgraph $\subset I_{1_{1}} \rightarrow I_{1_{3}} \rightleftarrows I_{2_{1}} \rightarrow I_{1_{1}}$. Since $I_{2_{1}} \cap I_{1_{3}}=\emptyset$, by Proposition 2, $n \in \operatorname{Per}(f)$, for all $n \geq 1$. Therefore, $\operatorname{MPer}(f)=\mathbb{N}$. This proves Statement (a).

Proof. [Proof of Statement (b) of Theorem B] Suppose that $-\mathbf{2} \in\{\mathbf{a}, \mathbf{d}\}$ and $\{\mathbf{a}, \mathbf{d}\} \subset\{-\mathbf{2}, \mathbf{- 1}, \mathbf{0}, \mathbf{1}\}$. Without loss of generality, we may assume that $\mathbf{a}=\mathbf{- 2}$.

First we suppose that $\mathbf{b c} \neq \mathbf{0}$. We always have four basic intervals I_{1}, I_{2}, I_{3} and $I_{4}, I_{1}, I_{2}, I_{3} \subset C_{1}$ and $I_{4} \subset C_{2}$, such that either $p \notin I_{1} \cap I_{3}$ or $I_{2} \cap I_{4}=\emptyset$ and f has the subgraph

(see for instance Figure 3).

Fig. 3. Examples of maps with $a=-2$ and $b c \neq 0$.

If $p \notin I_{1} \cap I_{3}$, by Proposition $1, \operatorname{Per}(f)=\mathbb{N}$. If $I_{2} \cap I_{4}=\emptyset$, by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. Therefore, if $b c \neq 0, \operatorname{MPer}(f)=\mathbb{N}$.

We suppose now that $\mathbf{b} \mathbf{c}=\mathbf{0}$. As it can be deduced from the examples of Figure $4,2 \notin \operatorname{MPer}(f)$.

Fig. 4. Examples of maps with $a=-2, d \in\{-2,-1,0,1\}, b c=0$ and $2 \notin \operatorname{Per}(f)$.

Since $a=-2$, this means that f has at least two basic intervals I_{1} and I_{2} in C_{1} such that f has the subgraph of Proposition 1. If $p \notin I_{1} \cap I_{2}$ then by Proposition $1 \operatorname{Per}(f)=\mathbb{N}$. But not always $p \notin I_{1} \cap I_{2}$. In this case let p and a_{0} be the endpoints of I_{1}, b_{0} and p the endpoints of I_{2} (see for instance Figure 5). We consider an ordering in the intervals I_{1} and I_{2} in such a way that p is the smallest element of I_{1} and the greatest of I_{2}. Write $I_{1}=\left[p, a_{0}\right]$ and $I_{2}=\left[b_{0}, p\right]$. Notice that we may have $a_{0}=b_{0}$. Consider the subsets $\left(f \mid I_{1}\right)^{-1}\left(a_{0}\right)$ and $\left(f \mid I_{2}\right)^{-1}\left(a_{0}\right)$ of C_{1}. Let a_{1} be the infimum of the points in $\left(f \mid I_{1}\right)^{-1}\left(a_{0}\right)$ and b_{1} the infimum of the points in $\left(f \mid I_{2}\right)^{-1}\left(a_{0}\right)$. Set $I_{1_{1}}=\left[p, a_{1}\right], I_{1_{2}}=\left[a_{1}, a_{0}\right]$ and $I_{2_{1}}=\left[b_{1}, p\right]$. Then f has the subgraph $\odot I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{1}} \rightarrow I_{1_{2}}$. Since we are in the assumptions of Proposition $2, n \in \operatorname{Per}(f)$, for all $n \neq 2$. Therefore, $\operatorname{MPer}(f)=\mathbb{N} \backslash\{2\}$. This proves Statement (b).

Proof. [Proof of Statement (c1) of Theorem B] Suppose that $\{\mathbf{a}, \mathbf{d}\} \subset\{-\mathbf{1}, \mathbf{0}, \mathbf{1}\}$ and $|\mathbf{a}|+|\mathbf{d}|=\mathbf{2}$. We consider first the case $\mathbf{b c}=\mathbf{0}$. Without loss of generality, we may assume that $c=0$. From the examples

Fig. 5. $\quad I_{1_{1}}=\left[p, a_{1}\right], I_{1_{2}}=\left[a_{1}, a_{0}\right]$ and $I_{2_{1}}=\left[b_{1}, p\right]$.
of Figure 6 it is clear that $n \notin \operatorname{MPer}(f)$ for any $n \in \mathbb{N}$ larger than 1 , so $\operatorname{MPer}(f)=\{1\}$ since the branching is fixed.

Fig. 6. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2$ and $b c=0$.

We assume now that $|\mathbf{b c}|>\mathbf{1}$. From the graph of f (see for instance Figure 7) it is easy to see that we always have three basic intervals I_{1}, I_{2} and I_{3}, with $I_{1}, I_{2} \subset C_{1}$ and $I_{3} \subset C_{2}$, such that $p \notin I_{i}$ for some $i \in\{1,2,3\}$ and f has the subgraph of $\operatorname{Proposition~2,~so~} \operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$. Now we will prove that $2 \in \operatorname{MPer}(f)$.

Fig. 7. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2$ and $|b c|>1$.

If $\{\mathbf{b}, \mathbf{c}\} \not \subset\{-\mathbf{2},-\mathbf{1}, \mathbf{1}, \mathbf{2}\}$, that is, if either $|b| \geq 3$ or $|c| \geq 3$, we can choose I_{2} in one circuit and I_{3} in the other circuit in such a way that $I_{2} \cap I_{3}=\emptyset$ (see (a), (b) and (c) of Figure 7) and $I_{3} \rightarrow I_{2}$. By Proposition $2,2 \in \operatorname{Per}(f)$. If $\{\mathbf{b}, \mathbf{c}\} \subset\{-\mathbf{2}, \mathbf{- 1}, \mathbf{1}, \mathbf{2}\}$ in general there do not exist two basic intervals I_{i} and $I_{j}, I_{i} \neq I_{j}$, such that $p \notin I_{i} \cap I_{j}$ and $I_{i} \rightleftarrows I_{j}$ (see (e) and (f) of Figure 7). If they exist then by Lemma 1 considering the non-repetitive loop $I_{i} \rightarrow I_{j} \rightarrow I_{i}$ there is a periodic point z of f with period 2 . If they do not exist, we shall find two intervals with empty intersection such that one f-covers the other.

We suppose first that $|b c|=2$. We may assume, without loss of generality, that $|b|=1$ and $|c|=2$. We know that f has five basic intervals, $I_{1}, I_{2}, I_{3}, I_{4}$ and I_{5}, the first three in C_{1} and the other two in C_{2}, such that $f\left(I_{2}\right)=f\left(I_{3}\right)=f\left(I_{5}\right)=C_{2}$ and $f\left(I_{1}\right)=f\left(I_{4}\right)=C_{1}$. Let p and a_{0} be the endpoints of I_{2}, a_{0} and a_{1} the endpoints of I_{1}, a_{1} and p the endpoints of I_{3} (see for instance Figure 8).

Fig. 8. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2$ and $|b c|=2$.

We consider an ordering in the intervals I_{1}, I_{2} and I_{3} in such a way that p is the smallest element of I_{2} and the greatest of I_{3}. Set $I_{2}=\left[p, a_{0}\right], I_{1}=\left[a_{0}, a_{1}\right]$ and $I_{3}=\left[b_{0}, p\right]$. We have two possibilities for the interval I_{4} : either $I_{4}=\left[p, b_{0}\right]$ or $I_{4}=\left[b_{0}, p\right]$. If $I_{4}=\left[p, b_{0}\right]$ and $b=1$ let b_{1} be the supremum of the points in $\left(f \mid I_{4}\right)^{-1}\left(a_{1}\right)$ and $I_{4_{2}}=\left[b_{1}, b_{0}\right]$. We have $I_{4_{2}} \rightleftarrows I_{3}$ and $I_{4_{2}} \cap I_{3}=\emptyset$, so, by Lemma $1,2 \in \operatorname{Per}(f)$. If $I_{4}=\left[p, b_{0}\right]$ and $b=-1$ set $b_{1}=\sup \left\{\left(f \mid I_{4}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{4_{2}}=\left[b_{1}, b_{0}\right]$. Then $I_{42} \rightleftarrows I_{2}$ and $I_{4_{2}} \cap I_{2}=\emptyset$ so, by Lemma 1, $2 \in \operatorname{Per}(f)$. If $I_{4}=\left[b_{0}, p\right]$ and $b=1$ write $b_{1}=\inf \left\{\left(f \mid I_{4}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{4_{1}}=\left[b_{0}, b_{1}\right]$. Then $I_{4_{1}} \rightleftarrows I_{2}$ and $I_{4_{1}} \cap I_{2}=\emptyset$, so, by Lemma $1,2 \in \operatorname{Per}(f)$. If $I_{4}=\left[b_{0}, p\right]$ and $b=-1$ take $b_{1}=\inf \left\{\left(f \mid I_{4}\right)^{-1}\left(a_{1}\right)\right\}$ and $I_{4_{1}}=\left[b_{0}, b_{1}\right]$. Then $I_{4_{1}} \rightleftarrows I_{3}$ and $I_{4_{1}} \cap I_{3}=\emptyset$, so, by Lemma $1,2 \in \operatorname{Per}(f)$.

Fig. 9. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2$ and $|b c|=4$.

Suppose now that $|b c|=4$. We know that f has six basic intervals, $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ and I_{6}, the first three in C_{1} and the other three in C_{2}, such that $f\left(I_{2}\right)=f\left(I_{3}\right)=f\left(I_{5}\right)=C_{2}$ and $f\left(I_{1}\right)=f\left(I_{4}\right)=f\left(I_{6}\right)=C_{1}$ (see for instance Figure 9). Using the same ordering as above set $I_{2}=\left[p, a_{0}\right], I_{1}=\left[a_{0}, a_{1}\right], I_{3}=\left[b_{0}, p\right]$,
$I_{4}=\left[p, b_{0}\right], I_{5}=\left[b_{0}, b_{1}\right]$ and $I_{6}=\left[b_{1}, p\right]$. If $b=2$ set $b_{2}=\inf \left\{\left(f \mid I_{6}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{6_{1}}=\left[b_{1}, b_{2}\right]$. Then $I_{6_{1}} \rightleftarrows I_{2}$ and $I_{6_{1}} \cap I_{2}=\emptyset$ so, by Lemma $1,2 \in \operatorname{Per}(f)$. If $b=-2$ write $b_{2}=\inf \left\{\left(f \mid I_{6}\right)^{-1}\left(a_{1}\right)\right\}$ and $I_{6_{1}}=\left[b_{1}, b_{2}\right]$. Then $I_{6_{1}} \rightleftarrows I_{3}$ and $I_{6_{1}} \cap I_{3}=\emptyset$ so, by Lemma $1,2 \in \operatorname{Per}(f)$. Therefore, if $|b c|>1, \operatorname{MPer}(f)=\mathbb{N}$.

We suppose that $|\mathbf{b c}|=\mathbf{1}$. We assume that $\mathbf{b}=\mathbf{c}=\mathbf{1}$. As it can be seen from the examples (a), (c) and (e) of Figure 10, $2 \notin \operatorname{MPer}(f)$. Now we will prove that $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$.

Fig. 10. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2, b c=1$ and $2 \notin \operatorname{Per}(f)$.

We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first two in C_{1} and the other two in C_{2}, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=f\left(I_{4}\right)=C_{2}$. We have four possibilities for these intervals. Let $a_{0} \in I_{1} \cap I_{2}$ and $b_{0} \in I_{3} \cap I_{4}$ (see for instance Figure 11). First, we take the interval I_{3} to be $\left[p, b_{0}\right]$. Set $I_{3_{2}}=\left[b_{1}, b_{0}\right]$ where $b_{1}=\sup \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$. If $I_{1}=\left[p, a_{0}\right]$ then f has the subgraph $\odot I_{4} \rightarrow I_{3_{2}} \rightarrow I_{2} \rightarrow I_{4}$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$. If $I_{1}=\left[a_{0}, p\right]$ then f has the subgraph $\subset I_{1} \rightarrow I_{2} \rightarrow I_{3_{2}} \rightarrow I_{1}$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$.

Fig. 11. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2$ and $b=c=1$.

Now we take the interval I_{3} to be $\left[b_{0}, p\right]$. Set $b_{1}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{3_{1}}=\left[b_{0}, b_{1}\right]$. If $I_{1}=\left[p, a_{0}\right]$ then f has the subgraph $\subset I_{1} \rightarrow I_{2} \rightarrow I_{3_{1}} \rightarrow I_{1}$ and by $\operatorname{Proposition~} 2, \operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$. If $I_{1}=\left[a_{0}, p\right]$ then f has the subgraph $\subset I_{4} \rightarrow I_{3_{1}} \rightarrow I_{2} \rightarrow I_{4}$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$. Therefore, if $|a|=|d|=1$ and $b=c=1$ then $\operatorname{MPer}(f)=\mathbb{N} \backslash\{2\}$.

We assume now that $\mathbf{b}=\mathbf{c}=\mathbf{- 1}$. As it can be seen from the examples (b), (d) and (f) of Figure 10, $2 \notin \operatorname{MPer}(f)$. Now we will prove that $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$.

Fig. 12. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2$ and $b=c=-1$.
We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first two in C_{1} and the other two in C_{2}, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=f\left(I_{4}\right)=C_{2}$. We have four possibilities for these intervals. Let $a_{0} \in I_{1} \cap I_{2}$ and $b_{0} \in I_{3} \cap I_{4}$ (see for instance Figure 12). First we take I_{3} to be the interval $\left[p, b_{0}\right]$. Consider $b_{1}=\sup \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{32}=\left[b_{1}, b_{0}\right]$. If $I_{1}=\left[p, a_{0}\right]$ then f has the subgraph $\complement_{1} \rightarrow I_{2} \rightarrow I_{32} \rightarrow I_{1}$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$. If $I_{1}=\left[a_{0}, p\right]$ then f has the subgraph $\subset I_{4} \rightarrow I_{32} \rightarrow I_{2} \rightarrow I_{4}$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$.

If $I_{3}=\left[b_{0}, p\right]$ consider $b_{1}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{3_{1}}=\left[b_{0}, b_{1}\right]$. If $I_{1}=\left[p, a_{0}\right]$ then f has the subgraph $I_{4} \rightarrow I_{3_{1}} \rightarrow I_{2} \rightarrow I_{4}$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$. If $I_{1}=\left[a_{0}, p\right]$ then f has the subgraph $I_{1} \rightarrow I_{2} \rightarrow I_{3_{1}} \rightarrow I_{1}$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$. Therefore, if $b=c=-1$ then $\operatorname{MPer}(f)=$ $\mathbb{N} \backslash\{2\}$. Hence, if $|a|+|d|=2$ and $b c=1, \operatorname{MPer}(f)=\mathbb{N} \backslash\{2\}$.

We consider now case $\mathbf{b}=-\mathbf{1}$ and $\mathbf{c}=\mathbf{1}$. We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first two in C_{1} and the other two in C_{2}, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=f\left(I_{4}\right)=C_{2}$. We have four possibilities for these intervals. Let $a_{0} \in I_{1} \cap I_{2}$ and $b_{0} \in I_{3} \cap I_{4}$ (see for instance Figure 13). We suppose first that $I_{2}=\left[a_{0}, p\right]$. If $I_{3}=\left[p, b_{0}\right]$ choose $a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and set $I_{2_{1}}=\left[a_{0}, a_{1}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{2_{1}} \rightleftarrows I_{3} \rightarrow I_{1}$ with $I_{3} \cap I_{2_{1}}=\emptyset$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N}$. If $I_{3}=\left[b_{0}, p\right]$ denote $b_{1}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{3_{1}}=\left[b_{0}, b_{1}\right]$. Then f has the subgraph $C_{4} \rightarrow I_{3_{1}} \rightleftarrows I_{2} \rightarrow I_{4}$ with $I_{2} \cap I_{3_{1}}=\emptyset$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N}$.

We consider now $I_{2}=\left[p, a_{0}\right]$. If $I_{3}=\left[p, b_{0}\right]$ set $b_{1}=\sup \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{3_{2}}=\left[b_{1}, b_{0}\right]$. Then f has the subgraph $C_{4} \rightarrow I_{3_{2}} \rightleftarrows I_{2} \rightarrow I_{4}$ with $I_{2} \cap I_{3_{2}}=\emptyset$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N}$. If $I_{3}=\left[b_{0}, p\right]$ write $a_{1}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{2_{2}} \rightleftarrows I_{3} \rightarrow I_{1}$ with $I_{3} \cap I_{2_{2}}=\emptyset$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. Therefore, if $b=-1$ and $c=1$, then $\operatorname{MPer}(f)=\mathbb{N}$.

We consider now case $\mathbf{b}=\mathbf{1}$ and $\mathbf{c}=-\mathbf{1}$. We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first two in C_{1} and the other two in C_{2}, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=f\left(I_{4}\right)=C_{2}$. We have again four possibilities for these intervals. Let $a_{0} \in I_{1} \cap I_{2}$ and $b_{0} \in I_{3} \cap I_{4}$ (see for instance Figure 14). We take the interval I_{2} to be $\left[a_{0}, p\right]$. If $I_{3}=\left[p, b_{0}\right]$ define $b_{1}=\sup \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{3_{2}}=\left[b_{1}, b_{0}\right]$. It follows that

Fig. 13. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2, b=-1$ and $c=1$.

Fig. 14. Examples of maps with $\{a, d\} \subset\{-1,0,1\},|a|+|d|=2, b=1$ and $c=-1$.
f has the subgraph $\odot I_{4} \rightarrow I_{3_{2}} \rightleftarrows I_{2} \rightarrow I_{4}$ with $I_{2} \cap I_{3_{2}}=\emptyset$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. If $I_{3}=\left[b_{0}, p\right]$ consider $a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{1}}=\left[a_{0}, a_{1}\right]$. Then f has the subgraph $\odot I_{1} \rightarrow I_{2_{1}} \rightleftarrows I_{3} \rightarrow I_{1}$ with $I_{3} \cap I_{2_{1}}=\emptyset$ and we get by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$.

Suppose that $I_{2}=\left[p, a_{0}\right]$. If $I_{3}=\left[p, b_{0}\right]$ set $a_{1}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{2_{2}} \rightleftarrows I_{3} \rightarrow I_{1}$ with $I_{3} \cap I_{2_{2}}=\emptyset$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. If $I_{3}=\left[b_{0}, p\right]$ consider $b_{1}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $I_{3_{1}}=\left[b_{0}, b_{1}\right]$. Then f has the subgraph $\subset I_{4} \rightarrow I_{3_{1}} \rightleftarrows I_{2} \rightarrow I_{4}$ with $I_{2} \cap I_{3_{1}}=\emptyset$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. Therefore, if $b=1$ and $c=-1$, then $\operatorname{MPer}(f)=\mathbb{N}$. Hence, if $|a|+|d|=2$ and $b c=-1$ then $\operatorname{MPer}(f)=\mathbb{N}$. This completes the proof of Statement $(c 1)$.

Proof. [Proof of Statement (c21) of Theorem B] We assume now that $\mathbf{a}=\mathbf{1}$ and $\mathbf{d}=\mathbf{0}$. If $\mathbf{b c}=\mathbf{0}$ then $\operatorname{MPer}(f)=\{1\}$ as it can be deduced from the examples of Figure 15. We suppose that b and c are such that $|\mathbf{b c}|>\mathbf{1}$ and $(\mathbf{b}, \mathbf{c}) \notin\{(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{- 1}),(-\mathbf{2}, \mathbf{1}),(\mathbf{- 2}, \mathbf{- 1})\}$. From the graph of f (see for instance Figure 16) it follows that there are three basic intervals I_{1}, I_{2} and $I_{3}, I_{1}, I_{2} \subset C_{1}, I_{3} \subset C_{2}$, such that either $p \notin I_{1} \cap I_{2}$
or $p \notin I_{1} \cap I_{3}$ and f has the subgraph of Proposition 2, so $\operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$.

Fig. 15. Examples of maps with $a=1, d=0$ and $b c=0$.
(a)

(b)

(c)

(d)

(e)

Fig. 16. Examples of maps with $a=1, d=0,(b, c) \notin\{(2,1),(2,-1),(-2,1),(-2,-1)\}$ and $|b c|>1$.

If $\{\mathbf{b}, \mathbf{c}\} \not \subset\{-\mathbf{2},-\mathbf{1}, \mathbf{1}, \mathbf{2}\}$ then we can choose I_{2} and I_{3} such that $I_{2} \cap I_{3}=\emptyset$ and by Proposition 2, $2 \in \operatorname{Per}(f)$. If $\{\mathbf{b}, \mathbf{c}\} \subset\left\{\mathbf{- 2 , - 1 , 1 , 2 \}}\right.$ in general there do not exist two basic intervals I_{i} and $I_{j}, I_{i} \neq I_{j}$, such that $p \notin I_{i} \cap I_{j}$ and $I_{i} \rightleftarrows I_{j}$. If they exist then by Lemma 1 considering the non-repetitive loop $I_{i} \rightarrow I_{j} \rightarrow I_{i}$ there is a periodic point z of f with period 2. If they do not exist (see for instance (c) and (d) of Figure 16) and $(b, c) \in\{(1,2),(-1,-2)\}, 2 \notin \operatorname{Per}(f)$ as we can see from the examples of Figure 17. Now we will prove that if $(b, c) \in\{(1,-2),(-1,2)\}$ or $|b|=|c|=2$ then $2 \in \operatorname{Per}(f)$.

Fig. 17. Examples of maps with $a=1, d=0,(b, c) \in\{(1,2),(-1,-2)\}$ and $2 \notin \operatorname{Per}(f)$.

We suppose first that $(b, c) \in\{(1,-2),(-1,2)\}$. We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first three in C_{1} and $I_{4}=C_{2}$, such that $f\left(I_{1}\right)=f\left(I_{4}\right)=C_{1}$ and $f\left(I_{2}\right)=f\left(I_{3}\right)=C_{2}$. Let p and a_{0} be the endpoints of I_{2}, a_{0} and a_{1} the endpoints of I_{1}, a_{1} and p the endpoints of I_{3} (see for instance Figure 18).

We consider an ordering in the intervals I_{1}, I_{2} and I_{3} in such a way that p is the smallest element of I_{2} and the greatest of I_{3}. Under these assumptions set $I_{2}=\left[p, a_{0}\right], I_{1}=\left[a_{0}, a_{1}\right]$ and $I_{3}=\left[a_{1}, p\right]$. Define

Fig. 18. Examples of maps with $a=1, d=0$ and $(b, c) \in\{(1,-2),(-1,2)\}$.
$b_{0}=\sup \left\{\left(f \mid I_{4}\right)^{-1}\left(a_{0}\right)\right\}, I_{4_{1}}=\left[p, b_{0}\right]$ and $I_{4_{2}}=\left[b_{0}, p\right]$. Set $a_{2}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{3_{1}}=\left[a_{1}, a_{2}\right]$. If $(b, c)=(1,-2)$ we have $I_{4_{2}} \rightleftarrows I_{3_{1}}$ and $I_{4_{2}} \cap I_{3_{1}}=\emptyset$. If $(b, c)=(-1,2)$ we get $I_{4_{1}} \rightleftarrows I_{3_{1}}$ and $I_{4_{1}} \cap I_{3_{1}}=\emptyset$. So, by Lemma 1, $2 \in \operatorname{Per}(f)$.

Suppose now that $|b|=|c|=2$. We know that f has five basic intervals, $I_{1}, I_{2}, I_{3}, I_{4}$ and I_{5}, the first three in C_{1} and the other two in C_{2}, such that $f\left(I_{2}\right)=f\left(I_{3}\right)=C_{2}$ and $f\left(I_{1}\right)=f\left(I_{4}\right)=f\left(I_{5}\right)=C_{1}$. Taking an ordering similar to the previous case define the intervals $I_{2}=\left[p, a_{0}\right], I_{1}=\left[a_{0}, a_{1}\right], I_{3}=\left[a_{1}, p\right]$, $I_{4}=\left[p, b_{0}\right]$ and $I_{5}=\left[b_{0}, p\right]$ (see for instance Figure 19). Set $a_{2}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{2}}=\left[a_{2}, a_{0}\right]$. If $c=2$ we have $I_{2_{2}} \rightleftarrows I_{5}$ and $I_{2_{2}} \cap I_{5}=\emptyset$. If $c=-2$ we have $I_{2_{2}} \rightleftarrows I_{4}$ and $I_{2_{2}} \cap I_{4}=\emptyset$. So, by Lemma 1, $2 \in \operatorname{Per}(f)$. Therefore, if $|b c|>1$ and $(b, c) \notin\{(2,1),(2,-1),(-2,1),(-2,-1)\}$ we have $\operatorname{MPer}(f)=\mathbb{N} \backslash\{2\}$ if $(b, c) \in\{(1,2),(-1,-2)\}$ and $\operatorname{MPer}(f)=\mathbb{N}$ otherwise.

Fig. 19. Examples of maps with $a=1, d=0$ and $|b|=|c|=2$.

Fig. 20. Examples of maps with $a=1, d=0$ and $(b, c) \in\{(2,1),(-2,1)\}$.

We assume that $|\mathbf{b c}|>\mathbf{1}$ and $(\mathbf{b}, \mathbf{c}) \in\{(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{- 1}),(-\mathbf{2}, \mathbf{1}),(-\mathbf{2}, \mathbf{- 1})\}$. We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first two in C_{1} and the others in C_{2}, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=f\left(I_{4}\right)=$ C_{1} and $f\left(I_{2}\right)=C_{2}$. Let p and a_{0} be the endpoints of I_{1} and I_{2}, and b_{0} and p the endpoints of I_{3} and I_{4} (see for instance Figures 20 and 21). For each pair (b, c) we have two possibilities for the intervals I_{1} and I_{2}. If $(b, c) \in\{(2,1),(-2,1)\}$ and $I_{2}=\left[a_{0}, p\right]$ write $a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{1}}=\left[a_{0}, a_{1}\right]$. Then f has the subgraph $\odot I_{1} \rightarrow I_{2_{1}} \rightleftarrows I_{3} \rightarrow I_{1}$ with $I_{3} \cap I_{2_{1}}=\emptyset$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. If $I_{2}=\left[p, a_{0}\right]$ consider $a_{1}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Then f has the subgraph $\bigcirc I_{1} \rightarrow I_{2_{2}} \rightleftarrows I_{4} \rightarrow I_{1}$ with $I_{4} \cap I_{2_{2}}=\emptyset$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N}$.

Fig. 21. Examples of maps with $a=1, d=0$ and $(b, c) \in\{(-2,-1),(2,-1)\}$.

If $(b, c) \in\{(-2,-1),(2,-1)\}$ and $I_{2}=\left[a_{0}, p\right]$ set $a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{1}}=\left[a_{0}, a_{1}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{2_{1}} \rightleftarrows I_{4} \rightarrow I_{1}$ with $I_{4} \cap I_{2_{1}}=\emptyset$ and by Proposition $2, \operatorname{Per}(f)=\mathbb{N}$. If $I_{2}=\left[p, a_{0}\right]$ consider $a_{1}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Then f has the subgraph $\bigcirc I_{1} \rightarrow$ $I_{2_{2}} \rightleftarrows I_{3} \rightarrow I_{1}$ with $I_{3} \cap I_{2_{2}}=\emptyset$ and by Proposition 2, $\operatorname{Per}(f)=\mathbb{N}$. Therefore, if $|\mathbf{b c}|>\mathbf{1}$ and $(\mathbf{b}, \mathbf{c}) \in\{(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{- 1}),(-\mathbf{2}, \mathbf{1}),(-\mathbf{2},-\mathbf{1})\}, \operatorname{MPer}(f)=\mathbb{N}$.

We consider the case $|\mathbf{b c}|=\mathbf{1}$. First assume that $\mathbf{b c}=\mathbf{1}$. As we can see from the examples of Figure 22, $2 \notin \operatorname{MPer}(f)$. Now we will prove that $\operatorname{Per}(f)=\mathbb{N} \backslash\{2\}$.

Fig. 22. Examples of maps with $a=1, d=0, b c=1$ and $2 \notin \operatorname{Per}(f)$.

We know that f has three basic intervals, I_{1}, I_{2} and I_{3}, the first two in C_{1} and $I_{3}=C_{2}$, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=C_{2}$. We have two possibilities for the intervals I_{1} and I_{2} : either p is the smallest element of I_{1} and the greatest of I_{2} or p is the smallest element of I_{2} and the greatest of I_{1} (see for instance Figure 23). In the assumption that $b=c=1$, if $I_{1}=\left[p, a_{0}\right]$, write $b_{0}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$, $I_{3_{1}}=\left[p, b_{0}\right], a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{1}}=\left[a_{0}, a_{1}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{2_{1}} \rightarrow I_{3_{1}} \rightarrow I_{1}$ and by Proposition $2, \operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$. If $I_{1}=\left[a_{0}, p\right]$, define $b_{0}=\sup \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}, I_{3_{2}}=\left[b_{0}, p\right]$,

Fig. 23. Examples of maps with $a=1, d=0$ and $b c=1$.
$a_{1}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{2_{2}} \rightarrow I_{3_{2}} \rightarrow I_{1}$ and by Proposition 2, $\operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$.

If $b=c=-1$ we consider first the case $I_{1}=\left[p, a_{0}\right]$. Set $b_{0}=\sup \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}, I_{3_{2}}=\left[b_{0}, p\right], a_{1}=$ $\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{2_{1}}=\left[a_{0}, a_{1}\right]$. Then f has the subgraph $C_{1} \rightarrow I_{2_{1}} \rightarrow I_{3_{2}} \rightarrow I_{1}$ and by Proposition 2, $\operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$. If $I_{1}=\left[a_{0}, p\right]$, write $b_{0}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}, I_{3_{1}}=\left[p, b_{0}\right], a_{1}=\sup \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$ and $I_{22}=\left[a_{1}, a_{0}\right]$. Then f has the subgraph $\subset I_{1} \rightarrow I_{22} \rightarrow I_{3_{1}} \rightarrow I_{1}$ and by Proposition 2, $\operatorname{Per}(f) \supset \mathbb{N} \backslash\{2\}$. Therefore, if $a=1, d=0$ and $b c=1, \operatorname{MPer}(f)=\mathbb{N} \backslash\{2\}$.

Fig. 24. Examples of maps with $a=1, d=0$ and $b c=-1$.

Assume now that $\mathbf{b c}=\mathbf{- 1}$. We know that f has three basic intervals, I_{1}, I_{2} and I_{3}, the first two in C_{1} and $I_{3}=C_{2}$, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=C_{2}$. We have two possibilities for the intervals I_{1} and I_{2} : either p is the smallest element of I_{1} and the greatest of I_{2} or p is the smallest element of I_{2} and the greatest of I_{1} (see for instance Figure 24). Define $b_{0}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}, I_{3_{1}}=\left[p, b_{0}\right], I_{3_{2}}=\left[b_{0}, p\right]$ and
$a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$.
If $I_{1}=\left[a_{0}, p\right]$ let $I_{2_{1}}=\left[p, a_{1}\right]$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Consider $a_{2}=\inf \left\{\left(f \mid I_{1}\right)^{-1}\left(a_{1}\right)\right\}$. We write $I_{1_{1}}=\left[a_{0}, a_{2}\right]$ and $I_{1_{2}}=\left[a_{2}, p\right]$. If $b=1$ and $c=-1$ (see (a) of Figure 24) f has the subgraph

We consider the non-repetitive loops $I_{1_{1}} \rightarrow I_{2_{1}} \rightarrow I_{3_{2}} \rightarrow I_{1_{1}}$ and $I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{1}} \rightarrow I_{3_{2}} \rightarrow I_{1_{2}} \rightarrow \ldots \rightarrow I_{1_{2}}$ of lengths 3 and $n \geq 4$, respectively. From the first loop and by Lemma 1 there is a periodic point z of f with period 3; from the second loop and by Lemma 1 there is a periodic point z of f with period $n \geq 4$. Moreover, $I_{3_{1}} \rightleftarrows I_{2_{2}}$ and $I_{3_{1}} \cap I_{2_{2}}=\emptyset$, so, by Lemma $1,2 \in \operatorname{Per}(f)$. Hence, $\operatorname{Per}(f)=\mathbb{N}$. If $b=-1$ and $c=1$ (see (b) of Figure 24) f has the subgraph

Now from the non-repetitive loops $I_{1_{1}} \rightarrow I_{2_{1}} \rightarrow I_{3_{1}} \rightarrow I_{1_{1}}$ and $I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{1}} \rightarrow I_{3_{1}} \rightarrow I_{1_{2}} \rightarrow \ldots \rightarrow I_{1_{2}}$ of lengths 3 and $n \geq 4$, respectively, and $I_{3_{2}} \rightleftarrows I_{2_{2}}$ and $I_{3_{2}} \cap I_{2_{2}}=\emptyset$, it follows that $\operatorname{Per}(f)=\mathbb{N}$.

If $I_{1}=\left[p, a_{0}\right]$ let $I_{2_{1}}=\left[a_{0}, a_{1}\right], I_{2_{2}}=\left[a_{1}, p\right]$. Define $a_{2}=\sup \left\{\left(f \mid I_{1}\right)^{-1}\left(a_{1}\right)\right\}, I_{1_{1}}=\left[a_{0}, a_{2}\right]$ and $I_{1_{2}}=\left[a_{2}, p\right]$. If $b=1$ and $c=-1$ (see (c) of Figure 24) f has the subgraph

Again from the non-repetitive loops $I_{1_{2}} \rightarrow I_{2_{2}} \rightarrow I_{3_{1}} \rightarrow I_{1_{2}}$ and $I_{1_{1}} \rightarrow I_{1_{2}} \rightarrow I_{2_{2}} \rightarrow I_{3_{1}} \rightarrow I_{1_{1}} \rightarrow \ldots \rightarrow I_{1_{1}}$ of lengths 3 and $n \geq 4$, respectively, $I_{3_{2}} \rightleftarrows I_{2_{1}}$ and $I_{3_{2}} \cap I_{2_{1}}=\emptyset, \operatorname{Per}(f)=\mathbb{N}$. If $b=-1$ and $c=1$ (see (d) of Figure 24) f has the subgraph

We consider the non-repetitive loops $I_{1_{2}} \rightarrow I_{2_{2}} \rightarrow I_{3_{2}} \rightarrow I_{1_{2}}$ and $I_{1_{1}} \rightarrow I_{1_{2}} \rightarrow I_{2_{2}} \rightarrow I_{3_{2}} \rightarrow I_{1_{1}} \rightarrow \ldots \rightarrow I_{1_{1}}$ of lengths 3 and $n \geq 4$, respectively, $I_{3_{1}} \rightleftarrows I_{2_{1}}$ and $I_{3_{1}} \cap I_{2_{1}}=\emptyset$. We obtain that $\operatorname{Per}(f)=\mathbb{N}$. Therefore, if $a=1, d=0$ and $b c=-1, \operatorname{MPer}(f)=\mathbb{N}$. This completes the proof of Statement (c21).

Proof. [Proof of Statement (c22) of Theorem B] If $\mathbf{a}=\mathbf{0}$ and $\mathbf{d}=\mathbf{1}$, by using the same kind of arguments that in the case $a=1$ and $d=0$, and interchanging b and c, we obtain Statement (c22).

Proof. [Proof of Statement (c23) of Theorem B] We suppose that $\mathbf{a}=-\mathbf{1}$ and $\mathbf{d}=\mathbf{0}$. If $\mathbf{b c}=\mathbf{0}$ then $\operatorname{MPer}(f)=\{1\}$ as it can be seen from the examples of Figure 25 . The cases in which $\operatorname{MPer}(f)$ is either $\mathbb{N} \backslash\{2\}$ or \mathbb{N} can be proved following exactly the same kind of arguments that in the proof of Statement (c21).

Fig. 25. Examples of maps with $a=-1, d=0$ and $b c=0$.

Assume now that bc=-1. From the examples of Figure 26 we can see that $3 \notin \operatorname{MPer}(f)$.

Fig. 26. Examples of maps with $a=-1, d=0, b c=-1$ and $3 \notin \operatorname{Per}(f)$.

We know that f has three basic intervals, I_{1}, I_{2} and I_{3}, the first two in C_{1} and $I_{3}=C_{2}$, such that $f\left(I_{1}\right)=f\left(I_{3}\right)=C_{1}$ and $f\left(I_{2}\right)=C_{2}$. We have two possibilities for the intervals I_{1} and I_{2} : either p is the smallest element of I_{1} and the greatest of I_{2} or p is the smallest element of I_{2} and the greatest of I_{1} (see for instance Figure 27). Denote $b_{0}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}, I_{3_{1}}=\left[p, b_{0}\right] I_{3_{2}}=\left[b_{0}, p\right]$ and $a_{1}=\inf \left\{\left(f \mid I_{2}\right)^{-1}\left(b_{0}\right)\right\}$.

Fig. 27. Examples of maps with $a=1, d=0$ and $b c=-1$.

If $I_{1}=\left[a_{0}, p\right]$ let $I_{2_{1}}=\left[p, a_{1}\right]$ and $I_{2_{2}}=\left[a_{1}, a_{0}\right]$. Consider $a_{2}=\inf \left\{\left(f \mid I_{1}\right)^{-1}\left(a_{1}\right)\right\}$. Write $I_{1_{1}}=\left[a_{0}, a_{2}\right]$ and $I_{1_{2}}=\left[a_{2}, p\right]$. If $b=1$ and $c=-1$ (see (a) of Figure 27) f has the subgraph $I_{1_{1}} \rightarrow I_{1_{2}} \rightarrow I_{2_{1}} \rightarrow$ $I_{3_{2}} \rightarrow I_{1_{1}}$. We consider the non-repetitive loop $I_{1_{1}} \rightarrow I_{1_{2}} \rightarrow I_{2_{1}} \rightarrow I_{3_{2}} \rightarrow I_{1_{1}} \rightarrow \ldots \rightarrow I_{1_{1}}$ of length $n \geq 4$. By Lemma 1 there is a periodic point z of f with period $n \geq 4$. Moreover, $I_{3_{1}} \rightleftarrows I_{2_{2}}$ and
$I_{3_{1}} \cap I_{2_{2}}=\emptyset$, so, by Lemma $1,2 \in \operatorname{Per}(f)$. Hence, $\operatorname{Per}(f)=\mathbb{N} \backslash\{3\}$. If $b=-1$ and $c=1$ (see (b) of Figure 27) f has the subgraph $\bigcirc_{1_{1}} \rightarrow I_{1_{2}} \rightarrow I_{2_{1}} \rightarrow I_{3_{1}} \rightarrow I_{1_{1}}$. We consider the non-repetitive loop $I_{1_{1}} \rightarrow I_{1_{2}} \rightarrow I_{2_{1}} \rightarrow I_{3_{1}} \rightarrow I_{1_{1}} \rightarrow \ldots \rightarrow I_{1_{1}}$ of length $n \geq 4$. By Lemma 1 there is a periodic point z of f with period $n \geq 4$. Moreover, $I_{3_{2}} \rightleftarrows I_{2_{2}}$ and $I_{3_{2}} \cap I_{2_{2}}=\emptyset$, so, by Lemma $1,2 \in \operatorname{Per}(f)$. Hence, $\operatorname{Per}(f)=\mathbb{N} \backslash\{3\}$.

If $I_{1}=\left[p, a_{0}\right]$ let $I_{2_{1}}=\left[a_{0}, a_{1}\right]$ and $I_{2_{2}}=\left[a_{1}, p\right]$. Consider $a_{2}=\sup \left\{\left(f \mid I_{1}\right)^{-1}\left(a_{1}\right)\right\}$. Write $I_{1_{1}}=\left[p, a_{2}\right]$ and $I_{1_{2}}=\left[a_{2}, a_{0}\right]$. If $b=1$ and $c=-1$ (see (c) of Figure 27) f has the subgraph $\subset I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{2}} \rightarrow I_{3_{1}} \rightarrow$ $I_{1_{2}}$. From the non-repetitive loop $I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{2}} \rightarrow I_{3_{1}} \rightarrow I_{1_{2}} \rightarrow \ldots \rightarrow I_{1_{2}}$ of length $n \geq 4, I_{3_{2}} \rightleftarrows I_{2_{1}}$ and $I_{3_{2}} \cap I_{2_{1}}=\emptyset$, we obtain that $\operatorname{Per}(f)=\mathbb{N} \backslash\{3\}$. If $b=-1$ and $c=1$ (see (d) of Figure 27) f has the subgraph $\subset I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{2}} \rightarrow I_{3_{2}} \rightarrow I_{1_{2}}$. Using the non-repetitive loop $I_{1_{2}} \rightarrow I_{1_{1}} \rightarrow I_{2_{2}} \rightarrow I_{3_{2}} \rightarrow I_{1_{2}} \rightarrow \ldots \rightarrow I_{1_{2}}$ of length $n \geq 4, I_{3_{1}} \rightleftarrows I_{2_{1}}$ and $I_{3_{1}} \cap I_{2_{1}}=\emptyset$, we get that $\operatorname{Per}(f)=\mathbb{N} \backslash\{3\}$. Therefore, if $a=-1, d=0$ and $b c=-1, \operatorname{MPer}(f)=\mathbb{N} \backslash\{3\}$. This completes the proof of Statement (c23).

Proof. [Proof of Statement (c24) of Theorem B] If $\mathbf{a}=\mathbf{0}$ and $\mathbf{d}=-\mathbf{1}$, by using the same kind of arguments that in the case $a=-1$ and $d=0$, and interchanging b and c, we obtain Statement (c24).

Proof. [Proof of Statement (c3) of Theorem B] We suppose that $\mathbf{a}=\mathbf{d}=\mathbf{0}$. If $\mathbf{b c}=\mathbf{0}$ or $\mathbf{b c}=\mathbf{1}$ we can deduce from the examples of Figure 28 that $\operatorname{MPer}(f)=\{1\}$.

Fig. 28. Examples of maps with $a=d=0$ and either $b c=0$ or $b c=1$.

If $\mathbf{b c}=\mathbf{- 1}$ then $\operatorname{MPer}(f)=\{1,2\}$ (see for instance Figure 29).

Fig. 29. Examples of maps with $a=d=0$ and $b c=-1$.

We assume now that $|\mathbf{b c}|=\mathbf{2}$. Since $a=d=0$ we may assume without loss of generality that $|b|=1$ and $|c|=2$. We consider first case $\mathbf{b c}=\mathbf{- 2}$. Clearly, $\{1,2\} \subset \operatorname{Per}(f)$, no other odd number belongs to $\operatorname{MPer}(f)$ and $4 \notin \operatorname{MPer}(f)$ as it can be deduced from Figure 30. Now we will prove that $n \in \operatorname{Per}(f)$ for any n even larger than 4 .

We know that f has three basic intervals, I_{1}, I_{2} and I_{3}, the first two in C_{1} and $I_{3}=C_{2}$, such that $f\left(I_{1}\right)=f\left(I_{2}\right)=C_{2}$ and $f\left(I_{3}\right)=C_{1}$ (see for instance Figure 31). Consider $b_{0}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$, $a_{1}=\inf \left\{\left(f \mid I_{1}\right)^{-1}\left(b_{0}\right)\right\}, b_{1}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{1}\right)\right\}$. Set $I_{1_{1}}=\left[p, a_{1}\right], I_{1_{2}}=\left[a_{1}, a_{0}\right], I_{3_{1}}$ the interval with endpoints b_{1} and $p, I_{3_{2}}$ the interval with endpoints b_{1} and b_{0}, and $I_{3_{3}}$ the interval with endpoints b_{0} and p. Then f has the subgraph

Fig. 30. Examples of maps with $a=d=0, b c=-2$ and $4 \notin \operatorname{Per}(f)$.

Fig. 31. Examples of maps with $a=d=0$ and $b c=-2$.

We consider the non-repetitive loops $I_{3_{2}} \rightarrow I_{1_{2}} \rightarrow I_{3_{2}}$ and $I_{2} \rightarrow I_{3_{2}} \rightarrow I_{1_{2}} \rightarrow I_{3_{1}} \rightarrow I_{1_{1}} \rightarrow I_{3_{3}} \rightarrow I_{2} \rightarrow$ $\ldots \rightarrow I_{3_{3}} \rightarrow I_{2}$ of lengths 2 and n even, $n \geq 6$, respectively. We have $I_{3_{2}} \cap I_{1_{2}}=\emptyset$, so, from the first loop and by Lemma 1 there is a periodic point z of f with period 2 ; from the second loop and by Lemma 1 there is a periodic point z of f with period n even $n \geq 6$. Therefore, if $b c=-2$ then $\operatorname{MPer}(f)=\{1\} \cup(2 \mathbb{N} \backslash\{4\})$.

We suppose that $\mathbf{b c}=\mathbf{2}$. No odd number other than 1 belongs to $\operatorname{MPer}(f)$, as it can be seen from the examples of Figure 32. Also from Figure 32 we can deduce that $2 \notin \operatorname{MPer}(f)$. Now we will prove that $n \in \operatorname{Per}(f)$ for any n even larger than 2 .

We know that f has three basic intervals, I_{1}, I_{2} and I_{3}, the first two in C_{1} and $I_{3}=C_{2}$, such that $f\left(I_{1}\right)=f\left(I_{2}\right)=C_{2}$ and $f\left(I_{3}\right)=C_{1}$ (see for instance Figure 33). Denote $b_{0}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$, $a_{1}=\inf \left\{\left(f \mid I_{1}\right)^{-1}\left(b_{0}\right)\right\}$ and $b_{1}=\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{1}\right)\right\}$. Write $I_{1_{1}}=\left[p, a_{1}\right], I_{1_{2}}=\left[a_{1}, a_{0}\right], I_{3_{2}}$ the interval with endpoints b_{1} and b_{0}, and $I_{3_{3}}$ the interval with endpoints b_{0} and p. Then f has the subgraph $I_{3_{2}} \rightarrow I_{1_{2}} \rightarrow$ $I_{3_{3}} \rightleftarrows I_{2} \rightarrow I_{3_{2}}$. We take the non-repetitive loop $I_{2} \rightarrow I_{3_{2}} \rightarrow I_{1_{2}} \rightarrow I_{3_{3}} \rightarrow I_{2} \rightarrow \ldots \rightarrow I_{3_{3}} \rightarrow I_{2}$ of length n even, $n \geq 4$. By Lemma 1 there is a periodic point z of f with period n even $n \geq 4$. Therefore, if $b c=2$ then $\operatorname{MPer}(f)=\{1\} \cup(2 \mathbb{N} \backslash\{2\})$.

We consider now case $|\mathbf{b c}|>\mathbf{2}$. We must separate case $|b|=|c|=2$ from the others. If $|\mathbf{b}|>\mathbf{2}$ or $|\mathbf{c}|>\mathbf{2}$ then there are three basic intervals I_{1}, I_{2} and I_{3} such that $I_{2} \cap I_{3}=\emptyset$ and $I_{1} \rightleftarrows I_{3} \rightleftarrows I_{2}$ (see for instance Figure 34). By Lemma 1 the non-repetitive loop $I_{2} \rightarrow I_{3} \rightarrow I_{2}$ gives a periodic point z of f with

Fig. 32. Examples of maps with $a=d=0, b c=2$ and $2 \notin \operatorname{Per}(f)$.

Fig. 33. Examples of maps with $a=d=0$ and $b c=2$.

Fig. 34. Examples of maps with $a=d=0$ and either $|b|>2$ or $|c|>2$.
period 2, and the non-repetitive loop $I_{1} \rightarrow I_{3} \rightarrow I_{2} \rightarrow I_{3} \rightarrow \ldots \rightarrow I_{2} \rightarrow I_{3} \rightarrow I_{1}$ of length n even larger than 2 gives a periodic point z of f with period n even. No odd number other than 1 belongs to $\operatorname{MPer}(f)$. Therefore, if $|b|>2$ or $|c|>2$, then $\operatorname{MPer}(f)=\{1\} \cup 2 \mathbb{N}$.

We suppose that $|\mathbf{b}|=|\mathbf{c}|=\mathbf{2}$. Clearly, no odd number other than 1 belongs to $\operatorname{MPer}(f)$. Now we will prove that $n \in \operatorname{Per}(f)$ for any n even.

We know that f has four basic intervals, I_{1}, I_{2}, I_{3} and I_{4}, the first two in C_{1} and the others in C_{2}, such that $f\left(I_{1}\right)=f\left(I_{2}\right)=C_{2}$ and $f\left(I_{3}\right)=f\left(I_{4}\right)=C_{1}$ (see for instance Figure 35). Consider $b_{1}=$ $\inf \left\{\left(f \mid I_{3}\right)^{-1}\left(a_{0}\right)\right\}$ and $a_{1}=\inf \left\{\left(f \mid I_{1}\right)^{-1}\left(b_{1}\right)\right\}$. Denote $I_{1_{1}}=\left[p, a_{1}\right], I_{1_{2}}=\left[a_{1}, a_{0}\right], I_{2}=\left[a_{0}, p\right], I_{3_{1}}=\left[p, b_{1}\right]$, $I_{3_{2}}=\left[b_{1}, b_{0}\right]$ and $I_{4}=\left[b_{0}, p\right]$. If $(b, c) \in\{(2,2),(-2,2)\}$ then f has the subgraph $I_{2} \rightleftarrows I_{4} \rightleftarrows I_{1_{2}}$. We take the non-repetitive loops $I_{4} \rightarrow I_{1_{2}} \rightarrow I_{4}$ and $I_{2} \rightarrow I_{4} \rightarrow I_{1_{2}} \rightarrow I_{4} \rightarrow \ldots \rightarrow I_{1_{2}} \rightarrow I_{4} \rightarrow I_{2}$, of lengths 2 and n even larger than 2, respectively. By Lemma 1 the first loop gives a periodic point z of f with period 2, and the second loop gives a periodic point z of f with period n even larger than 2 . Hence, if $(b, c) \in\{(2,2),(-2,2)\}, \operatorname{Per}(f)=\{1\} \cup 2 \mathbb{N}$.

If $(b, c)=(-2,-2)$ then f has the subgraph $I_{4} \rightleftarrows I_{1_{1}} \rightleftarrows I_{3_{2}}$. We consider the non-repetitive loops $I_{3_{2}} \rightarrow I_{1_{1}} \rightarrow I_{3_{2}}$ and $I_{4} \rightarrow I_{1_{1}} \rightarrow I_{3_{2}} \rightarrow I_{1_{1}} \rightarrow \ldots \rightarrow I_{3_{2}} \rightarrow I_{1_{1}} \rightarrow I_{4}$, of lengths 2 and n even larger than 2 , respectively. By Lemma 1 the first loop gives a periodic point z of f with period 2 , and the second loop gives a periodic point z of f with period n even larger than 2 . Hence, if $(b, c)=(-2,-2), \operatorname{Per}(f)=\{1\} \cup 2 \mathbb{N}$.

If $(b, c)=(2,-2)$ then f has the subgraph $I_{4} \rightleftarrows I_{2} \rightleftarrows I_{3_{2}}$. We consider the non-repetitive loops $I_{2} \rightarrow I_{3_{2}} \rightarrow I_{2}$ and $I_{4} \rightarrow I_{2} \rightarrow I_{3_{2}} \rightarrow I_{2} \rightarrow \ldots \rightarrow I_{3_{2}} \rightarrow I_{2} \rightarrow I_{4}$, of lengths 2 and n even larger than 2, respectively. By Lemma 1 the first loop gives a periodic point z of f with period 2 , and the second loop

Fig. 35. Examples of maps with $a=d=0$ and $|b|=|c|=2$.
gives a periodic point z of f with period n even larger than 2 . Hence, if $(b, c)=(-2,-2), \operatorname{Per}(f)=\{1\} \cup 2 \mathbb{N}$. Therefore, if $|b|=|c|=2$ then $\operatorname{MPer}(f)=\{1\} \cup 2 \mathbb{N}$. This completes the proof of Statement (c3).

Acknowledgements

The first author has been partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

Abdulla, U. G., Abdulla, R. U., Abdulla, M. U. \& Iqbal, N. H. [2017] "Second minimal orbits, sharkovski ordering and universality in chaos," Internat. J. Bifur. Chaos Appl. Sci. Engrg. 27, 1-24.
Alsedà, L. \& Ruette, S. [2008] "Rotation sets for graph maps of degree 1," Ann. Inst. Fourier 58, 1233--1294.
Alsedà, L., Baldwin, S., Llibre, J., Swanson, R. \& Szlenk, W. [1995] "Minimal sets of periods for torus maps via nielsen numbers," Pacific J. of Math. 169, 1-32.
Alsedà, L., Juher, D. \& Mumbrù, P. [2005] "On the preservation of combinatorial types for maps on trees," Ann. Inst. Fourier 55, 2375-2398.
Alsedà, L., Llibre, J. \& Misiurewicz, M. [2000] Combinatorial dynamics and entropy in dimension one, Vol. 5 (World Scientific).
Arai, T. [2016] "The structure of dendrites constructed by pointwise p-expansive maps on the unit interval," Discrete Contin. Dyn. Syst. 36, 43-61.
Bernhardt, C. [2006] "Vertex maps for trees: algebra and periods of periodic orbit," Discrete Contin. Dyn. Syst. 14, 399-408.
Bernhardt, C. [2011] "Vertex maps on graphs-trace theorems," Fixed Point Theory Appl. 8, 1-11.
Block, L., Guckenheimer, J., Misiurewicz, M. \& Young, L. S. [1980] "Periodic points and topological entropy of one dimensional maps," Lecture Notes in Math. 819, 18-34.
Brown, R. F. [1971] The Lefschetz Fixed Point Theorem (Scott-Foresman, Chicago).
Casasayas, J., Llibre, J. \& Nunes, A. [1995] "Periodic orbits of transversal maps," Math. Proc. Cambridge Philos. Soc. 118, 161-181.

Efremova, L. S. [1978] "Periodic orbits and the degree of a continuous map of a circle (in russian)," Diff. and Integer Equations (Gor’kiū) 2, 109-105.
Jiang, B. [1983] Lectures on Nielsen fixed point theory, Vol. 14 (Amer. Math. Soc.).
Jiang, B. \& Llibre, J. [1998] "Minimal sets of periods for torus maps," Discrete Contin. Dynam-Systems 4, 301-320.
Kiang, T. H. [1989] The theory of fixed point classes (Springer-Verlag, Berlin).
Llibre, J. [1991] "Periodic points of one dimensional maps," European Conference on Iteration Theory, ECIT 89, Eds. C. Mira, N. Netzer, C. Simó and G. Targonski, 194-198.
Llibre, J. \& Misiurewicz, M. [2006] "Negative periodic orbits for graph maps," Nonlinearity 19, 741-746.
Llibre, J. \& Sá, A. [1995] "Periods for continuous self-maps of a bouquet of circles," C. R. Acad. Sci. Paris Sér. I Maths. 318, 1035-1040.

