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Abstract. We give necessary and sufficient conditions for the complete inte-
grability of first order N–dimensional differential systems.

We propose a new method to determine in the Jacobi Theorem the last N−1

first integral for the complete integrability of an N–dimensional differential
system with N − 2 independent first integrals and with a Jacobi multiplier.

As an application we study the complete integrability of some 3–dimensional

differential systems, more precisely the complete integrability of the asymmet-
ric and symmetric May–Leonard differential systems.

1. Introduction

For the N–dimensional nonlinear differential systems the existence of K < N−1
independent first integrals means that these systems are partially integrable. The
existence of N − 1 independent first integrals means that the system is completely
integrable, i.e. for such systems the intersection of the N−1 hypersurfaces obtained
fixing the N − 1 first integrals provide the trajectories of the differential system.

We give necessary and sufficient conditions under which the differential system

(1) ẋj = Xj(x1, . . . , xN ), for j = 1, . . . , N,

or its associated vector field

X = X1
∂

∂x1
+X2

∂

∂x2
+ . . .+XN

∂

∂xN
,

is completely integrable. Here Xj : U −→ RN are C1 functions defined in an open
subset U ⊆ RN . Using these necessary and sufficient conditions we propose a new
method to determine the last N − 1 first integral in the Jacobi Theorem for the
complete integrability of the differential system (1) having N − 2 independent first
integrals and a Jacobi multiplier.

This paper is organized as follows. In section 2 we state some basic definitions
and results. In section 3 we give our main results. In section 4 we prove our results.
Finally in section 5 we apply the obtained results to the study the completely
integrability of the asymmetric and symmetric May–Leonard differential systems
and Clebsch differential systems.
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2. Preliminary results and definitions

2.1. Complete integrable vector fields. For simplicity we shall assume that all
the functions which appear below are of class Cr for r ≥ 2 although most of the
results remain valid under weaker hypotheses.

Let U be an open subset of RN . We say that a non-locally constant function H :
U −→ R is a first integral of the differential system (1) if H = H(x1(t), . . . , xN (t))
is constant for all values of t for which the solution (x1(t), . . . , xN (t)) is defined and
contained in U . Clearly a C1 function H is a first integral of system (1) if and only
if

Ḣ =
∂H

∂x1
X1 +

∂H

∂x2
X2 + . . .+

∂H

∂xN
XN ≡ 0 in U.

If Hr : Ur −→ R for r = 1, . . . ,K are K first integrals of system (1), we say that

they are independent in ŨK := U1 ∩ U2 . . . ∩ UK if their gradients are independent
in all the points of ŨK except perhaps in a zero Lebesgue measure set.

We say that system (1) is completely integrable in an open set ŨN−1 if it has
N−1 independent first integrals. In this case the orbits of system (1) are contained
in the curves {

H1 = h1

}
∩
{
H2 = h2

}
∩ . . . ∩

{
HN−1 = hN−1

}
,

when h1, h2 . . . , hN−1 vary in R.

Let J = J(x1, . . . , xN ) be a non–negative function non–identically zero on an
open subset U of RN . Then J is a Jacobi multiplier of the differential system (1) if∫

Ω

J(x1, . . . , xN )dx1 . . . dxN =

∫
ϕt(Ω)

J(x1, . . . , xN )dx1 . . . dxN ,

where Ω is any open subset of U , ϕt is the flow defined by the differential system
(1), and ϕt(Ω) is the image of the domain Ω under the flow ϕt.

The following result of Whittaker [20] plays a main role for detecting a Jacobi
multiplier.

Theorem 1. Let J be a non–negative C1 function non–identically zero defined on
an open subset of RN . Then J is a Jacobi multiplier of the differential system (1)
if and only if the divergence of the vector field JX is zero, i.e.

(2) div(JX ) :=
∂(JX1)

∂x1
+ . . .+

∂(JXN )

∂xN
= X (J) + Jdiv(X ) = 0.

Note that if N = 2 then the definition of Jacobi multiplier coincides with the
definition of integrating factor.

The following result goes back to Jacobi, for a proof see Theorem 2.7 of [12].

Theorem 2 (Jacobi Theorem). Consider the differential system (1) and assume
that it has a Jacobi multiplier J and N−2 independent first integrals H1, H2, . . . ,HN−2.
Then the system admits an additional first integral independent of the previous ones
given by

(3) HN−1 =

∫
J̃

∆̃

(
X̃2dx1 − X̃1dx2

)
,
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where ˜ denotes quantities expressed in the variables (x1, x2, h1, . . . , hN−2) with

(4) Hj(x1, . . . , xN ) = hj ,

for j = 1, . . . , N − 2 and

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x3

∂H1

∂x4
. . .

∂H1

∂xN

∂H2

∂x3

∂H2

∂x4
. . .

∂H2

∂xN
...

... . . .
...

∂HN−2

∂x3

∂HN−2

∂x4
. . .

∂HN−2

∂xN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then system (1) is completely integrable.

2.2. Nambu bracket. In the 1970s Nambu in [16] proposed a new approach to the
classical dynamics based on an N− dimensional Nambu–Poisson manifold replacing
the even dimensional Poisson manifold and replacing a single Hamiltonian H for
N − 1 Hamiltonian H1, . . . ,HN−1 In the canonical Hamiltonian formulation the
equations of motion (Hamilton equations) are defined via the Poisson bracket. In
Nambu‘s formalism the Poisson bracket is replaced by the Nambu bracket. Nambu
had originally considered the case N = 3.

Although the Nambu formalism is a generalization of the Hamiltonian formal-
ism its real applications are not as rich as the applications of this last one. In
the monographs of Galliulin [9] used the Nambu formalism to study some inverse
problems in ordinary differential equations. In this work there is also an extensive
bibliography on the Nambu formalism.

Let U be an open subset of RN . Let Hj = Hj(x1, . . . , xN ) for j = 1, 2, . . . , N − 1
be independent functions defined in U.

Given functions Hj for j = 1, . . . , N − 1 the Nambu vector field (see for instance
[13]) associated to these functions is the N–dimensional vector field

{
H1, H2, . . . ,HN−1, ∗

}
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xN

∂H2

∂x1

∂H2

∂x2
. . .

∂H2

∂xN

...
... . . .

...
∂HN−1

∂x1

∂HN−1

∂x2
. . .

∂HN−1

∂xN

∂

∂x1

∂

∂x2
. . .

∂

∂xN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

When we apply a Nambu vector field to a function F , i.e.
{
H1, H2, . . . ,HN−1, F

}
,

the obtained function is called a Nambu bracket, (see [13, 16]). For properties on
the Nambu braket see [13]. In particular from the property (iv) of [13] we get that
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the Nambu vector field has zero divergence i.e,

(5) div
{
H1, H2, . . . ,HN−1, ∗

}
=

N∑
j=1

∂

∂xj

{
H1, H2, . . . ,HN−1, xj

}
≡ 0.

In [13] we study the inverse approach to the ordinary differential equations. The
inverse problem as the problem of finding the more general differential system of
first order satisfying a set of given properties was stated by Erugin [7] and developed
by Galiullin and his followers (see for instance [10, 11, 15]).

The new approach of the inverse problem which we proposed in [13] uses as an
essential tool the Nambu bracket. We deduce new properties of this bracket which
plays a very important role in the proof of all the results of this work and in its
applications. In particular we prove the following properties of the Nambu bracket
(see Proposition 1.2.2.)

Proposition 3. We define

Ω (f1 . . . , fN−1, g1 . . . , gN , G) := −{f1 . . . , fN−1, G}{g1 . . . , gN}

+

(
N∑
n=1

{f1, . . . , fN−1, gn}{g1, . . . , gn−1, G, gn+1, . . . , gN}

)
,

and

Fλ (f1 . . . , fN−1, g1, . . . , gN ) := −{f1 . . . , fN−1, λ{g1 . . . , gN}}

+

(
N∑
n=1

{g1, . . . , gn−1, λ{f1 . . . , fN−1, gn}, gn+1, . . . , gN}

)
,

for arbitrary functions f1, . . . , fN−1, G, g1, . . . , gN , λ. Then the Nambu bracket sat-
isfies the identities:

(viii) Ω (f1 . . . , fN−1, g1 . . . , gN , G) = 0, and

(ix) Fλ (f1 . . . , fN−1, g1, . . . , gN ) = 0. Note this identity is a generalization of the
Filippov fundamental identity (see [8]) which is obtained when λ = 1.

It is interesting to observe that the identity Ω (f1 . . . , fN−1, g1 . . . , gN , G) = 0 is
more basic, in the sense that for the identity Fλ (f1 . . . , fN−1, g1, . . . , gN ) = 0, the
following relation holds

Fλ (f1, . . . , fN−1, g1, . . . , gN ) =

N∑
j=1

∂

∂xj

(
λΩ(f1, . . . , fN−1, g1, . . . , gN , xj)

)
.

Let Hj be for j = 1, . . . , N arbitrary Cr independent functions with r ≥ 2 satisfying

(6) {H1, H2, . . . , HN} 6= 0,

in Ũ ⊆ U with U \Ũ is a set of zero Lebesgue measure. In the solution of the inverse
problem in ordinary differential equations play a fundamental roll the following
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vector field

(7)

Y =
1

{H1, H2, . . . , HN}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xN
λ1

∂H2

∂x1

∂H2

∂x2
. . .

∂H2

∂xN
λ2

...
... . . .

...
...

∂HN

∂x1

∂HN

∂x2
. . .

∂HN

∂xN
λN

∂

∂x1

∂

∂x2
. . .

∂

∂xN
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

N∑
j=1

λj

{
H1, H2, . . . ,Hj−1, ∗ , Hj+1 . . . , HN

}
{H1, . . . , HN}

,

where λk = λk(x1, . . . , xN ) are convenient functions satisfying

(8) Y(Hk) = −λk, for k = 1, . . . , N.

In view of the identity (see identity (vi) of [13])

(9)

N∑
m=1

∂f

∂xm

{
H1, H2, . . . ,Hj−1, xm, Hj+1, . . . ,HN

}
=
{
H1, H2, . . . ,Hj−1, f,Hj+1, . . . ,HN

}
,

we obtain that

div(Y) = −
N∑
j=1

N∑
m=1

∂

∂xm

λj
{
H1, H2, . . . ,Hj−1, xm, Hj+1, . . . ,HN

}
{H1, H2, . . . , HN}


= −

N∑
j=1

{
H1, H2, . . . ,Hj−1, λ̃j , Hj+1, . . . ,HN

}
,

where λ̃j =
λj

{H1, H2, . . . , HN}
.

The function g : U −→ R and the set {(x1, . . . , xN ) ∈ U : g(x1, . . . , xN ) = 0}
are called the partial integral and the invariant hypersurface of a vector field Y,
respectively, if Y(g)|g=0 = 0.

The differential system generated by Y can be written as follows

(10) ẋm = Y(xm) = −
N∑
j=1

λj

{
H1, H2, . . . ,Hj−1, xm, Hj+1, . . . ,HN

}
{H1, H2, . . . , HN}

:= Ym,

for m = 1, . . . , N. Clearly that if Hk is a first integral of Y then λk = 0, and if Hk

is a partial integral then λk|Hk=0 = 0, and if Hk = Jk is a Jacobi multiplier then

λk = −JkdivX , see formula (2).

As we shall see in the next two theorems (see Theorem 1.3,1 and 1.4.1 of [13]) by
choosing properly the functions H1, H2, . . . ,HN and λ1, λ2, . . . , λN we can obtain
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the most general autonomous differential system (1) in U ⊂ RN having the set of
partial integrals Hj = gj for j = 1, 2, . . . ,M1, and the given set of first integrals Hk

for k = M1 + 1,M1 + 2, . . . ,M1 +M2 = M, with M = M1 +M2 ≤ N defined in U
and such that (6) holds

The first result characterizes the differential systems (1) having a given set of
M = M1 partial integrals with M ≤ N.

Theorem 4. Let Hj = gj = gj(x1, . . . , xN ) for j = 1, 2, . . . ,M with M ≤ N be
a given set of independent functions defined in an open set U ⊂ RN . Then any
differential system defined in U which admits the set of partial integrals gj for
j = 1, 2, . . . ,M can be written as

ẋj =

M∑
k=1

Φk
{g1, . . . , gk−1, xj , gk+1, . . . , gN}

{g1, g2, . . . , gN}
+

N∑
k=M+1

λk
{g1, . . . , gk−1, xj , gk+1, . . . , gN}

{g1, g2, . . . , gN}
= Y(xj),

where HM+j = gM+j = gM+j(x1, . . . , xN ) for j = 1, . . . , N−M, are arbitrary func-
tions defined in U which we choose in such a way that the Jacobian {g1, . . . , gN} 6=
0, in the set Ũ ⊆ U and the functions λj = Φj = Φj(x1, . . . , xN ), for j = 1, 2, . . . ,M
and λM+k = λM+k(x1, . . . , xN ) for k = 1, 2, . . . N −M are arbitrary functions such
that Φj |gj=0 = 0, for j = 1, . . . ,M.

The second main result characterizes the differential systems (1) having a given
set of M1 partial integrals and M2 first integrals with 1 ≤M2 < N and M1 +M2 ≤
N.

Theorem 5. Let Hl = gl = gl(x1, . . . , xN ) for l = 1, 2, . . . ,M1 and Hk = Hk(x1, . . . , xN )
for k = 1, 2, . . . ,M2 with M1 + M2 = M ≤ N be independent functions defined in
the open set U. Then the most general differential systems in U which admits the
partial integrals gl for j = 1, . . . ,M1 and the first integrals Hk for k = 1, . . . ,M2

are
(11)

ẋj =

M1∑
k=1

Φk
{g1, . . . , gk−1, xj , gk+1, . . . , gM1

, H1, . . . ,HM2
, gM+1 . . . gN}

{g1, . . . gM1 , H1, . . . ,HM2 , gM+1, . . . , gN}
+

N∑
k=M+1

λk
{g1, . . . , gM1 , H1, . . . ,HM2 , gM+1, . . . , gk−1, xj , gk+1, . . . , gN}

{g1, . . . , gM1
, H1, . . . ,HM2

, gM+1, . . . , gN}
,

for j = 1, 2, . . . , N, where HM+j = gM+j for j = 1, . . . , N − M are arbitrary

functions satisfying {g1, . . . gM1 , H1, . . . ,HM2 , gM+1, . . . , gN} 6= 0 in the set Ũ ⊆ U
and the functions λj = Φj = Φj(x1, . . . , xN ), for j = 1, 2, . . . ,M1 and λM+k =
λk(x1, . . . , xN ) for k = M+1, 2, . . . N are arbitrary functions such that Φj |gj=0 = 0,
for j = 1, . . . ,M.
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Moreover if M1 = 0 and M2 = N − 2 then system (11) becomes
(12)

ẋj = Yj(xj)

= −λN−1
{H1, . . . ,HN−2, xj , gN}
{H1, . . . ,HN−2, gN−1, gN}

− λN
{H1, . . . ,HN−2, gN−1, xj}
{H1, . . . ,HN−2, gN−1, gN}

,

for j = 1, 2, . . . , N. for j = 1, . . . , N, and if M1 = 0 and M2 = N − 1 then system
(11) becomes

(13) ẋj = −λN
{H1, . . . ,HN−1, xj}
{H1, . . . ,HN−1, gN}

.

3. Statement of the main results

The first result is related with the completely integrability of vector field Y see
[13, 14, 18]

Theorem 6. Differential system (4) is completely integrable if and only if

(14) λk = −µ{F1, . . . , FN−1, Hk},
for k = 1, . . . , N where µ, F1, . . . , FN−1 are convenient independent functions in
U . Moreover if (14) holds then vector field Y becomes

(15) Y = µ{F1, ..., FN−1, ∗},
i.e. it is completely integrable with independent first integrals F1, . . . , FN−1 and the
Jacobi multiplier J = 1/µ.

The following classical result is well known: If a 2–dimensional differential system

(16) ẋ1 = X1(x1, x2), ẋ2 = X2(x1, x2),

has an integrating factor J , then it can be written as

(17) ẋ1 = − 1

J

∂H1

∂x2
= X1, ẋ2 =

1

J

∂H1

∂x1
= X2,

being H1 is a first integral of system (16). The next theorem will extend this
classical result to N–dimensional differential systems.

Corollary 7. A differential system (1) is completely integrable first integrals Hj

for j = 1, . . . , N − 1 if and only if it can be written as

(18) ẋj =
1

J

{
H1, H2, . . . ,HN−1, xj

}
= Yj , for j = 1, . . . , N,

where J = J(x1, x2, . . . , xN ) is a Jacobi multiplier.

We note that Corollary 7 is the natural extension of (17) because

ẋ1 =
1

J
{H1, x1} = Y1, ẋ2 =

1

J
{H1, x2} = Y2,

where {H1, x1} and {H1, x2}, are Nambu brackets, which in this case coincides with
the Poisson bracket.

We observe that Corollary 7 is a simple consequence of Theorem 6. Another
proof of Corollary 7 appeared in [19, 4].
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The proofs of Theorem 6 and Corollary 7 are given in section 4.

From Corollary 7 it is immediate to prove the following result.

Corollary 8. Assume that differential systems (1) has N − 2 independent first
integrals H1, H2, . . . ,HN−2 and a Jacobi multiplier J, then another independent
first integral HN−1 can be obtained as a solution of the partial differential equation

{H1, H2, . . . ,HN−2, HN−1, xj

}
= JXj , for j = 1, . . . , N.

Note that in order to compute the integral (3) by applying the Jacobi Theo-
rem we need to solve the system of equations (3) for x3, . . . , xN . In general to get
xk(x1, x2, h1, . . . , hN−2) for k = 3, . . . , N cap be a very difficult problem. Addition-
ally, in general the explicit computation of the integral (3) is practically impossible
to obtain.

Corollary 8 provide a new method for computing a first integral HN−1 which
avoid the necessity of the inversion of (3).

In the next theorem we provide an extension of the classical result which goes
back to Jacobi (see Theorem 2).

Theorem 9. Consider the differential equations (1) with N − r independent first
integrals H1, . . . ,HN−r and r−1 distinct Jacobi multipliers JN−r+1, . . . , JN−1 such

that the functions Hn =:
Jn
JN−1

are not locally constants for n = N−r+1, . . . , N−2.

If the functions H1, H2, . . . ,HN−2 are independent, then system (1) can be written
as
(19)

ẋj = ν
{H1, . . . ,HN−r, logHN−r+1, . . . , logHN−2, xj , gN}

{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, gN}

−λN
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, xj}
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, gN}

= Yj ,

for j = 1, 2, . . . , N, where gN , ν and λN are functions which satisfy the first order
partial differential equation

(20)
{H1, . . . ,HN−r logHN−r+1, . . . , log HN−2, ν̃, gN}

+{H1, . . . ,HN−r logHN−r+1, . . . , log HN−2, JN−1, λ̃N} = 0.

where

ν̃ =
JN−1ν

{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, gN}
,

λ̃N =
JN−1λN

{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, gN}
.

Moreover functions HN−r+1, . . . ,HN−2 are first integrals, independent with H1, . . . ,HN−r.
and using the Jacobi multiplier JN−1, the differential system (19) is completely in-
tegrable.
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The additional first integral HN−1 can be determine as a solution of the first
order partial differential equation

(21)

{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, HN−1, xj}

= ν̃
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, xj , gN}

{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, gN}

−λ̃N
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, xj}
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log JN−1, gN}

.

Corollary 10. Consider the differential equations (1) with N − r first integrals
H1, . . . ,HN−r and r distinct Jacobi multipliers JN−r+1, . . . , JN such that Hn =:
Jn
JN

are not locally constant for n = N−r+1, . . . , N−1. If the functions H1, H2, . . . ,HN−1

are independent, then system (1) can be written as

ẋj = ν
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log HN−1, xj}
{H1, . . . ,HN−r, logHN−r+1, . . . , log HN−2, log HN−1, log JN}

= Yj ,

and it is completely integrable. Moreover if r = N then system (1) can be written
as

ẋj = ν
{logH1, . . . , log HN−1, xj}
{logH1, . . . , log HN−1, log JN}

= Yj ,

4. Proofs of the results

Proof of Theorem 6. Assume that the vector field Y associated to differential sys-
tem (4) is completely integrable, with theN−1 independent first integrals F1, . . . , FN−1,
and consequently

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1
. . .

∂F1

∂xN
...

...
...

...
∂FN−1

∂x1
. . .

∂FN−1

∂xN

∣∣∣∣∣∣∣∣∣∣∣∣∣
= {F1, . . . , FN−1, xN} 6= 0,

in Ũ ⊆ U. Thus from the equations Y(Fk) =

N∑
j=1

∂Fk
∂xj

Yj = 0 for k = 1, . . . , N − 1

or, equivalent

N−1∑
j=1

∂Fk
∂xj

Yj = −YN
∂Fk
∂xN

,
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for j = 1, . . . , N − 1. Solving this linear system in the unknown Y1, . . . , YN−1 we
get

Yi =

YN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1
. . .

∂F1

∂xi−1

∂F1

∂xN

∂F1

∂xi+1
. . .

∂F1

∂xN−1

∂F2

∂x1
. . .

∂H2

∂xi−1

∂F2

∂xN

∂F2

∂xi+1
. . .

∂F2

∂xN−1
... . . .

...
...

...
... . . .

∂FN−1

∂x1
. . .

∂FN−1

∂xi−1

∂FN−1

∂xN

∂FN−1

∂xi+1
. . .

∂FN−1

∂xN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣{
F1, . . . , FN−1, xN

}
for i = 1, . . . , N − 1. Consequently

Y = Y1
∂

∂x1
+ Y2

∂

∂x2
+ . . .+ YN

∂

∂xN
= µ

{
F1, F2, . . . , FN−1, ∗

}
,

where µ = YN ({F1, . . . , FN−1, xN})−1
. So the “only if” part of the theorem follows.

Now we shall prove the “if” part.

We suppose that in system (4) we have that λl = −µ{F1, ..., FN−1, Hl}. Thus
the vector field associated to differential system (4) takes the form

Y(xj) = −
N∑
n=1

λn
{H1, . . . ,Hn−1, xj , Hn+1, . . . ,HN}

{H1, H2, . . . ,HN}

= µ

N∑
n=1

{F1, ..., FN−1, Hn}
{H1, . . . ,Hn−1, xj , Hn+1, . . . ,HN}

{H1, H2, . . . ,HN}
.

In view of the identity Ω (f1 . . . , fN−1, g1 . . . , gN , G) = 0 with G = xj fj = Fj for
j = 1, . . . , N − 1, and Hj = gj for j = 1, . . . , N we get that

Y(xj) = µ

N∑
n=1

{F1, ..., FN−1, Hn}
{H1, . . . ,Hn−1, xj , Hn+1, . . . ,HN}

{H1, H2, . . . ,HN}

= µ{F1, ..., FN−1, xj}
{H1, H2, . . . ,HN}
{H1, H2, . . . ,HN}

= µ{F1, ..., FN−1, xj}.

Thus Y = µ{F1, ..., FN−1, ∗}. Consequently Y(Fk) = 0 for k = 1, . . . , N − 1 i.e.
F1, . . . , FN−1 are first integral. Hence the vector field Y is completely integrable.

Finally we prove that 1/µ is a Jacobi multiplier. Indeed in view of relation (5)
we get that

div

(
Y
µ

)
==

∂(
Y1

µ
)

∂x1
+

∂(
Y2

µ
)

∂x2
+ . . .+

∂(
YN
µ

)

∂xN
= div ({F1, . . . , FN−1, ∗}) = 0.

Hence from Theorem 1 we obtain that 1/µ is a Jacobi multiplier. Thus the theorem
is proved. �

Proof of Corollary 7. It follows from Theorem 6. Indeed in this case from differen-
tial system (13) which is the most general differential equations which have N − 1
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independent first integral, we have that this system is completely integrable if and
only if λN = −µ {H1, . . . ,HN−1, gN} where J = 1/µ is a Jacobi multiplier. �

Proof of Theorem 9. First by considering that

div(JjY) = Y1
∂Jj
∂x1

+ Y2
∂Jj
∂x2

+ . . .+ YN
∂Jj
∂xN

+ JjdivY = Y(Jj) + JjdivX = 0.

Hence Y(Jj) = −JjdivY := −ν Jj = λj , for j = N − r + 1, . . . , N − 1.

Now we shall construct the most general differential system (1) with N − r inde-
pendent first integrals H1, . . . ,HN−r and r−1 Jacobi multipliers JN−r+1, . . . , JN−1.
We use the vector field Y given in formula (4).

Since Hj are first integrals, from (8) it follows that λj = 0 for j = 1, . . . , N − r
and Hj = Jj , λj = −νJj for j = N − r + 1, . . . , N − 1, we get that vector field (7)
becomes

Y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xN
0

...
... . . .

...
...

∂HN−r

∂x1

∂HN−r

∂x2
. . .

∂HN−r

∂xN
0

∂JN−r+1

∂x1

∂JN−r+1

∂x2
. . .

∂JN−r+1

∂xN
−ν JN−r+1

...
... . . .

...
...

∂JN−1

∂x1

∂JN−1

∂x2
. . .

∂JN−1

∂xN
−ν JN−1

∂HN

∂x1

∂HN

∂x2
. . .

∂HN

∂xN
λN

∂

∂x1

∂

∂x2
. . .

∂

∂xN
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{H1, . . . , HN−r, JN−r+1, . . . , JN−1, HN}

.
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Multiplying the numerator and the denominator of the vector field Y by 1/(JN−r+1 . . . JN−1)
we get that Y can be written as

(22)

Y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xN
0

...
... . . .

...
...

∂HN−r

∂x1

∂HN−r

∂x2
. . .

∂HN−r

∂xN
0

∂ log JN−r+1

∂x1

∂ log JN−r+1

∂x2
. . .

∂ log JN−r+1

∂xN
−ν

...
... . . .

...
...

∂ log JN−1

∂x1

∂ log JN−1

∂x2
. . .

∂ log JN−1

∂xN
−ν

∂HN

∂x1

∂HN

∂x2
. . .

∂HN

∂xN
λN

∂

∂x1

∂

∂ x2
. . .

∂

∂xN
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{H1, . . . , HN−r, log JN−r+1, . . . , log JN−1, HN}

Subtracting the file N−1 of the determinant of (22) to the files N−r+1, . . . , N−2
we obtain

(23)

Y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xN
0

...
... . . .

...
...

∂HN−r

∂x1

∂HN−r

∂x2
. . .

∂HN−r

∂xN
0

∂ logHN−r+1

∂x1

∂ log HN−r+1

∂x2
. . .

∂ log HN−r+1

∂xN
0

...
... . . .

...
...

...
... . . .

...
...

∂ logHN−2

∂x1

∂ log HN−2

∂x2

...
∂ log HN−2

∂xN
0

∂ log JN−1

∂x1

∂ log JN−1

∂x2
. . .

∂ log JN−1

∂xN
−ν

∂HN

∂x1

∂HN

∂x2
. . .

∂HN

∂xN
λN

∂

∂x1

∂

∂ x2
. . .

∂

∂xN
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{H1, . . . , HN−r, log JN−r+1, . . . , log JN−1, HN}
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where Hj =
Jn
JN−1

for j = N − r + 1, . . . , N − 2. Hence (19) follows.

This differential system has N − 2 first integrals Hj for j = 1, . . . , N − 2. Note
that if Y is a vector field associated to the differential system (19), then it follows
that Y(Hj) = 0 for j = N − r + 1, . . . , N − 2, so these Hj ’s are first integrals. In
fact it is well known that the quotient of two Jacobi multipliers is a first integral.
Thus in view of Jacobi Theorem 2 we get that system (19) is completely integrable.

The relation (20) holds. Indeed, the vector field
(24)

JN−1Y(xj) == JN−1ν
{H1, . . . ,HN−r logHN−r+1, . . . , log HN−2, xj , gN}

{H1, . . . ,HN−r logHN−r+1, . . . , log HN−2, log JN−1, gN}

−JN−1λN
{H1, . . . ,HN−r logHN−r+1, . . . , log HN−2, log JN−1, xj}
{H1, . . . ,HN−r, logHN−r+1, . . . log HN−2, log JN−1, gN}

,

has zero divergence, i.e. div(JN−1Y) = 0. In view of identity (34) we get after
some computations (20).

The proof of relation (21) is obtained by considering that the constructed vector
field is completely integrable with Jacobi multiplier JN−1. Consequently there
exists an additional first integral HN−1. Thus the vector field Y can be written as
(18) with J = JN−1. i.e.

JN−1Y(xj) = {H1, H2, . . . ,HN−2, HN−1, xj} .

Hence in view of (24) we obtain the relations (21). In short the theorem is proved.
�

Proof of Corollary 10. It follows from Theorem 9 taking gN = JN and λN =
−ν JN , from (4) we obtain
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Y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xN
0

...
... . . .

...
...

∂HN−r

∂x1

∂HN−r

∂x2
. . .

∂HN−r

∂xN
0

∂ logHN−r+1

∂x1

∂ log HN−r+1

∂x2
. . .

∂ log HN−r+1

∂xN
0

...
... . . .

...
...

...
... . . .

...
...

∂ logHN−2

∂x1

∂ log HN−2

∂x2
. . .

∂ log HN−2

∂xN
0

∂ log HN−1

∂x1

∂ log HN−1

∂x2
. . .

∂ log HN−1

∂xN
0

∂H log JN
∂x1

∂ log JN
∂x2

. . .
∂ log JN
∂xN

−ν

∂

∂x1

∂

∂ x2
. . .

∂

∂xN
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{H1, . . . , HN−r, log JN−r+1, . . . , log HN−1, log JN}

.

Hence Y = ν
{H1, . . . , HN−r, log JN−r+1, . . . , log HN−1, ∗}
{H1, . . . , HN−r, log JN−r+1, . . . , log JN−1, log JN}

where HN−1 =

JN−1/JN . �

4.1. Construction of differential systems with given first integrals and
Jacobi multiplers. We shall construct differential system (1) for N = 3 with a
given first integral and Jacobi multipliers.

First we study the case when the functions H1, H2 and H3 and λ1, λ2 and λ3

are

H1 =
|z|

|y||1− x− y − z|−1+b3
, H2 =

1

|xyz(x+ y + z − 1)|
, H3 =

|x|
|y||1− x− y − z|1−b2

,

λ1 = aκ(x, y, z)H1, λ2 = bκ(x, y, z)H2, λ3 = cκ(x, y, z)H3,
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where κ = κ(x, y, z) is a convenient function and a, b, c are constant. The vector
field Y given in (7) can be written as

Y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ logH1

∂x

∂ logH1

∂y

∂ logH1

∂z
aκ

∂ logH2

∂x

∂ logH2

∂y

∂ logH2

∂z
bκ

∂ logH3

∂x

∂ logH3

∂y

∂ logH3

∂z
cκ

∂

∂x

∂

∂ y

∂

∂z
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
{logH1, logH2, logH3}

.

If abc 6= 0 then Y = κ
{logF1, logF2, ∗}

{logH1, logH2, logH3}
, where F1 and F2 are the first

integrals such that F1 = Hc
1/H

a
3 , F2 = Hc

2/H
b
3 .

Choosing properly the function κ we obtain, after some computations, that the
differential equations generated by the vector field Y are

(25)

ẋ = x
(

(a+ b− 2c)(x− 1) + ((2− b2)(a+ b)− (b2 + 2)c) y

+ ((b2 + 1)(a− b) + (b3 − 4)(c− b)) z
)

= Ỹ1,

ẏ = y
(

(a+ b+ c)(y − 1) + (b2(a+ b) + (b3 + 1)c)x

+((3− b2)a+ (2− b3)(c+ b)z
)

= Ỹ2,

ż = z
(

(−2a+ b+ c)(z − 1) + ((b2 + 2)(b− a) + (b3 − 3)(b− c))x

+(b3(b+ c)− (b3 + b2 + 1)a)y
)

= Ỹ3,

which are the completely integrable Lotka–Volterra systems. Hence we get that

(26) Ỹ(H1)− aH1divY, Ỹ(H2) = −bH2divỸ, Ỹ(H3) = −cH3divỸ.

where Ỹ = Ỹ1
∂

∂x
+ Ỹ2

∂

∂y
+ Ỹ3

∂

∂z
and

divỸ = b
(

(2b1 + b3 + 1)x+ (4 + b3 − b2)y + (7− b2 − 2b3)z − 3b
)
.

From (26) we get that if a = b = c = 1 then H1, H2 and H3 are Jacobi multipliers.
If a = c = 0 and b = 1 then H1, H3 are first integrals and H2 is a Jacobi multiplier.

Second we study differential system (19) for the case when N = 3 with the first
integral H1 and the Jacobi multipliers J2 = H2 and J3 = H3.

We study differential system (12) for the case when N = 3 with first integral

H1 = log

(∣∣∣x
z

∣∣∣b3−1 ∣∣∣x
z

∣∣∣b1−1
)
,
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and two Jacobi multiplier J2, J3.

J2 =
1

xyz|x+ y + z − 1|
, J3 =

(y
z

) b1
b3−1

y−1z−2,

with λ2 = −ν J2, λ3 = −ν J3, where ν is a convenient function.

After some computations we get that

{H1, J2, J3} =
(

7− 2b1 − b3)x+ (b1 + 2b3 + 1)y + (b1 − b3 + 4)z + 3
)
J2

2J3 := ν1J
2
2J3,

{H1, x, J3} =
(b3 + 2b1 − 4)

yz
J3, {H1, y, J3} =

(2− b1 − 2b3)

xz
J3,

{H1, J2, x} =
(

(2b1 + 3b3 − 5)x+ (b1 + 2b3 − 3)y + (b1 + 3b3 − 4)z + 3− b1 − 2b3

)
J2

2 ,

{H1, J2, y} =
(

(3− 2b1 − b3)x+ (5− 2b3 − 3b1)y + (4− 3b1 − b3)z + 2b1 + b3 − 3
)
J2

2 ,

{H1, J2, z} =
(

(2b1 − b3 − 1)x+ (b1 − 2b3 + 1)y + (b1 − b3)z + b3 − b1
)
J2

2 .

Hence the equation (12) for N = 3 becomes

ẋ = −λ2
{H1, x, J3}
{H1, J2, J3}

− λ3
{H1, J2, x}
{H1, J2, J3}

=
ν

ν1J2

(
{H1, x, log J3}+ {H1, log J2, x}

)
=

ν

ν1J2

{
H1, log

J2

J3
, x

}
= Y(x),

ẏ = −λ2
{H1, y, J3}
{H1, J2, J3}

− λ3
{H1, J2, y}
{H1, J2, J3}

=
ν

ν1J2

(
{H1, y, log J3}+ {H1, log J2, y}

)
=

ν

ν1J2

{
H1, log

J2

J3
, y

}
= Y(y), ,

ż = −λ2
{H1, z, J3}
{H1, J2, J3}

− λ3
{H1, J2, z}
{H1, J2, J3}

=
ν

ν1J2

(
{H1, z, log J3}+ {H1, log J2, z}

)
=

ν

ν1J2

{
H1, log

J2

J3
, z

}
= Y(z).

Taking ν = ν1 we obtain the following differential system

(27)

ẋ = x (1− x− (b1 + b3 − 1)y − b1z) =
1

J2

{
H1, log

J2

J3
, x

}
= Y(x),

ẏ = y (1− y − (2− b3)z − b2x) =
1

J2

{
H1, log

J2

J3
, y

}
= Y(y),

ż = z (1− z − (2− b1)x− b3y) =
1

J2

{
H1, log

J2

J3
, z

}
= Y (z).

This differential system has the first integral H1 and two Jacobi multiplier J2 and
J3 and consequently J2/J3 is a first integral. It is easy to show that divY = −ν1.
We observe that the obtained differential system (27) is a particular case of the
asymmetric May–Leonard system (see for instance [5])
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5. New method for determining the additional first integral in the
Jacobi Theorem 2

The problem on the determination the (N − 1)–th first integral in the Jacobi
Theorem 2 was study in several papers. In particular for N = 3 the following result
is given in [1].

Theorem 11. Suppose that the polynomial vector field

Y = x(λ+ ax+ by + cz)
∂

∂x
+ y(µ+ dx+ ey + fz)

∂

∂y
+ z(ν + gx+ hy + kz)

∂

∂z

has an analytic first integral F1 = xαyβzγ(1 + O(x, y, z)) with at least one of
α, β, γ 6= 0, and a Jacobi multiplier J = xryszt(1 + O(x, y, z)) if the cross prod-
uct of (r − i − 1, s − j − 1, t − k − 1) and (α, β, γ) is bounded away from zero for
any integers i, j, k ≥ 0, then the system has a second analytic first integral of the
form F2 = x1−ry1−sz1−t(1 +O(x, y, z)), and hence Y is completely integrable in a
neighborhood of the origin.

Jacobi (see Theorem 2) proposed a constructive method to build an extra first
integral by knowing the multiplier J and N−2 first integrals for an N– dimensional
differential system (1). In particular for N = 3 Theorem 2 writes:

Theorem 12. Consider a three dimensional vector field (1) and assume that it
admits a Jacobi multiplier and one first integral H1(x1, x2, x3) = h1. Then the
system has the following extra first integral given by (see (3) for N = 3

(28) H2 =

∫
J̃

∆̃

(
X̃1dx2 − X̃2dx1

)
,

where

∆̃ =
∂H1(x1, x2, x3)

∂x3

∣∣∣∣
x3=Ψ(x1,x2,h1)

, J̃ = J(x1, x2, x3)|x3=Ψ(x1,x2,h1) ,

X̃1 = X1(x1, x2, x3)|x3=Ψ(x1,x2,h1) , X̃2 = X2(x1, x2, x3)|x3=Ψ(x1,x2,h1) ,

and x3 = Ψ(x1, x2, h1) is a solution of the equation H1 = h1.

As we observe above the inversion of H1 = h1, in terms of one of the
variables is much more involved and the resulting extra first integral is given
by the integral (28) which in general is very difficult to compute. Below we propose
a new method for computing a first integral H2 which avoid the necessity of the
inversion of H1 = h1.

Corollary 13. Assume that differential systems (1) with N = 3 has a first integral
H1 and a Jacobi multiplier J, then a second first integral H2 can be obtained as
a solution of the partial differential equation {H1, H2, xj} = JXj , for j = 1, 2, 3
which is equivalent to

(29)

∂H1

∂y

∂H2

∂z
− ∂H1

∂z

∂H2

∂y
= JX1,

∂H1

∂z

∂H2

∂x
− ∂H1

∂x

∂H2

∂z
= JX2,

∂H1

∂x

∂H2

∂y
− ∂H1

∂y

∂H2

∂x
= JX3,
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where x = x1, y = x2 and z = x3.

Proof. The existence of the second first integral H2 follows from Jacobi Theorem
2. To obtain the function H2 we apply Theorem 7 with N = 3 from which we get
equations (29). �

Corollary 14. If

(30) x
∂H1

∂x
+ y

∂H1

∂y
+ z

∂H1

∂z
= 0,

then H2 is a solution of the differential equations

(31)

(
x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z

)
∂H1

∂z
= J(xX2 − yX1),

∂H1

∂x

∂H2

∂y
− ∂H1

∂y

∂H2

∂x
= JX3,

Moreover if
J(xX2 − yX1)

∂H1

∂z

:= L is a homogenous function of degree one, then the

solution of the first equation of (31) is

(32) H2 = U(x/z, y/z)L(x, y, z).

Proof. From the two first equations of (29) it follows that
(33)(
x
∂H1

∂x
+ y

∂H1

∂y
+ z

∂H1

∂z

)
∂H2

∂z
−
(
x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z

)
∂H1

∂z
= J(yX1 − xX2).

Hence if H1 is a homogenous function of degree zero, i.e, (30) holds, then from
equation (33) if follows the first equation of (31).

If the function V is a homogenous function of degree one, i.e.

x
∂L

∂x
+ y

∂L

∂y
+ z

∂L

∂z
= L,

then after some computations it follows that the solution of (33) can be written as
(32). �

Example 15. The particular case of Lotka-Volterra system

ẋ = x(b3 + a1x+ a2y +
a1b4(a2 − b2)

b2(a1 − b1)
z = X1,

ẏ = y(b3 + b1x+ b2y + b4z) = X2,

ż = b3z = X3

is completely integrable with first integral H1 and Jacobi multiplier J such that

H1 = xb2(b1−a1)ya1(a2−b2)z(a2−b2)(a1−b1)Ga1b2−a2b1 ,

J =
(
yb1b2−a1a2)z(a2−b2)(a1−b1)Gb1(a2+b2)−2a1b2

)1/(b2(a1−b1)

,
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where G = b2(a1− b1)x+ (a2− b2)b2y+ b4(a2− b2) z = 0 is an additional invariant
plane. It is easy to show that H1 and J are homogenous functions of degree zero
and three respectively. In this case the first equation of (31) becomes

(34)

(
x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z

)
∂H1

∂z
=

J x y z G

a1b4(b2 − a2)H2
.

By considering that

L :=
J x y z G

a1b4(b2 − a2)H2
= L̃(x/z, y/z)G

is a homogenous function of degree one we get that the solution of equation (34) is

H = L̃(x/z, y/z)G+ U(x/z, y/z).

Inserting it into the second equation of (31) with X3 = b3z we get the equation

∂H1

∂x

∂H2

∂y
− ∂H1

∂y

∂H2

∂x
= b3z.

After some computations we have that

(a2 − b2)(b1x+ b2y + b4z)x
∂H

∂y
− b2a1(a1 − b1)x+ a2b2(a1 − b1)y + b4(a2 − b2)z

b2(a1 − b1)
y
∂H

∂x

=
1 + a2b4
a1

J x y z G

a1b4(b2 − a2)H2
.

In view of relation

(a2−b2)(b1x+b2y+b4z)
∂L

∂y
−b2a1(a1 − b1)x+ a2b2(a1 − b1)y + b4(a2 − b2)z

b2(a1 − b1)

∂L

∂x
≡ 0,

we obtain that the function U(x/z, y/z) satisfies the equation

(a2 − b2)(b1x+ b2y + b4z)
∂U

∂y
− b2a1(a1 − b1)x+ a2b2(a1 − b1)y + b4(a2 − b2)z

b2(a1 − b1)

∂U

∂x

=
1 + a2b4
a1

J x y z G

a1b4(b2 − a2)H2
.

After the change ξ = x/z and η = y/z we obtain

(a2 − b2)(b1ξ + b2η + b4)ξ
∂Ũ

∂η
− b2a1(a1 − b1)ξ + a2b2(a1 − b1)η + b4(a2 − b2)

b2(a1 − b1)

∂Ū

∂ξ

=
1 + a2b4
a1

L̃(ξ, η)G(ξ, η, 1).

where Ũ = Ũ(ξ, η) := U |x=zξ, y=zη .

5.1. Applications of Corollary 13. Now we shall illustrated the applications
of Corollary 13 in the determination of the second first integral in three particular
cases of 3–dimensional Lotka-Volterra differential systems. More precisely, we study
the existence of a second first integral H2

(i) of the integrable asymmetric May–Leonard model,
(ii) of the integrable symmetric May–Leonard model.

(iii) of some integrable cases for the special Lotka–Volterra systems studied in
[1].
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5.2. Integrability of the asymmetric May–Leonard model. Determination
of the second first integral. A particular 3–dimensional Lotka–Volterra system
is

(35)

ẋ = x (1− x− a1y − b1z) = X1,

ẏ = y (1− y − a2z − b2x) = X2,

ż = z (1− z − a3x− b3y) = X3.

This system is known as the asymmetric May–Leonard model (see for instance
[5]). This model describes the competitions between three species and depending
on six non–negative parameters aj and bj for j = 1, 2, 3. The state space is the set

R3
+ =

{
(x, y, z) ∈ R3 : x ≥ 0 y ≥ 0and z ≥ 0,

}
.

We shall study the integrability of system (35) under the conditions that it has
an additional invariant plane and the first integral H1 satisfying (30), consequently
H1 = H1(x/y, z/y). From (33) it follows that the additional first integral H2 is a
solution of the first order partial differential system

(
x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z

)
∂H1

∂z
= −Jxy((b2 − 1)x+ (1− a1)y + (a2 − b1)z),

∂H1

∂x

∂H2

∂y
− ∂H1

∂y

∂H2

∂x
= JX3,

Proposition 16. Differential system (35) under the conditions

(36) b2 =
a3(a2 − 1)− a2b3 + 1

1− b3
, a1 =

a3b1 − b1b3 + b3 − 1

a3 − 1
,

i.e. differential system

(37)

ẋ = x

(
1− x− a3b1 − b1b3 + b3 − 1

a3 − 1
y − b1z

)
= X̃1,

ẏ = y

(
1− y − a2z −

a3(a2 − 1)− a2b3 + 1

1− b3
x

)
= X̃2,

ż = z (1− z − a3x− b3y) = X̃3.

has the additional invariant plane

g := g(x, y, z) = (1− a3)(a2 − 1)x+ (1− b1)(b3 − 1)y + (a2 − 1)(b1 − 1)z = 0,

with cofactor K = 1 − x − y − z. Moreover this differential system is completely
integrable with first integral H1 and the Jacobi multiplier J given by

H1 = log

(∣∣∣∣xg
∣∣∣∣α1
∣∣∣∣yg
∣∣∣∣α2
∣∣∣∣zg
∣∣∣∣α3
)
, J =

∣∣∣∣yg
∣∣∣∣β2
∣∣∣∣zg
∣∣∣∣β3

|g|−3,

where

α1 = (a3 − 1)(b3 − 1)(a2 − 1), α2 = (1− a3)(b3 − 1)(b1 − 1), α3 = (1− a2)(b1 − 1)(a3 − b3),

β2 =
1− a2 − b1
a2 − 1

, β3 =
a3(b1 − b3 − 1)− b1b3

(1− b3)(1− a3)
,
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Moreover the first integral H2 becomes
(38)

H2 = −λ
(
y

|g|

)1+β2
(
z

|g|

)1+β3

x+Λ(y/x, z/x) = −λ
(y
x

)1+β2
( z
x

)1+β3

|g|+Λ(y/x, z/x),

where λ is a convenient constan and Λ = Λ(y/x, z/x) is a function which satisfies
the first order partial differential equation

(39) T2 (1, ξ, η)) η
∂Λ

∂η
− T3 (1, ξ, η) ξ

∂Λ

∂ξ
=

∣∣∣∣ ξ

g(1, ξ, η)

∣∣∣∣1+β2
∣∣∣∣ η

g(1, ξ, η)

∣∣∣∣1+β3

where ξ = y/x and η = z/x, and

xg
∂H1

∂x
= T1(x, y, z), yg

∂H1

∂y
= T2(x, y, z), zg

∂H1

∂z
= T3(x, y, z),

Proof. After some computations we can check that

X (g) = (1− x− y − z)g, X (H1) = 0, div(JX ) = 0.

This completes the proof of the first statement.

The partial differential system (29) for system (37) becomes

(40)

T3y
∂H2

∂y
− T2z

∂H2

∂z
= ω1,

T1z
∂H2

∂z
− T3x

∂H2

∂x
= ω2,

T2x
∂H2

∂x
− T1y

∂H2

∂y
= ω3,

where ω1 = JyzX̃1, ω2 = JxzX̃2, ω3 = JxyX̃3.

By considering that T1 +T2 +T3 = 0 from the two first equations of (40) we get

(41)

x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z
= −yzX̃1 − λxzX̃2

T3

= −λxyzgJ = −
∣∣∣∣yg
∣∣∣∣1+β2

∣∣∣∣zg
∣∣∣∣1+β3

x

= −λ
∣∣∣y
x

∣∣∣1+β2
∣∣∣ z
x

∣∣∣1+β3

g = F (y/x, z/x)x

Hence we get that H2 = F (y/x, z/x)x+ Λ(y/x, z/x).

Inserting H2 into the third equation of (40) and by considering that

(42) T1y
∂F (y/x, z/x)x

∂y
− T2x

∂F (y/x, z/x)x

∂x
− gJxyR = F (y/x, z/x)x

we have that function Λ = Λ(y/x, z/x) is a solution of the equation

T1y
∂H2

∂y
− T2x

∂H2

∂x
= xyzJg

In view of the relations

y
∂H2

∂y
= ξ

∂H2

∂ξ
, x

∂H2

∂x
= −

(
ξ
∂H2

∂ξ
+ η

∂H2

∂η

)



22 J. LLIBRE, R. RAMÍREZ AND V. RAMÍREZ

we deduce that (42) becomes

(T1 + T2)ξ
∂H2

∂ξ
+ T2η

∂H2

∂η
= x

∣∣∣∣ ξ

g(1, ξ, η)

∣∣∣∣1+β2
∣∣∣∣ η

g(1, ξ, η)

∣∣∣∣1+β3

Hence by considering that T1+T2 = −T3 and dividing by x after some computations
we obtain (39). In short the proposition is proved. �

Now we shall study integrability of another particular cases of differential system
(35).

Proposition 17. Differential system (35) under the conditions

(43) a1 = 2− b2, a3 = 2− b1, a2 = 2− b3,

i.e. differential equations (27) have the following five invariant planes with the
corresponding cofactors:

g1 = x, K1 = 1− x− (2− b2)y − b1z,

g2 = y, K2 = 1− y − (2− b3)z − b2x,

g3 = z, K3 = 1− z − (2− b1)x− b3y,

g4 = 1− x− y − z, K4 = −x− y − z,

g5 = x+ y + z, K5 = 1− x− y − z.

Proof. The fourth and firth invariant planes come from the relations

d

dt
(1− x− y − z) = −(x+y+z)(1−x−y−z), d

dt
(x+ y + z) = (1−x−y−z)(x+y+z).

This completes the proof. �

Under the assumptions of Proposition 17 and Proposition

Proposition 18. Differential system (27) is completely integrable. More precisely,
system (27) has the first integral H1 and Jacobi multiplier J where

H1 = log

((
|x|

|x+ y + z|

)b3−1( |y|
|x+ y + z|

)b1−1( |z|
|x+ y + z|

)b2−1
)
,

J =
1

|xyz(x+ y + z − 1)|
.

A second first integral H2 is

(44) H2 = log
eΨ(y/x,z/x)

|x+ y + z − 1|
,

where Ψ(y/x, z/x) is a solution of the partial differential equation

(45)

(
(2− b1 − b3)(1 + ξ + η) + (b1 + b2 + b3 − 3)(1 + η

)
ξ
∂Ψ

∂ξ

+
(

(1− b3)(1 + ξ + η) + (b1 + b2 + b3 − 3)η
)
η
∂Ψ

∂η
= −(1 + ξ + η),

with ξ = x/y and η = z/y.
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If b1 + b2 + b3 = 3 then H1 and H2 becomes

(46)

H1 = log

(∣∣∣∣zy
∣∣∣∣b2−1 ∣∣∣∣xy

∣∣∣∣b3−1
)

= (b2 − 1)F1 + (b3 − 1)F2,

H2 = log
(( z

y|x+ y + z − 1|b3−1

)1−b2 ( x

y|x+ y + z − 1|1−b2

)b3−1 )
= (1− b2)F1 + (b3 − 1)F2,

where F1 = log

(
|x|

|y||x+ y + z − 1|1−b2

)
, and F2 = log

(
|z|

|y||x+ y + z − 1|b3−1

)
..

Moreover differential system (27) can be written as

(47) ẋ =
1

J
{F1, F2, x} , ẏ =

1

J
{F1, F2, y} , ż =

1

J
{F1, F2, z} .

Proof. Partial differential system (29) can be rewritten as (40) with Tj = Tj(x, y, z),
and ωj for j = 1, 2, 3 are given by

T1 = (1− b3)(x+ y + z) + (b1 + b2 + b3 − 3)x,

T2 = (1− b1)(x+ y + z) + (b1 + b2 + b3 − 3)y,

T3 = (1− b2)(x+ y + z) + (b1 + b2 + b3 − 3)z,

ω1 = − (x+ y + z)

(x+ y + z − 1)

(
(b1 − 1)z + (1− b2)y + x+ y + z − 1

)
,

ω2 = − x+ y + z

(x+ y + z − 1)

(
(b2 − 1)x+ (1− b3)z + x+ y + z − 1

)
,

ω3 = − x+ y + z

(x+ y + z − 1)

(
(b3 − 1)y + (1− b1)x+ x+ y + z − 1

)
.

Hence by considering that T1 +T2 +T3 = 0, and ω1−ω2 = − x+ y + z

x+ y + z − 1
T3, then

from the two first equations and the first equation of (41) we get that

x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z
= − x+ y + z

(x+ y + z − 1)
.

By considering the equation

x
∂H1

∂x
+ y

∂H1

∂y
+ z

∂H1

∂z
= 0,

we obtain that H2 satisfies the equation

x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z
= − x+ y + z

x+ y + z − 1
.

A particular solution of this partial differential equation is − log(x+ y + z − 1).
Consequently H2 can be written as

H2 = − log(x+ y + z − 1) + Ψ(x, y, z),

whereΨ = Ψ(x, y, z) is a solution of the equation

x
∂Ψ

∂x
+ y

∂Ψ

∂y
+ z

∂Ψ

∂z
= 0.
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Thus Ψ = Ψ(x/y, z/y). Hence H becomes (44). Inserting into the third equation
of (40) and after some computations we obtain the equation

T1η
∂Ψ

∂η
+ (T1 + T2)ξ

∂Ψ

∂ξ
= −(x+ y + z),

where ξ = x/y and η = z/y. By considering that T1 + T2 = (x+ y)(b1 + b2 + b3 −
3) + (2− b1 − b3)(x+ y + z), then we get the equation(

(2− b1 − b3)(x+ y + z) + (b1 + b2 + b3 − 3)(x+ y)
)x
y

∂Ψ

∂ξ

+
(

(1− b3)(x+ y + z) + (b1 + b2 + b3 − 3)z
)z
y

∂Ψ

∂η
= −(x+ y + z),

and by dividing this equation by y and introducing the notations ξ = x/y and
η = z/y after some computations we get equation (45).

Now we assume that b1 + b2 + b3 = 3. From (45) we obtain that

(b2 − 1))ξ
∂Ψ

∂ξ
− (b3 − 1)η

∂Ψ

∂η
= −1.

A particular solution of this equation is log
(
η1/(2−2b2)ξ1/(2b3−2)

)
. Thus the general

solution of the previous equation is

Ψ = log
(
η1/(2−2b2)ξ1/(2b3−2)

)
+ Θ(ξ1−b3η1−b2),

where Θ = (ξ1−b3η1−b2) is an arbitrary function. Taking Θ = 0 and equation
(44) becomes equation (46). The representation (46) and deduction of differential
system (47) are easy to obtain. In short the proposition is proved. �

5.3. Determination of the second first integral H2 of the symmetric May–
Leonard model. The differential system

(48)

ẋ = x (1− x− ay − bz) ,

ẏ = y (1− y − bx− az) ,

ż = z (1− z − ax− by) ,

is well known as the symmetric May–Leonard model (see for instance [2]), where
a and b are positive parameters. Clearly differential system (48) is obtained from
(35) under the conditions bj = b and aj = a for j = 1, 2, 3.

Proposition 19. Consider the symmetric May–Leonard model.

(i) If a + b = 2 then this system has the first integral H1 and the Jacobi mul-
tiplier J , where

H1 = log

∣∣∣∣ xyz

(x+ y + z)3

∣∣∣∣ , and J =
1

|xyz(x+ y + z − 1)|
.

Moreover a second independent first integral is

H2 = (b− 1) log |x+ y + z − 1|+ Λ
(y
x
,
z

x

)
,
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where Λ = Λ
(y
x
,
z

x

)
is a solution of the partial differential equation

(49) −(2η − ξ − 1)ξ
∂Λ̃

∂ξ
+ (2ξ − η − 1)η

∂Λ̃

∂η
= −(1 + ξ + η),

where Λ̃ = Λ(ξ, η), ξ = y/x, and η = z/x.
(ii) If a = b 6= 1 then

H1 = lg

∣∣∣∣y(x− z)
x(y − z)

∣∣∣∣ and J =
(
|x|b+1|z|2b−1|y − x|b−2|z − x|−b−1

) 1
1−b

,

where H1 is a first integral and J is a Jacobi multiplier, moreover a second
independent first integral is

H2 = log

∣∣∣∣|b− 1|(y − z)2
(
|x|b−3|z|1−2b|y − x|2−b|z − x|b+1

) 1
1−b

∣∣∣∣+ Λ
(y
x
,
z

x

)
,

where Λ is a solution of the partial differential equation

(ξ − 1)ξ
∂Λ̃

∂ξ
+ η(η − 1)

∂Λ̃

∂η
= −Φ1(ξ, η),

where Λ̃ = Λ(ξ, η), ξ = y/x, η = z/x and Φ1(ξ, η) = η
2b−1
b−1 (η − 1)

b+1
b−1 (ξ −

1)
2−b
b−1 (ξ − η)

2
.

(iii) If a = b = 1 then

H1 = log
∣∣∣y
x

∣∣∣ , and J =
1

|xyz(x+ y + z − 1)|
,

where H1 is a first integral and J is a Jacobi multiplier, moreover a second

independent first integral is H2 = log
∣∣∣ z
x

∣∣∣ .
Proof. For the case when a + b = 2 the symmetric May–Leonard systems has two
Jacobi multiplier

J1 =
1

|xyz(x+ y + z − 1)|
, J2 =

1

|(x+ y + z)3(x+ y + z − 1)|
,

hence H1 = log
J2

J1
= log

|xyz|
|x+ y + z|3

is a first integral.

The second independent first integral can be obtained from equations (29) which,
after some computations can be written as (40) with

T1 = x+ y + z − 3x, T2 = x+ y + z − 3y, T3 = x+ y + z − 3z,

ω1 =
x+ y + z

(x+ y + z − 1)
(1− x− (2− b)y − bz) ,

ω2 =
x+ y + z

(x+ y + z − 1)
(1− y − (2− b)z − bx) ,

ω3 =
x+ y + z

(x+ y + z − 1)
(1− z − (2− b)x− by) .

By considering that T1 + T2 + T3 = 0 we get that the first of equation of system
(41) becomes

x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z
=

x+ y + z

H1(x+ y + z − 1)
(b− 1).
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and considering the equation

x
∂H1

∂x
+ y

∂H1

∂y
+ z

∂H1

∂z
= 0,

we obtain that H2 satisfies the equation

x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z
= − x+ y + z

x+ y + z − 1
.

The general solution of this equation is

H2 = (b− 1) log |x+ y + z − 1|+ Λ(x/y, z/y) = log(
eΛ(x/y,z/y)

|x+ y + z − 1|1−b
.

Inserting it into the second equation and introducing the notations ξ = x/y and
η = z/y, we obtain

(T1 + T2)ξ
∂Λ

∂ξ
+ T1η

∂Λ

∂η
= −(x+ y + z).

Dividing this equation by y we deduce (49). So the proof of statement (i) is done.

The proof of statement (ii) is the following. Symmetric May–Leonard system
with a = b 6= 1 is completely integrable (see [2]). Moreover the Jacobi multiplier J
and first integral H1 are

J =
(
|x|b+1|z|2b−1|y − x|b−2|z − x|−b−1

) 1
1−b

, H1 = log

∣∣∣∣y(x− z)
x(y − z)

∣∣∣∣ ,
respectively.

The second independent first integral H2 = H can be obtained from equations
(40) with

T1 = y − z, T2 = z − x, T3 = y − x,

ω1 = λ(x+ b(y + z)− 1), ω2 = λ(y + b(x+ z)− 1), ω3 = λ(z + b(y + x)− 1),

where λ = (y − z)2
(
xb−3z1−2b(y − x)2−b(z − x)b+1

) 1
1−b

.

The differential system (41) in this case becomes

(50)

x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z
= (b− 1)λ,

(x− z)x∂H2

∂x
+ (y − z)y ∂H2

∂y
= −z

(
x
∂H2

∂x
+ y

∂H2

∂y
+ z

∂H2

∂z

)
+x2 ∂H2

∂x
+ y2 ∂H2

∂y
+ z2 ∂H2

∂z

= λ(b(x+ y + z)− 1− (b− 1)z).

Hence in view of the first equation the second equation can be written as follows

x2 ∂H2

∂x
+ y2 ∂H2

∂y
+ z2 ∂H

∂z
= λ(b(x+ y + z)− 1).

By considering that the function λ = λ(x, y, z) can be rewritten as

λ = xΦ1(
y

x
,
z

x
) = (xyz)

b
b−1 Φ2

(
1

x
− 1

y
,

1

x
− 1

z

)
,
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where

Φ1(
y

x
,
z

x
) =

(( z
x

)2b−1 (y
x
− 1
)2−b ( z

x
− 1
)b+1

)1/(b−1) ( z
x
− y

x

)2

,

Φ2

(
1

x
− 1

y
,

1

x
− 1

z

)
=

((
1

x
− 1

z

)b+1(
1

x
− 1

y

)2−b
) 1

b− 1
(

1

z
− 1

y

)2

,

after some computations the functions Φ1 and Φ2 satisfies the equations

x
∂Φ1

∂x
+ y

∂Φ1

∂y
+ z

∂Φ1

∂z
= 0,

x2 ∂Φ2

∂x
+ y2 ∂Φ2

∂y
+ z2 ∂Φ2

∂z
= 0.

Consequently the function λ satisfies the following partial differential equations

x
∂λ

∂x
+ y

∂λ

∂y
+ z

∂λ

∂z
= λ,

x2 ∂λ

∂x
+ y2 ∂λ

∂y
+ z2 ∂λ

∂z
=

b

b− 1
(x+ y + z)λ.

Thus the solution of the first equation of (50) is

H2 = (b− 1)λ(x, y, z) + Λ
(y
x
,
z

x

)
,

where Λ is a solution of the equation

(51)

(
x2 ∂

∂x
+ y2 ∂

∂y
+ z2 ∂

∂z

)
Λ
(y
x
,
z

x

)
= −xΦ1

(y
x
,
z

x

)
= −λ(x, y, z).

After the change x = x, y = xξ and z = xη and by considering that

∂Λ

∂x
= − y

x2

∂Λ

∂ξ
− z

x2

∂Λ

∂η
,

∂Λ

∂y
=

1

x

∂Λ

∂ξ
,

∂Λ

∂z
=

1

x

∂Λ

∂η
,

and dividing equation (51) by x we obtain, after some computations, that it becomes

(ξ − 1)ξ
∂Λ̃

∂ξ
+ η(η − 1)

∂Λ̃

∂η
= −Φ1(ξ, η),

where Λ̃ = Λ|y=xξ, z=xη and Φ1(ξ, η) = η
2b−1
b−1 (η − 1)

b+1
b−1 (ξ − 1)

2−b
b−1 (ξ − η)

2
. Hence

statement (ii) is proved.

Finally we prove statement (iii). Then the symmetric May–Leonard system with
a = b = 1 is completely integrable. Moreover a Jacobi multiplier and a first integral
are

J =
1

|xyz(x+ y + z − 1)|
, H1 = log

∣∣∣y
x

∣∣∣ ,
respectively.

The second independent first integral can be obtained from equations (29) which,
after some computations, in this case becomes

1

y

∂H2

∂z
=

1

yz
,

1

x

∂H2

∂z
=

1

xz
, − 1

x

∂H2

∂y
− 1

y

∂H2

∂x
=

1

yx
,
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where we have assumed that the absolute value of J is positive. If it negative the
first integrals only changes the sign.

The previous equations become

∂H2

∂z
=

1

z
, x

∂H2

∂x
+ y

∂H2

∂y
= −1.

The solution of these equations is

H2 = log

√
z2

|xy|
+ Φ1(

x

y
) = log

∣∣∣ z
x

∣∣∣+ log

√∣∣∣∣xy
∣∣∣∣+ Φ1(

x

y
) = log

∣∣∣ z
x

∣∣∣+ Φ2(H1),

where Φj(
x

y
) is an arbitrary function for j = 1, 2. Consequently a second indepen-

dent first integral is log
∣∣∣ z
x

∣∣∣ . In short the proposition is proved. �

5.4. Determination of the second first integral H2 in the Lotka–Volterra
system which are integrable at the origin. Now we shall apply Proposition
13 to some particular Lotka–Volterra systems having a first integral and Jacobi
multiplier given in the paper [1]. Other results on the integrability of 3–dimensional
Lotka-Volterra systems can be found in [3].

Proposition 20. The Lotka–Volterra differential system

ẋ = x(2 + ax), ẏ = y(−1 + dx+ hy + kz), ż = z(1 + gx+ hy + kz),

has the first integral H1 = z(2 + ax)
d+a−g

a /(xy) and the Jacobi multiplier J =

x
5
2 y3(2 + ax)

2(g−2d)−a
2a . Then it has the second first integral

(52) H2 =
(2 + ax)

a+2d
2a

√
x

(
1

y
+ T (

z

y
, x)

)
.

where the function T = T (
z

y
, x) is a solution of the partial differential equation

(53) (2 + (g − d)x)η
∂T

∂η
+ x(2 + ax)

∂T

∂x
+ (x d− 1)T (η, x) = h+ kη,

with η =
z

y
.

Proof. In this case the partial differential system (29) becomes

y
∂H2

∂y
+ z

∂H2

∂z
+

(2 + ax)
a+2d
2a

y
√
x

= 0,

x(2 + ax)
∂H2

∂x
+ z(2 + (g − d)x)

∂ H

∂z
− (−1 + dx+ hy + kz)

(2 + ax)
a+2d
2a

y
√
x

= 0,

x(2 + ax)
∂H2

∂x
− y(2 + (g − d)x)

∂ H2

∂y
− (1 + gx+ hy + kz)

(2 + ax)
a+2d
2a

y
√
x

= 0,
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The solution of the first equation isH2 given by the formulaH2 =
(2 + ax)

a+2d
2a

√
x

Λ(x, y),

where Λ(x, y) is a solution of the partial differential equation

y
∂Λ

∂y
+ z

∂Λ

∂z
=

1

y
.

Consequently Λ = 1/y + T (z/y, x). Hence

H2 =
(2 + ax)

a+2d
2a

√
x

(
1

y
+ T (z/y, x)

)
:= λ(x)

(
1

y
+ T (z/y, x)

)
.

Inserting this expression into the second equation and by considering that λ′(x) =
λ(x)

x(2 + ax)
, and introducing the notation η =

z

y
we obtain the differential equation

λ(x)(ax−1)(
1

y
+T (z/y, x))+x(2+ax)

∂T

∂x
+(2+(g−d)x)η

∂T

∂η
=

(−1 + ax+ hy + gz)λ(x)

y
,

thus after simplification we get differential equation (53). �

Proposition 21. The Lotka–Volterra differential system

ẋ = x(1 + gx+ by + kz), ẏ = y(−2 + ey), ż = z(1 + gx+ hy + kz),

has the first integral H1 = x (1− ey/2)
h−b
e /z, and the Jacobi multiplier J =(

z
√
y
)−3

(1− ey/2)
− 2b−4h+e

e . Then it has the second first integral

H2 =
2
(

1− ey

2

) 2h+e
2e

√
y

(
−1

z
+ T (

z

x
, y)

)
,

where the function T = T (z/x, y) is a solution of the partial differential equation

(54) (2− ey)yη
∂T

∂y
+ (b− h)η2y

∂T

∂η
= (1 + hy)ηT + ηk + g,

with η =
z

x
.

Proof. The d1ifferential system (29) in this case becomes

(2− ey)
∂H

∂y
− (h− b)z ∂H

∂z
=

2
(

1− ey

2

) 2h+e
2e

zy
3
2

(1 + gx+ by + kz),

x
∂H

∂x
+ z

∂H

∂z
=

2
(

1− ey

2

) 2h+e
2e

zy
1
2

,

(2− ey)
∂H

∂y
+ (h− b)x∂H

∂x
=

2
(

1− ey

2

) 2h+e
2e

zy
3
2

(1 + gx+ hy + kz),

From the second equation and in a similar way to the determination of function
(52) we get the function H2. Inserting this function into the first and third equation
and in analogous way to the proof of Proposition 20 we get that the function T
satisfies equation (54). �
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Proposition 22. The Lotka–Volterra differential system

ẋ = x(1 + ax+ by + 2kz), ẏ = y(−2 + ey − kz), ż = z(1 + kz),

has the first integral H1 = yz2/(1 − ey/2 + kz) and the Jacobi multiplier J =

(x/z)
−2

(1− ey/2 + kz)
b
e−2

(1 + kz)1− b
e . Then the system has the second first inte-

gral

(55) H2 = z
(

1− ey

2
+ kz

) b
e

(1 + kz)1− b
e

(
− 1

x
+ T (y, z)

)
,

where T = T (y, z) is a solution of the partial differential equation

(56) y(ey − kz − 2)
∂T

∂y
+ z(1 + kz)

∂H

∂z
+ (1 + by + 2kz)T = a.

Proof. System (29) in this case becomes

(57)

y(ey − kz − 2)
∂H

∂y
+ z(1 + kz)

∂H

∂z
= −z

(
1− ey

2
+ kz

) b
e

(1 + kz)1− b
e(

1 + ax+ by + 2kz)

x

)
,

∂H

∂x
=

z
(

1− ey

2
+ kz

) b
e

(1 + kz)1− b
e

x2
.

The solution of the second equation is H2 given in (55). Inserting this function into
the first equation of (57) and by considering that

y(ey − kz − 2)
∂λ

∂y
+ z(1 + kz)

∂λ

∂z
= −(1 + by + 2kz)λ,

where λ = z (1− ey/2 + kz)
b
e (1 + kz)1− b

e , we obtain differential equation(
y(ey − kz − 2)

∂λ

∂y
+ z(1 + kz)

∂λ

∂z

)
(− 1

x
+ T )+

λ

(
y(ey − kz − 2)

∂T

∂y
+ z(1 + kz)

∂T

∂z

)
=

1 + ax+ by + 2kz

x
λ.

Hence after some computations we get (56). �

Remark 23. Propositions 16, 17, 18, 19, 20, 21 and 22 illustrate the possibilities of
the method which we propose to determine the complementary first integral in the
Jacobi Theorem. To determine the final expression for H2 it is necessary to solve
a partial differential equation, which in general is a non trivial problem.

5.5. On the Clebsch vector fields. In physics and mathematics the vector field

(58) X = X1
∂

∂x1
+X2

∂

∂x2
+X3

∂

∂x3

is called solenoidal if there exists a function J such that (2) holds. Any solenoidal

vector field can be expressed as curl of some other vector field Y = A
∂

∂x
+B

∂

∂y
+
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C
∂

∂z
(see for instance [17]), i.e.

(59) JX = curl(Y),

or equivalently

(60) JX1 =
∂B

∂z
− ∂C

∂y
, JX2 =

∂C

∂x
− ∂A

∂z
, JX3 =

∂A

∂y
− ∂B

∂x
,

In physics and mathematics the Clebsch representation of the three-dimensional
vector field Y is

(61) Y = gradϕ+ µgradψ,

where the functions ϕ = ϕ(x, y, z), µ = µ(x, y, z) and ψ = ψ(x, y, z) are known as
Clebsch potentials (see for instance [6]).

Proposition 24. The 3–dimensional solenoidal vector field (58) satisfying (59)
with µ and ψ independent functions is completely integrable if and only if Y is a
Clebsch vector field.

Proof. Clearly if (61) holds then JX = curl(Y) = gradµ ∧ gradψ, where a ∧ b is
the cross product of the vectors a and b. Hence

JX (µ) = J

(
X1

∂µ

∂x
+X2

∂µ

∂y
+X3

∂µ

∂z

)
= 0,

JX (ψ) = J

(
X1

∂ψ

∂x
+X2

∂ψ

∂y
+X3

∂ψ

∂z

)
= 0,

then µ and ψ are independent first integrals, i.e. differential system (58) for N = 3
is completely integrable.

The reciprocity is obtained as follows. Assume that (58) is completely integrable
with first integral H1 and H2, i.e. admits the representation (18) for N = 3, and
(29) holds. By considering that

∂H1

∂y

∂H2

∂z
− ∂H1

∂z

∂H2

∂y
=

∂

∂z

(
H2

∂H1

∂y

)
− ∂

∂y

(
H2

∂H1

∂z

)
= JX1,

∂H1

∂z

∂H2

∂x
− ∂H1

∂x

∂H2

∂z
=

∂

∂x

(
H2

∂H1

∂z

)
− ∂

∂z

(
H2

∂H1

∂x

)
= JX2,

∂H1

∂x

∂H2

∂y
− ∂H1

∂y

∂H2

∂x
=

∂

∂y

(
H2

∂H1

∂x

)
− ∂

∂x

(
H2

∂H1

∂y

)
= JX3.

Consequently from (60) we get that the functions A, B and C are such that

A = H1
∂H2

∂x
+

∂

(
Φ− 1

2
H1H2

)
∂x

= −H2
∂H1

∂x
+

∂

(
Φ +

1

2
H1H2

)
∂x

,

B = H1
∂H2

∂y
+

∂

(
Φ− 1

2
H1H2

)
∂y

= −H2
∂H1

∂y
+

∂

(
Φ +

1

2
H1H2

)
∂y

,

C = H1
∂H2

∂x
+

∂

(
Φ− 1

2
H1H2

)
∂x

= −H2
∂H1

∂x
+

∂

(
Φ +

1

2
H1H2

)
∂x

,
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where H1 and H2 are independent first integrals, and Φ = Φ(x, y, z) is an arbitrary
function. Hence the vector field Y becomes

Y = H2 gradH1 + grad

(
Φ− 1

2
H1H2

)
= −H1 gradH2 + grad

(
Φ +

1

2
H1H2

)
.

Thus the vector field Y is a Clebsh vector field with Clebsh potentials H2 (or -H1,)

H1 (or H2) and Φ− 1

2
H1H2 (or Φ+

1

2
H1H2). In short the proposition is proved. �

Example 25. The vector field X = x(y − z)
∂

∂x
+ y(z − x)

∂

∂y
+ z(x − y)

∂

∂z
is

solenoidal. The vector field Y in this case is Y = xyzgrad(x + y + z) + gradϕ,
where ϕ is an arbitrary C1 function. It is easy to show that xyz and x+ y + z are
first integral of X .
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